首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed quantitative kinetic model for the polymerase chain reaction (PCR) is developed, which allows us to predict the probability of replication of a DNA molecule in terms of the physical parameters involved in the system. The important issue of the determination of the number of PCR cycles during which this probability can be considered to be a constant is solved within the framework of the model. New phenomena of multimodality and scaling behavior in the distribution of the number of molecules after a given number of PCR cycles are presented. The relevance of the model for quantitative PCR is discussed, and a novel quantitative PCR technique is proposed.  相似文献   

2.
3.
Protein kinase C (PKC) isoforms, α, βI, and γ of cPKC subgroup, δ and of nPKC subgroup, and ζ of aPKC subgroup, were tyrosine phosphorylated in COS-7 cells in response to H2O2. These isoforms isolated from the H2O2-treated cells showed enhanced enzyme activity to various extents. The enzymes, PKC α and δ, recovered from the cells were independent of lipid cofactors for their catalytic activity. Analysis of mutated molecules of PKC δ showed that tyrosine residues, which are conserved in the catalytic domain of the PKC family, are critical for PKC activation induced by H2O2. These results suggest that PKC isoforms can be activated through tyrosine phosphorylation in a manner unrelated to receptor-coupled hydrolysis of inositol phospholipids.  相似文献   

4.
Protein phosphatase 1 (PP-1) is known to be a critical component of eukaryotic cell cycle progression. In vitro, our previous studies showed that cdc2 kinase phosphorylates Thr-320 (T320) in PP-1, and that this leads to inhibition of enzyme activity. To examine directly the phosphorylation of PP-1 in intact mammalian cells, an antibody has been prepared that specifically recognizes PP-1Cα phosphorylated at T320. Cell synchronization studies revealed in a variety of cell types that T320 of PP-1 was phosphorylated to high levels only during early to mid-mitosis. The phosphorylation of T320 of PP-1 was reduced by the cyclin-dependent protein kinase inhibitor, olomoucine, and increased by the PP-1/PP-2A inhibitor, calyculin A. Immunofluorescence microscopy using phospho-T320 antibody indicated that in NIH 3T3 cells the phosphorylation of PP-1 began to increase from basal levels in prophase and to peak at metaphase. Immunostaining indicated that phospho-PP-1 was localized exclusively to nonchromosomal regions. Furthermore, in cell fractionation studies of mitotic cells, phospho-PP-1 was detectable only in the soluble fraction. These observations suggest that phosphorylation by cdc2 kinase in early to mid-mitosis and inhibition of PP-1 activity is likely to contribute to the increased state of phosphorylation of proteins that is critical to the initiation of normal cell division.  相似文献   

5.
In mammalian cells, double-strand break repair and V(D)J recombination require DNA-dependent protein kinase (DNA-PK), a serine/threonine kinase that is activated by DNA. DNA-PK consists of a 460-kDa subunit (p460) that contains a putative kinase domain and a heterodimeric subunit (Ku) that binds to double-stranded DNA ends. Previous reports suggested that the activation of DNA-PK requires the binding of Ku to DNA. To investigate this further, p460 and Ku were purified separately to homogeneity. Surprisingly, p460 was capable of binding to DNA in the absence of Ku. The binding of p460 to double-stranded DNA ends was salt-labile and could be disrupted by single-stranded or supercoiled DNA, properties distinct from the binding of Ku to DNA. Under low salt conditions, which permitted the binding of p460 to DNA ends, the kinase was activated. Under higher salt conditions, which inhibited the binding of p460, activation of the kinase required the addition of Ku. Significantly, when the length of DNA decreased to 22 bp, Ku competed with p460 for DNA binding and inhibited kinase activity. These data demonstrate that p460 is a self-contained kinase that is activated by direct interaction with double-stranded DNA and that the role of Ku is to stabilize the binding of p460 to DNA ends.  相似文献   

