首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVE: To report a new mutation in the MPZ gene which encodes myelin protein zero (P0), associated with an axonal form of Charcot-Marie-Tooth disease (CMT). METHODS: Three patients from an Italian family with a mild, late onset axonal peripheral neuropathy are described clinically and electrophysiologically. To detect point mutation in MPZ gene the whole coding sequence was examined. The structure of the mutated protein was investigated using the three dimensional model of P0. RESULTS: All patients showed a relatively mild CMT phenotype characterised by late onset and heterogeneity of the clinical and electrophysiological features. Molecular analysis demonstrated a novel heterozygous T/A transversion in the exon 3 of MPZ gene that predicts an Asp109Glu amino acid substitution in the extracellular domain of the P0. Asp109 is found at the protein surface, on beta strand E, in the interior of the P0 tetramer. CONCLUSIONS: The identification of Asp109Glu mutation confirms the pivotal role of P0 in axonal neuropathies and stresses the phenotypic heterogeneity associated with MPZ mutations. This study suggests the value of screening for MPZ mutations in CMT family members with minor clinical and electrophysiological signs of peripheral neuropathy.  相似文献   

2.
Charcot-Marie-Tooth disease type 1 (CMT1) is a demyelinating peripheral neuropathy most commonly caused by a DNA duplication on chromosome 17p11.2 including the peripheral myelin protein 22 (PMP22). Point mutations in the myelin protein zero gene (MPZ) and gap junction protein, beta-1 gene (GJB1) are also found in association with CMT1 or the subclass of CMT type X (CMTX), respectively. Recently point mutations in these genes have been found in patients showing the axonal variant of CMT, CMT type 2 (CMT2). We here describe the clinical and electro-physiological findings caused by two novel and two recently described MPZ mutations and six GJB1 mutations. Different MPZ and GJB1 mutations were associated with different grades of severity in CMT1 and CMTX. The novel MPZ Glu141st op mutation was associated with the axonal CMT2. We conclude that the clinical and electrophysiological heterogeneity among CMT patients carrying point mutations in MPZ and GJB1 is similar. Thus for clinical purposes CMT1 and CMT2 patients should be screened for mutations in these two genes after duplication on chromosome 17p11.2 has been excluded as the disease causing mutation.  相似文献   

3.
OBJECTIVES AND METHODS: Seven families were studied with an axonal form of Charcot-Marie-Tooth disease (CMT) associated with mutations in the peripheral myelin protein zero (MPZ) gene-Thr124Met or Asp75Val. RESULTS: Patients with these mutations commonly showed relatively late onset sensorimotor neuropathy predominantly involving the lower limbs. Sensory impairment typically was marked, and distal muscle atrophy and weakness were also present in the legs. Adie's pupil and deafness were often present, and serum creatine kinase concentrations were often raised irrespective of which MPZ mutation was present. Relatively well preserved motor and sensory nerve conduction velocities contrasted with reduced or absent compound muscle action potentials and sensory nerve action potentials. Axonal change with marked axonal sprouting was seen in sural nerve specimens. CONCLUSION: The similar associated clinical findings suggest that patients with axonal CMT with an MPZ gene mutation share distinctive clinical features.  相似文献   

4.
MPZ gene mutations cause demyelinating and axonal Charcot-Marie-Tooth (CMT) disease. Two novel MPZ mutations are reported in very late onset and progressive CMT syndrome. The N60H caused axonal CMT in a large family, whereas the I62M occurred in a single patient presenting with a primary axonal neuropathy. Previously, chronic polyradiculoneuritis was assumed in two patients. Molecular genetic testing and particularly screening for MPZ mutations in late onset neuropathies are important to differentiate acquired and inherited neuropathies.  相似文献   

5.
Mutations in myelin protein zero (MPZ) protein result in a wide spectrum of peripheral neuropathies, from congenital hypomyelinating to late onset sensory and motor axonal forms. In some patients, neuropathic pain can be a prominent symptom, making the diagnosis challenging mainly in those with other risk factors for neuropathy. We describe a 77‐year‐old woman with impaired glucose tolerance presenting with rapidly progressive axonal neuropathy leading to excruciating pain and severe weakness of lower limbs within 2 years from the onset. Her son abruptly complained of similar painful symptoms at the age of 47 years. Molecular analysis revealed a novel heterozygous missense mutation (c.106A>G) in MPZ exon 2, causing the substitution of arginine‐36 with glycine in the extracellular domain. Our observation suggests that MPZ‐related neuropathy should be considered in the diagnostic work up of patients with painful axonal neuropathy even presenting with rapid progression and at a very late age of onset.  相似文献   

