首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A substantial amount of data is available to suggest that lysosomal sequestration of aminoglycoside antibiotics plays a role in the pathogenesis of aminoglycoside-induced renal tubule cell injury; however, relatively little information is available on the subcellular distribution of aminoglycosides in the kidney during treatment protocols of the type that ultimately go on to produce extensive lethal renal tubule cell injury and acute renal failure in experimental animals. This study assessed the distribution of gentamicin and subcellular membranes on a discontinuous sucrose density gradient after in vivo exposure of rats to four daily 100 mg/kg doses of gentamicin as compared to in vitro exposure of normal rat renal cortex to gentamicin during tissue homogenization at drug levels comparable to those seen after in vivo treatment. After both in vivo and in vitro exposure, major localization of gentamicin, the lysosomal marker enzyme N-acetyl-beta-D-glucosaminidase (NAG), and the endoplasmic reticulum marker enzyme NADPH-cytochrome c reductase, occurred in a very light membrane fraction. Within this membrane fraction, gentamicin was more closely associated with the NAG than with the NADPH-cytochrome c reductase. The results could not be explained by complete lysosomal disruption during subcellular fractionation after in vivo gentamicin. These data provide additional insights into both the possibilities for subcellular interactions of aminoglycosides in the kidney, and into the methodology required to optimally assess such interactions.  相似文献   

2.
Werner  Ute  Kissel  Thomas  Reers  Martin 《Pharmaceutical research》1996,13(8):1219-1227
Purpose. The effects of five different permeation enhancer systems on the transport properties of a peptidomimetic thrombin inhibitor, CRC 220, were investigated in monolayers of a human intestinal cell line (Caco-2). Methods. The transepithelial transport rates and additionally the cytotoxic properties of these enhancers were characterized using the following tests: measurement of the transepithelial electrical resistance (TEER), the MTT-transformation, the protein content and the release of cytosolic lactate dehydrogenase (LDH), as well as FITC-phalloidin and propidium iodide staining. Results. All permeation enhancer systems showed concentration-dependent effects on cell permeability and toxicity. The most prominent effects on peptide transport were seen at the highest concentration (40 mM), yielding the rank order, NaTC > NaTC/Cholesterol > Solulan C24 > NaTC/Oleic acid > NaTC/PC18. Using the TEER after 120 min exposure as the most sensitive parameter describing cytotoxicity, the following order was obtained: Solulan C24 > NaTC > NaTC/ PC 18 = NaTC/Cholesterol > NaTC/Oleic acid > NaTC/PC. Generally, efficient enhancement of peptide transport was associated with a noticeable influence on cell viability under in-vitro conditions. Conclusions. Taking into account permeation and cytotoxicity as a function of concentration, both NaTC at 15 mM and the mixed micellar system NaTC/oleic acid at 0.75 mM offer interesting enhancement properties, showing an 18-fold increase in CRC 220 transport rates. The effects on cell viability and cytotoxicity were comparatively low and of reversible nature.  相似文献   

3.
Previously conducted investigations in rats comparing gentamicin to tobramycin at high multiples of the usual human dose have reported tobramycin to be less nephro- and/or ototoxic than gentamicin. In this study, comparative effects on kidney and hearing/equilibrium between the antibiotics at doses approximating one to three times the daily human therapeutic dose (3 to 5 mg/kg/day) were examined. Gentamicin or tobramycin were given by intramuscular injection to groups of 20 male Sprague-Dawley rats at dose levels of 3, 6, and 9 mg/kg/day for 30 consecutive days. Each rat was tested weekly for changes in auditory function and assessed for effects on vestibular function. Routine clinical laboratory determinations for evaluation of nephrotoxicity were performed throughout the study. Representative portions of the kidney were examined histologically. There were no adverse effects observed on hearing function or equilibrium. Renal responses to the administration of either aminoglycoside included marginal polyuria with a concomitant decrease in urine osmolality at the 6 and 9 mg/kg dose levels. Very mild histomorphological changes of the proximal cortical tubules, typical of an aminoglycoside-induced toxicity, were noted in both drug groups at all dosages. The incidence of these changes was dose-related and was similar between the corresponding aminoglycoside groups. Following single-dose administration, drug serum levels of either antibiotic were similar and compared favorably to those reported in patients receiving gentamicin or tobramycin at usual clinical doses. The results of this study indicate that there were no renal or auditory/vestibular toxicologic differences between gentamicin and tobramycin when given to rats at levels equal to the clinical dose or at low multiples thereof.  相似文献   