6.
The activity of the c-Src protein tyrosine kinase is regulated by phosphorylation of a tyrosine residue (Tyr-527) in the C-terminal tail of the molecule. Phosphorylation of Tyr-527 promotes association of the tail with the SH2 domain and a concomitant reduction of the enzymatic activity of Src. We asked the question whether regulation by C-terminal phosphorylation was accompanied by a change in the quaternary structure of the enzyme or if it occurred within a monomeric form of Src. For this purpose we purified to homogeneity a chicken Src form lacking the unique domain from Schizosaccharomyces pombe cells. The cells were engineered to express Src along with Csk, a protein kinase able to phosphorylate Tyr-527 efficiently. Mass spectrometric analysis showed that purified Src was homogeneously phosphorylated at Tyr-527. The enzyme was in the regulated form, because it could be activated by a phosphorylated peptide able to bind the SH2 domain with high affinity. Using gel filtration chromatography, dynamic light scattering, and ultracentrifugation, we found that the regulated form of Src was a monomer. We have obtained crystals diffracting to 2.4 Å with space group P212121 and one molecule per asymmetric unit, in agreement with the monomeric state. These results indicate that the structural rearrangements of regulated Src are of an intramolecular nature.  相似文献   

7.
Generation of a wide variety of nucleoside (and deoxynucleoside) triphosphates (NTPs) from their cognate nucleoside diphosphates (NDPs) is of critical importance in virtually every aspect of cellular life. Their function is fulfilled largely by the ubiquitous and potent nucleoside diphosphate kinase (NDK), most commonly using ATP as the donor. Considerable interest is attached to the consequence to a cell in which the NDK activity becomes deficient or overabundant. We have discovered an additional and possibly auxiliary NDK-like activity in the capacity of polyphosphate kinase (PPK) to use inorganic polyphosphate as the donor in place of ATP, thereby converting GDP and other NDPs to NTPs. This reaction was observed with the PPK activity present in crude membrane fractions from Escherichia coli and Pseudomonas aeruginosa as well as with the purified PPK from E. coli; the activity was absent from the membrane fractions obtained from E. coli mutants lacking the ppk gene. The order of substrate specificity for PPK was: ADP > GDP > UDP, CDP; activity with ADP was 2–60 times greater than with GDP, depending on the reaction condition. Although the transfer of a phosphate from polyphosphate to GDP by PPK to produce GTP was the predominant reaction, the enzyme also transferred a pyrophosphate group to GDP to form the linear guanosine 5′ tetraphosphate.  相似文献   

8.
Phosphorylation of the p53 tumor suppressor protein is known to modulate its functions. Using bacterially produced glutathione S-transferase (GST)-p53 fusion protein and baculovirus-expressed histidine-tagged p53 (Hisp53), we have determined human p53 phosphorylation by purified forms of jun-N-kinase (JNK), protein kinase A (PKA), and β subunit of casein kinase II (CKIIβ) as well as by kinases present in whole cell extracts (WCEs). We demonstrate that PKA is potent p53 kinase, albeit, in a conformation- and concentration-dependent manner, as concluded by comparing full-length with truncated forms of p53. We further demonstrate JNK interaction with GST-p53 and the ability of JNK to phosphorylate truncated forms of GST-p53 or full-length Hisp53. Dependence of phosphorylation on conformation of p53 is further supported by the finding that the wild-type form of p53 (p53wt) undergoes better phosphorylation by CKIIβ and by WCE kinases than mutant forms of p53 at amino acid 249 (p53249) or 273 (p53273). Moreover, shifting the kinase reaction’s temperature from 37°C to 18°C reduces the phosphorylation of mutant p53 to a greater extent than of p53wt. Comparing truncated forms of p53 revealed that the ability of CKIIβ, PKA, or WCE kinases to phosphorylate p53 requires amino acids 97–155 within the DNA-binding domain region. Among three 20-aa peptides spanning this region we have identified residues 97–117 that increase p53 phosphorylation by CKIIβ while inhibiting p53 phosphorylation by PKA or WCE kinases. The importance of this region is further supported by computer modeling studies, which demonstrated that mutant p53249 exhibits significant changes to the conformation of p53 within amino acids 97–117. In summary, phosphorylation-related analysis of different p53 forms in vitro indicates that conformation of p53 is a key determinant in its availability as a substrate for different kinases, as for the phosphorylation pattern generated by the same kinase.  相似文献   