6.
Mutations in the major peripheral nervous system (PNS) myelin protein, myelin protein zero (MPZ), cause Charcot-Marie-Tooth Disease type 1B (CMT1B), typically thought of as a demyelinating peripheral neuropathy. Certain MPZ mutations, however, cause adult onset neuropathy with minimal demyelination but pronounced axonal degeneration. Mechanism(s) for this phenotype are unknown. We performed an autopsy of a 73-year-old woman with a late-onset neuropathy caused by an H10P MPZ mutation whose nerve conduction studies suggested severe axonal loss but no demyelination. The autopsy demonstrated axonal loss and reorganization of the molecular architecture of the axolemma. Segmental demyelination was negligible. In addition, we identified focal nerve enlargements containing MPZ and ubiquitin either in the inner myelin intralaminar and/or periaxonal space that separates axons from myelinating Schwann cells. Taken together, these data confirmed that a mutation in MPZ can cause axonal neuropathy, in the absence of segmental demyelination, thus uncoupling the two pathological processes. More important, it also provided potential molecular mechanisms as to how the axonal degeneration occurred: either by disruption of glial-axon interaction by protein aggregates or by alterations in the molecular architecture of internodes and paranodes. This report represents the first study in which the molecular basis of axonal degeneration in the late-onset CMT1B has been explored in human tissue.  相似文献   

7.
A French family had Charcot-Marie-Tooth disease type 2 (CMT2) which was characterised by late onset of peripheral neuropathy involvement, Argyll Robertson-like pupils, dysphagia, and deafness. Electrophysiological studies and nerve biopsy defined the neuropathy as axonal type. Genetic analysis of myelin protein zero (MPZ) found a mutation in codon 124 resulting in substitution of threonine by methionine. One of the patients, presently 30 years old, showed only Argyll Robertson-like pupils as an objective sign but no clinical or electrophysiological signs of peripheral neuropathy.  相似文献   

8.
BACKGROUND: Charcot-Marie-Tooth disease type 1 (CMT1) is the most common inherited peripheral neuropathy and represents a genetically heterogeneous condition. In addition to the peripheral myelin protein 22 gene (PMP22) duplication (CMT1A), myelin protein zero gene (MPZ) mutations may account for a certain portion of CMT1 patients (CMT1B). OBJECTIVES: The authors analyzed the MPZ mutations in Taiwanese patients who do not have PMP22 duplication. Specifically, their clinical and molecular features were characterized. MATERIALS AND METHODS: Twenty-four of 57 unrelated Taiwanese patients with CMT1 were selected after excluding the CMT1A duplication. Subsequent analysis of the coding regions of the MPZ gene was performed with single-strand-conformation polymorphism (SSCP), which was then followed by nucleotide sequencing. RESULTS: Four missense mutations and one 4-base pair (bp) deletion, respectively, were identified in five patients, of which one mutation, c.173 T>A, has never been previously reported. Three missense mutations were located in exon 2, the other one in exon 3, and the deletion in exon 6. CONCLUSIONS: This study expands the number of CMT1 associated MPZ mutation and suggests that analysis of the coding sequence of MPZ should be performed in all CMT patients without CMT1A duplication to clarify their disease nature.  相似文献   

9.
Charcot-Marie-Tooth disease type 1B (CMT1B) is caused by mutations in the major PNS myelin protein myelin protein zero (MPZ). MPZ is a member of the immunoglobulin supergene family and functions as an adhesion molecule helping to mediate compaction of PNS myelin. Mutations in MPZ appear to either disrupt myelination during development, leading to severe early onset neuropathies, or to disrupt axo-glial interactions leading to late onset neuropathies in adulthood. Identifying molecular pathways involved in early and late onset CMT1B will be crucial to understand how MPZ mutations cause CMT1B so that rational therapies for both early and late onset neuropathies can be developed.  相似文献   