4.
Wade WE  McCall CY 《Hospital formulary》1990,25(10):1092-4, 1096
A DUE was conducted at this institution to determine the incidence of aminoglycoside-induced nephrotoxicity. The charts of all patients (113) who received an aminoglycoside during the first quarter of 1989 were reviewed. Information gathered included patient age, aminoglycoside used, loading and maintenance doses, serum peak and trough concentrations, changes in serum creatinine during aminoglycoside administration, and culture and sensitivity results. Physicians were inconsistent in prescribing loading doses, while all patients dosed by the pharmacy received an initial dose of 1.5 to 1.75 mg/kg of ideal body weight for gentamicin and tobramycin. Ninety percent of maintenance doses were calculated by the pharmacy. All patients had serum peak concentrations between 3 and 10 micrograms/ml, and only three patients had serum trough concentrations greater than 2 micrograms/ml. No patient demonstrated changes in serum creatinine suggestive of clinically apparent nephrotoxicity. This study suggests that with routine pharmacist intervention (via a pharmacist-managed dosing service), aminoglycosides can be prescribed with a low incidence of nephrotoxicity.  相似文献   

5.
The effects of marine substances with various cytotoxic mechanisms on the integrity of the human intestinal Caco-2 cell monolayer were examined by measuring the transepithelial electrical resistance (TEER). TEER was rapidly decreased by apical exposure of the monolayers to discodermin A, a membrane pore-forming substance. The decrease in TEER occurred in an earlier stage of incubation than the release of intracellular lactate dehydrogenase (LDH) which is commonly used as a parameter of cell damage or death. Mycalolide B (an actin-depolymerizing substance), calyculin A and okadaic acid (protein phosphatase inhibitors) also rapidly decreased the TEER value, although no cell membrane damage or resultant LDH release by these toxicants were detected. The TEER decrease caused by the toxicants was associated with the increased transepithelial permeability of the cell monolayer. Treatment with these toxicants, except calyculin A, caused morphological changes in the intracellular actin filament, suggesting that these toxicants altered the cytoskeletal structure, by which the tight junction was opened. Calyculin A was likely to loosen the cellular junctions rapidly and induce cell detachment from the monolayer. Although onnamide A, a protein synthesis inhibitor, did not cause any decrease in TEER, at least during a 90-min incubation, TEER sensitively reflects the cytotoxic effects of various types of toxicants with acute toxicity.  相似文献   

6.
Effect of Chitosan on Epithelial Cell Tight Junctions   总被引:15,自引:0,他引:15  
PURPOSE: Chitosan has been proposed as a novel excipient for transepithelial drug-delivery systems. Chitosan is thought to disrupt intercellular tight junctions, thus increasing the permeability of an epithelium. The effect of chitosan on tight junction complex was investigated at the molecular level. METHODS: Changes in barrier properties of Caco-2 cell monolayers, including transepithelial electrical resistance and permeability to horseradish peroxidase (HRP), were assessed in response to chitosan treatment. Changes in subcellular localization of the tight junction proteins zona occludens 1 (ZO-1) and occludin by immunofluorescence and Western blotting of cellular fractions were also assessed. RESULTS: Chitosan was found to cause a dose-dependent reduction in transepithelial electrical resistance of Caco-2 monolayers of up to 83%. A corresponding increase in horseradish peroxidase permeability of up to 18 times greater than the control was also observed across the monolayer. Immunofluorescent localization of ZO-1 revealed loss of membrane-associated ZO-1 from discrete areas. Analysis of cellular fractions revealed a dose-dependent loss of ZO-1 and occludin from the cytosolic and membrane fractions into the cytoskeletal fraction. These changes did not occur because of chitosan-mediated ATP depletion. CONCLUSIONS: Chitosan-mediated tight junction disruption is caused by a translocation of tight junction proteins from the membrane to the cytoskeleton.  相似文献   