9.
The human C1 heterogeneous nuclear ribonucleoprotein particle protein (hnRNP protein) undergoes a cycle of phosphorylation–dephosphorylation in HeLa cell nuclear extracts that modulates the binding of this protein to pre-mRNA. We now report that hyperphosphorylation of the C1 hnRNP protein is mediated by a kinase activity in nuclear extracts that is RNA-dependent. Although the basal phosphorylation of the C1 hnRNP protein in nuclear extracts reflects a casein kinase II-type activity, its RNA-dependent hyperphosphorylation appears to be mediated by a different kinase. This is indicated by the unresponsiveness of the RNA-stimulated hyperphosphorylation to casein kinase II inhibitors, and the distinct glycerol gradient sedimentation profiles of the basal versus RNA-stimulated C1 hnRNP protein phosphorylation activities from nuclear extracts. RNA-dependent phosphorylation was observed both for a histidine-tagged recombinant human C1 hnRNP protein added to nuclear extracts and also for the endogenous C1 hnRNP protein. Additional results rule out protein kinase A, protein kinase C, calmodulin-dependent protein kinase II, and double-stranded RNA-activated protein kinase as the enzymes responsible for the RNA-dependent hyperphosphorylation of the C1 hnRNP protein. These results reveal the existence in nuclear extracts of an RNA-dependent protein kinase activity that hyperphosphorylates a known pre-mRNA binding protein, and define an additional element to be integrated into the current picture of how nuclear proteins are regulated by phosphorylation.  相似文献   

10.
Receptors activate adenylyl cyclases through the Gαs subunit. Previous studies from our laboratory have shown in certain cell types that express adenylyl cyclase 6 (AC6), heterologous desensitization included reduction of the capability of adenylyl cyclases to be stimulated by Gαs. Here we further analyze protein kinase A (PKA) effects on adenylyl cyclases. PKA treatment of recombinant AC6 in insect cell membranes results in a selective loss of stimulation by high (>10 nM) concentrations of Gαs. Similar treatment of AC1 or AC2 did not affect Gαs stimulation. Conversion of Ser-674 in AC6 to an Ala blocks PKA phosphorylation and PKA-mediated loss of Gαs stimulation. A peptide encoding the region 660–682 of AC6 blocks stimulation of AC6 and AC2 by high concentrations of Gαs. Substitution of Ser-674 to Asp in the peptide renders the peptide ineffective, indicating that the region 660–682 of AC6 is involved in regulation of signal transfer from Gαs. This region contains a conserved motif present in most adenylyl cyclases; however, the PKA phosphorylation site is unique to members of the AC6 family. These observations suggest a mechanism of how isoform selective regulatory diversity can be obtained within conserved regions involved in signal communication.  相似文献   

11.
Activation of resting T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex is initiated by rapid tyrosine phosphorylation of cellular proteins. Protein-tyrosine kinases (PTKs) of the src family are known to be important, but the mechanism of their recruitment and their interactions with PTKs of other families are incompletely understood. We show that a member of another family of PTKs, the p72syk kinase, is constitutively bound to the TCR/CD3 complex and becomes tyrosine phosphorylated and activated within 1 min after TCR/CD3 stimulation. This activation did not depend on the presence of p56lck in T cells and in transfected COS cells. In both cases, however, the phosphorylation of cellular substrates was augmented by src family PTKs. We propose that p72syk may act as an immediate receptor-activated kinase upstream of the related p70zap PTK and the src family PTKs p56lck and p59fyn in T cells and that these src family PTKs act as signal amplifiers.  相似文献   