10.
Charcot-Marie-Tooth type II disease (CMT2) is a typical peroneal muscular atrophy syndrome and is characterised by normal or slightly reduced nerve conduction velocities with signs of axonal degeneration. CMT2 is genetically heterogeneous: linkage to 1p35–p36 (CMT2A; KIF1B gene), 3q13–q22 (CMT2B), 7p14 (CMT2D) and 8p21 (CMT2E; NF-L gene) loci has been reported for the autosomal dominant disease; however, the majority of CMT2 families do not link to any of the reported loci. Mutations of the myelin protein zero (MPZ) gene were found associated with demyelinating forms of hereditary neuropathies such as CMT1B, Dejerine-Sottas syndrome and congenital hypomyelination. So far, few CMT2 cases (CMT2F) were found to be caused by point mutations in the MPZ (see CMT Mutation Database, http://molgen-www.uia.ac.be/CMTMutations/ ) in 1q22 region.
We report a family in which three members are affected with a late-onset peripheral neuropathy. The index patient is a 68-year-old male who presents with pronounced distal muscle weakness of inferior limbs, bilateral pes cavus and absence of deep tendon reflexes. Electrophysiological findings were suggestive of an axonal form of peripheral neuropathy, thus allowing the diagnosis of CMT type 2. At the clinical and electrophysiological examination, two other family members (first cousins of the proband) resulted to be affected. MPZ gene direct sequencing revealed a heterozygous T/A transversion in the exon 3 of the gene, predicting an Asp103Glu aminoacid substitution in the extracellular domain of the protein. This variant was not found in unaffected relatives and in 100 normal chromosomes. This finding confirms the role of protein zero in axonal neuropathies and the phenotypic heterogeneity associated with MPZ mutations.
(The laboratory is a member of the European CMT Consortium; partially granted by Ministero della Sanitá to PM, MURST to FA)  相似文献   

11.
12.
Inherited neuropathies caused by mutations of the major structural protein of peripheral myelin, myelin protein zero (MPZ), contribute to 5% of all cases of Charcot-Marie-Tooth disease (CMT). They can be divided into an early-onset neuropathy with symptoms prior to the stage of walking, and a late-onset neuropathy with symptoms at the age of 40 and older. In this study, five patients with four novel MPZ mutations were identified by molecular genetic testing which presented as mild and late-onset neuropathies. We recommend testing for MPZ mutations in patients with a late-onset neuropathy, as late-onset inherited neuropathies might be more frequent than previously thought.  相似文献   

13.
Charcot-Marie-Tooth disease (CMT) is a group of clinically and genetically heterogeneous neuropathies classically divided into demyelinating (CMT1) and axonal forms (CMT2). The most common demyelinating form is CMT1A, due to a duplication in the gene encoding the peripheral myelin protein 22 (PMP22). Less frequently, mutations in the myelin protein zero gene (MPZ/P0) account for demyelinating CMT1B. Herein, we report a patient presenting with an isolated hyperCKemia in whom electrophysiological and pathological findings revealed a demyelinating and axonal neuropathy. Sequencing of the MPZ gene revealed a 306delA at codon 102 in the proband and in two relatives. This mutation has been already described in association with paucisymptomatic CMT without hyperCKemia.  相似文献   

14.
In up to 50% of chronic idiopathic axonal neuropathies, an underlying diagnosis may be identified, including hereditary neuropathy. Charcot-Marie-Tooth disease (CMT) is clinically and genetically heterogeneous. Several mutations in the myelin protein zero (MPZ) gene have been associated with different CMT phenotypes, including classical demyelinating CMT1B and the axonal form of the disease. Primary amyloidosis, a rare disease where the amyloid is formed by the N-terminal portion of a monoclonal immunoglobulin light chain, may be complicated by polyneuropathy. We report a patient who was incorrectly diagnosed with amyloid neuropathy, but was found to have axonal CMT1B only after sural nerve biopsy ruled out an acquired amyloid neuropathy.  相似文献   

15.
16.
The myelin protein zero gene (MPZ) encodes the major structural protein component of myelin in the peripheral nervous system. More than 120 mutations in MPZ have been detected so far. Clinical phenotypes include CMT1B, CMT2, Dejerine-Sottas syndrome, and congenital hypomyelination neuropathy. We report a new previously unreported mutation in the MPZ gene causing a demyelinating peripheral neuropathy. The initial apparent absence of a family history resulted in the patient being treated for an inflammatory neuropathy with some subjective improvement. We subsequently identified another affected member of the same family with the same genotype leading to the correct diagnosis. Both the affected individuals had an 8-base pair deletion, c.160_167delTCCCGGGT in MPZ exon 2.  相似文献   

17.
Charcot-Marie-Tooth disease type 1B (CMT1B) is a demyelinating neuropathy inherited as an autosomal dominant trait. The majority of CMT1B cases are caused by mutations in the myelin protein zero (P0) gene (MPZ). Only a few mutations in MPZ gene have been reported to be associated with focally folded myelin sheaths. We have studied five patients from one family with five generations, affected by CMT1B disease. The morphological studies of sural nerve biopsy performed in the proband revealed fibers with focally folded myelin. DNA sequencing analysis showed the Asn131Lys mutation in the MPZ gene in three members of the affected family.  相似文献   