7.
Purpose. To evaluate different in-vitro cell culture models for their suitability to study drug transport through cell monolayers. Methods. Bovine turbinate cells (BT; ATCC CRL 1390), human nasal septum tumor cells (RPMI, 2650; ATCC CCL 30), and primary cell cultures of human nasal epithelium were characterized morphologically and histochemically by their lectin binding properties. The development of tight junctions in culture was monitored by actin staining and transepithelial electrical resistance measurements. Results. The binding pattern of thin-sections of excised human nasal respiratory epithelium was characterized using a pannel of fluorescently-labelled lectins. Mucus in goblet cells was stained by PNA, WGA and SBA, demonstrating the presence of terminal N-acetylglucosamine, N-acetylgalactosamine and galactose residues respectively in the mucus of human nasal cells. Ciliated cells revealed binding sites for N-acetylglucosamine, stained by WGA, whereas Con A, characteristic for mannose moieties, labelled the apical cytoplasm of epithelial cells. Binding sites for DBA were not present in this tissue. Comparing three different cell culture models: BT, RPMI 2650, and human nasal cells in primary culture using three lectins (PNA, WGA, Con A) as well as intracellular actin staining and transepithelial electrical resistance measurements we found, that only human nasal epithelial cells in primary culture showed differentiated epithelial cells, ciliated nasal cells and mucus producing goblet cells, which developed confluent cell monolayers with tight junctions. Conclusions. Of the in-vitro cell culture models studied, only human nasal cells in primary culture appears to be suitable for drug transport studies.  相似文献   

8.
The mycotoxin patulin is a common contaminant of fruit. Here, we demonstrate that patulin reduces the barrier properties of the intestinal cell line, caco-2 by specific effects on tight junction components. Within 5 h of exposure to 100 μM toxin, the transepithelial electrical resistance of caco-2 monolayers was reduced by approximately 95% and the monolayer became more permeable to FITC-labelled dextrans of 4–40 kDa. Immunoblotting revealed occludin proteolysis and a significant reduction in ZO-1 levels. Patulin had no influence on claudin levels but marked changes in their distribution were observed. These data indicate that patulin decreases the barrier properties of caco-2 monolayers by modulation of the tight junction.  相似文献   

9.
Caco-2 cell permeability was evaluated in isotonic media containing high (25mM) or physiological (5.5mM) glucose concentrations. Transepithelial electrical resistance (TEER) and membrane fluidity were measured to assess glucose-induced alterations in physical barrier properties. In parallel, distribution of the actin filament (F-actin) and zonula occludens-1 (ZO-1) proteins was assessed by confocal microscopy. Transepithelial fluxes of mannitol, hydrocortisone, digoxin, and glycyl sarcosine (Gly-Sar) that permeate the intestinal mucosa by various pathways were measured to quantify the effect of glucose-induced changes on Caco-2 cell permeability. High glucose decreased maximum TEER of cell monolayers by 47%, whereas membrane fluidity at the hydrophobic core and lipid/polar head interphase was significantly increased. F-actin distribution in high glucose cells appeared more diffuse while ZO-1 was unchanged. Mannitol and hydrocortisone fluxes across Caco-2 cells cultured in high glucose increased by 65% and 24%, respectively. In addition, high glucose decreased the maximum transport capacity (Vmax) of PepT-1. P-glycoprotein activity, however, was unchanged. In conclusion, high extracellular glucose concentration in isotonic media significantly alters physical barrier properties of Caco-2 cell monolayers, which predominantly affects transepithelial transport of solutes permeating the cell barrier by paracellular and transcellular passive diffusion and facilitated transport mediated by the proton-dependent oligopeptide transporter (PepT-1).  相似文献   

10.
Preliminary observations showed that the calcium-antagonist diltiazem enhances the 'in vitro' bactericidal action of the aminoglycoside gentamicin, especially against Gram-positive bacteria. To verify if a non-specific interaction of these two drugs with biomembranes may play a role in their synergic effect on bacterial cells, we have studied the effect of exposure to gentamicin, in the absence or presence of diltiazem, on the release of carboxyfluorescein (CF) trapped in phosphatidylcholine (PC) unilamellar vesicles (LUVs) used as model membranes. A significant leakage of trapped CF from PC LUVs was registered when liposomes were treated with gentamicin and diltiazem together, employed at doses (50 and 100 microg/ml, respectively) unable to affect CF release if applied alone; the combined effect of gentamicin and diltiazem was synergic and not cumulative. The present findings demonstrate that the simultaneous exposure to gentamicin and diltiazem may induce significant alterations in the permeability of phospholipid membranes and, so, very likely, in functional properties of bacterial membranes, targets of their action.  相似文献   

11.
The enhancement of paracellular transport of heparin disaccharide using several absorption enhancers across Caco-2 cell monolayers was tested. The cytotoxicity of these enhancers was also examined. The enhancing effects by Quillaja saponin, dipotassium glycyrrhizinate, 18beta-glycyrrhetinic acid, sodium caprate and taurine were determined by changes in transepithelial electrical resistance (TEER) and the amount of heparin disaccharide transported across Caco-2 cell monolayers. Among the absorption enhancers, 18beta-glycyrrhetinic acid and taurine decreased TEER and increased the permeability of heparin disaccharide in a dose-dependent and time-dependent manner with little or negligible cytotoxicity. Our results indicate that these absorption enhancers can widen the tight junction, which is a dominant paracellular absorption route of hydrophilic compounds. It is highly possible that these absorption enhancers can be applied as pharmaceutical excipients to improve the transport of macromolecules and hydrophilic drugs having difficulty in permeability across the intestinal epithelium.  相似文献   