12.
We have studied signaling mechanisms that stimulate exocytosis and luteinizing hormone secretion in isolated male rat pituitary gonadotropes. As judged by reverse hemolytic plaque assays, phorbol-12-myristate-13-acetate (PMA) stimulates as many gonadotropes to secrete as does gonadotropin-releasing hormone (GnRH). However, PMA and GnRH use different signaling pathways. The secretagogue action of GnRH is not very sensitive to bisindolylmaleimide I, an inhibitor of protein kinase C, but is blocked by loading cells with a calcium chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid. The secretagogue action of PMA is blocked by bisindolylmaleimide I and is not very sensitive to the intracellular calcium chelator. GnRH induces intracellular calcium elevations, whereas PMA does not. As judged by amperometric measurements of quantal catecholamine secretion from dopamine- or serotonin-loaded gonadotropes, the secretagogue action of PMA develops more slowly (in several minutes) than that of GnRH. We conclude that exocytosis of secretory vesicles can be stimulated independently either by calcium elevations or by activation of protein kinase C.  相似文献   

13.
14.
The c-Jun N-terminal kinase (JNK), or stress-activated protein kinase plays a crucial role in cellular responses stimulated by environmental stress and proinflammatory cytokines. However, the mechanisms that lead to the activation of the JNK pathway have not been elucidated. We have isolated a cDNA encoding a novel protein kinase that has significant sequence similarities to human germinal center kinase (GCK) and human hematopoietic progenitor kinase 1. The novel GCK-like kinase (GLK) has a nucleotide sequence that encodes an ORF of 885 amino acids with 11 kinase subdomains. Endogenous GLK could be activated by UV radiation and proinflammatory cytokine tumor necrosis factor α. When transiently expressed in 293 cells, GLK specifically activated the JNK, but not the p42/44MAPK/extracellular signal-regulated kinase or p38 kinase signaling pathways. Interestingly, deletion of amino acids 353–835 in the putative C-terminal regulatory region, or mutation of Lys-35 in the putative ATP-binding domain, markedly reduced the ability of GLK to activate JNK. This result indicates that both kinase activity and the C-terminal region of GLK are required for maximal activation of JNK. Furthermore, GLK-induced JNK activation could be inhibited by a dominant-negative mutant of mitogen-activated protein kinase kinase kinase 1 (MEKK1) or mitogen-activated protein kinase kinase 4/SAPK/ERK kinase 1 (SEK1), suggesting that GLK may function upstream of MEKK1 in the JNK signaling pathway.  相似文献   

15.
Interleukin 3 (IL-3)-dependent survival of hematopoietic cells is known to rely on the activity of multiple signaling pathways, including a pathway leading to activation of phosphoinositide 3-kinase (PI 3-kinase), and protein kinase Akt is a direct target of PI 3-kinase. We find that Akt kinase activity is rapidly induced by the cytokine IL-3, suggesting a role for Akt in PI 3-kinase-dependent signaling in hematopoetic cells. Dominant-negative mutants of Akt specifically block Akt activation by IL-3 and interfere with IL-3-dependent proliferation. Overexpression of Akt or oncogenic v-akt protects 32D cells from apoptosis induced by IL-3 withdrawal. Apoptosis after IL-3 withdrawal is accelerated by expression of dominant-negative mutants of Akt, indicating that a functional Akt signaling pathway is necessary for cell survival mediated by the cytokine IL-3. Thus Akt appears to be an important mediator of anti-apoptotic signaling in this system.  相似文献   

16.
The ability of a peptide hormone to affect many different intracellular targets is thought to be possible because of the modular organization of signal transducing molecules in the cell. Evidence for the presence of signaling modules in metazoan cells, however, is incomplete. Herein we show, with morphology and cell fractionation, that all the components of a mitogen-activated protein kinase pathway are concentrated in caveolae of unstimulated human fibroblasts. Addition of platelet-derived growth factor to either the intact cell or caveolae isolated from these cells stimulates tyrosine phosphorylation and activates mitogen-activated protein kinases in caveolae. The molecular machinery for kinase activation, therefore, is preorganized at the cell surface of quiescent cells.  相似文献   