18.
BACKGROUND: To date, 13 different neurofilament light-chain polypeptide gene (NEFL) mutations have been identified in 55 patients with Charcot-Marie-Tooth disease (CMT) from 16 families. NEFL mutations were found to be associated with axonal and demyelinating variants of CMT. OBJECTIVES: To describe the clinical features of 11 patients with CMT and NEFL mutations and to explore possible genotype-phenotype correlations. DESIGN: Standardized neuromuscular and nerve conduction studies were performed, and the coding regions of the peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ), gap junction beta-1 protein (GJB1), and NEFL genes were analyzed by direct DNA sequencing. SETTING: Two university hospitals in Austria (referral centers for neuromuscular disorders). Patients Eleven patients with CMT and NEFL mutations. Main Outcome Measure We genotyped NEFL in all of the patients and healthy relatives and correlated the genotype with the phenotype. RESULTS: A novel NEFL mutation (p.L93P) was detected in 1 family with 4 affected individuals exhibiting a severe CMT phenotype. Nerve conduction velocities were intermediately slowed to a range of 35 to 39 m/s. In a second family and in a sporadic patient, a p.P8R mutation was identified with intermediate and severe nerve conduction slowing. CONCLUSION: The results argue against an obvious genotype-phenotype correlation regarding disease onset, degree of muscle weakness, and nerve conduction slowing caused by NEFL mutations.  相似文献   

19.
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disorder that has been associated with alterations of several proteins: peripheral myelin protein 22, myelin protein zero, connexin 32, early growth response factor 2, periaxin, myotubularin related protein 2, N-myc downstream regulated gene 1 product, neurofilament light chain, and kinesin 1B. To determine the frequency of mutations in these genes among patients with CMT or a related peripheral neuropathy, we identified 153 unrelated patients who enrolled prior to the availability of clinical testing, 79 had a 17p12 duplication (CMT1A duplication), 11 a connexin 32 mutation, 5 a myelin protein zero mutation, 5 a peripheral myelin protein 22 mutation, 1 an early growth response factor 2 mutation, 1 a periaxin mutation, 0 a myotubularin related protein 2 mutation, 1 a neurofilament light chain mutation, and 50 had no identifiable mutation; the N-myc downstream regulated gene 1 and the kinesin 1B gene were not screened for mutations. In the process of screening the above cohort of patients as well as other patients for CMT-causative mutations, we identified several previously unreported mutant alleles: two for connexin 32, three for myelin protein zero, and two for peripheral myelin protein 22. The peripheral myelin protein 22 mutation W28R was associated with CMT1 and profound deafness. One patient with a CMT2 clinical phenotype had three myelin protein zero mutations (I89N+V92M+I162M). Because one-third of the mutations we report arose de novo and thereby caused chronic sporadic neuropathy, we conclude that molecular diagnosis is a necessary adjunct for clinical diagnosis and management of inherited and sporadic neuropathy.  相似文献   

20.
Charcot-Marie-Tooth 1B neuropathy (CMT1B), Déjèrine-Sottas syndrome (DSS) and Congenital Hypomyelination are each associated with mutations in MPZ , encoding P0 glycoprotein, the major structural protein of peripheral nerve myelin. To explore whether new abnormal functions of mutant MPZ can explain this phenotypic diversity, we expressed either of two MPZ mutations: DELSer34 (causing CMT1B) or Ser34Cys (causing DSS) in addition to the two normal endogeneous copies of Mpz in transgenic mice. We have shown previously that overexpression of wild type Mpz causes dose-dependent dysmyelination. However, multiple lines of mice containing the MPZ mutants showed not only hypomyelination, but also abnormalities in myelin sheaths and onion bulbs that were never observed in Mpz overexpressor mice. To create a mouse model of CMT1B with no Mpz overexpression, one line of DELSer34 that expresses mutant Mpz at levels similar to one wildtype Mpz allele was crossed with heterozygous Mpz knock-out mice, to obtain the genotype Mpz wt/−/ Mpz DELSer34. These mice manifest progressive peripheral neuropathy with hypomyelination, and onion bulbs that appear around 6 months of age. As a first step towards longitudinal studies of phenotype, we performed detailed neurophysiological analyses at 12 months of age. We found signs of demyelination, with statistically significant increases of both motor latency after proximal stimulation and F-wave latencies, and decreases in both motor and mixed afferent nerve conduction velocities of sciatic nerve. The motor response was polyphasic and there was a trend towards reduced CMAP amplitudes. Thus, the clinical onset and progression, pathological features and neurophysiological findings provide a reasonable model of CMT1B. Longitudinal studies to correlate the onset and progression of morphological and electrophysiological abnormalities in these mice are ongoing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号