17.
18.
The repair of chromosomal double-strand breaks (DSBs) is necessary for genomic integrity in all organisms. Genetic consequences of misrepair include chromosomal loss, deletion, and duplication resulting in loss of heterozygosity (LOH), a common finding in human solid tumors. Although work with radiation-sensitive cell lines suggests that mammalian cells primarily rejoin DSBs by nonhomologous mechanisms, alternative mechanisms that are implicated in chromosomal LOH, such as allelic recombination, may also occur. We have examined chromosomal DSB repair between homologs in a gene targeted mammalian cell line at the retinoblastoma (Rb) locus. We have found that allelic recombinational repair occurs in mammalian cells and is increased at least two orders of magnitude by the induction of a chromosomal DSB. One consequence of allelic recombination is LOH at the Rb locus. Some of the repair events also resulted in other types of genetic instability, including deletions and duplications. We speculate that mammalian cells may have developed efficient nonhomologous DSB repair processes to bypass allelic recombination and the potential for reduction to homozygosity.  相似文献   

19.
Protein phosphorylation is a ubiquitous and one of the most effective means of regulating protein activity. Receptor phosphorylation is a key event in signal transduction. The question, therefore, that arises is whether this modulatory mechanism might produce functional changes in a membrane receptor in the absence of its naturally occurring ligand. To examine this issue, single-channel properties of purified acetylcholine receptors (AChRs) from Torpedo californica reconstituted in lipid bilayers were studied in the absence of ACh in both unphosphorylated preparations and after in vitro phosphorylation by a purified catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A). Notably, the spontaneous open-channel probability of phosphorylated AChRs is significantly higher than that of unphosphorylated AChRs. Channel activation by protein kinase A is correlated with AChR phosphorylation and is abolished by alpha-bungarotoxin. Analysis of probability distributions of the open dwell times indicates that, similar to unphosphorylated AChR has two distinct open states, short- and long-lived. The frequency of occurrence of the long openings over the short and the magnitude of both time constants increase after phosphorylation, as they do with agonist concentration. Thus, phosphorylation of AChR gamma and delta subunits activates AChR channel opening in the absence of ligand binding. This result is compatible with the notion that protein phosphorylation may effectively act as an intracellular ligand with the phosphorylation sites envisioned as cytoplasmic ligand binding sites.  相似文献   

20.
T cell receptor (TCR) antagonists inhibit antigen-induced T cell activation and by themselves fail to induce phenotypic changes associated with T cell activation. However, we have recently shown that TCR antagonists are inducers of antigen-presenting cell (APC)-T cell conjugates. The signaling pathway associated with this cytoskeleton-dependent event appears to involve tyrosine phosphorylation and activation of Vav. In this study, we investigated the role played by the protein tyrosine kinases Fyn, Lck, and ZAP-70 in antagonist-induced signaling pathway. Antagonist stimulation increased tyrosine phosphorylation and kinase activity of Fyn severalfold, whereas little or no increase in Lck and ZAP-70 activity was observed. Second, TCR stimulation of Lck(-), Fyn(hi) Jurkat cells induced strong tyrosine phosphorylation of Vav. In contrast, minimal increase in tyrosine phosphorylation of Vav was observed in Lck(hi), Fyn(lo) Jurkat cells. Finally, study of T cells from a Fyn-deficient TCR transgenic mouse also showed that Fyn was required for tyrosine phosphorylation and activation of Vav induced by both antagonist and agonist peptides. The deficiency in Vav phosphorylation in Fyn-deficient T cells was associated with a defect in the formation of APC-T cell conjugates when T cells were stimulated with either agonist or antagonist peptide. We conclude from these results that Vav is a selective substrate for Fyn, especially under conditions of low-affinity TCR-mediated signaling, and that this signaling pathway involving Fyn, Vav, and Rac-1 is required for the cytoskeletal reorganization that leads to T cell-APC conjugates and the formation of the immunologic synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号