12.
Fluoride exposure is widespread, with drinking water commonly containing natural and artificially added sources of the ion. Ingested fluoride undergoes absorption across the gastric and intestinal epithelia. Previous studies have reported adverse gastrointestinal effects with high levels of fluoride exposure. Here, we examined the effects of fluoride on the transepithelial ion transport and resistance of three intestinal epithelia. We used the Caco‐2 cell line as a model of human intestinal epithelium, and rat and mouse colonic epithelia for purposes of comparison. Fluoride caused a concentration‐dependent decline in forskolin‐induced Cl secretion and transepithelial resistance of Caco‐2 cell monolayers, with an IC50 for fluoride of about 3 mM for both parameters. In the presence of 5 mM fluoride, transepithelial resistance fell exponentially with time, with a t1/2 of about 7 hours. Subsequent imaging by immunofluorescence and scanning electron microscopy showed structural abnormalities in Caco‐2 cell monolayers exposed to fluoride. The Young's modulus of the epithelium was not affected by fluoride, although proteomic analysis revealed changes in expression of a number of proteins, particularly those involved in cell–cell adhesion. In line with its effects on Caco‐2 cell monolayers, fluoride, at 5 mM, also had profound effects on Cl secretion and transepithelial resistance of both rat and mouse colonic epithelia. Our results show that treatment with fluoride has major effects on the structure, function, and proteome of intestinal epithelia, but only at concentrations considerably higher than those likely to be encountered in vivo, when much lower fluoride doses are normally ingested on a chronic basis.  相似文献   

13.
The H(2) antagonists, ranitidine and famotidine, exhibit saturable absorptive transport across Caco-2 cell monolayers and human intestine via a yet unidentified mechanism. A photoreactive derivative of famotidine has been synthesized and evaluated as a photoaffinity probe for the putative transporter protein(s). The probe irreversibly inhibited ranitidine transport across Caco-2 cell monolayers and irreversibly increased the transepithelial electrical resistance (TEER) after UV activation. Photoaffinity labeling was protected by a molar excess of famotidine.  相似文献   

14.
Prostaglandins and aminoglycoside nephrotoxicity   总被引:2,自引:0,他引:2  
The role of prostaglandins in the development of aminoglycoside-induced acute renal failure was studied in CD-COBS rats (200 to 250 g). The animals were treated with gentamicin (80 mg/kg), acetylsalicylic acid (ASA, 100 or 200 mg/kg), or both drugs or saline for 5 or 10 days. Renal function was studied measuring creatinine clearance, blood urea nitrogen (BUN), and serum electrolytes, urine osmolality, and maximal urinary concentrating capacity after water deprivation and vasopressin administration. Gentamicin toxicity on the proximal tubule was evaluated by measuring urinary excretion of the lysosomal enzyme N-acetylglucosaminidase (NAG). Renal prostaglandin (PG) production was evaluated measuring the concentration of PGE2, PGD2, PGF2 alpha, 6-keto-PGF1 alpha, and thromboxane B2 (TXB2) in whole renal homogenate after a 15-min incubation at 37 degrees C using gas chromatography-mass spectrometry. Gentamicin alone reduced the glomerular filtration rate (GFR) 20 to 30% after 5 and 10 days of treatment. Combination with ASA potentiated the toxic effect of the aminoglycoside after 10 but not after 5 days of treatment. Similarly, gentamicin reduced the urinary concentrating capacity and addition of ASA worsened the effects. Gentamicin markedly increased NAG excretion but this effect was reduced by ASA, probably as a result of lysosomal stabilization. ASA alone inhibited the production of prostaglandins in renal tissue by 70 to 90% after single or multiple doses. The animals treated with gentamicin alone presented a significant, specific increase in PGE2 production after 10 days of treatment but this increase did not occur when the two compounds were given together. Since PGE2 has a vasodilatory effect in the kidney these results suggest that it may play a specific role in maintaining normal renal blood flow and GFR during the development of aminoglycoside nephrotoxicity. The inhibition of prostaglandin production by nonsteroid anti-inflammatory drugs prevents this compensatory mechanism and worsens the renal damage.  相似文献   

15.
Permeability estimates using Caco-2 cells do not accurately predict the absorption of hydrophilic drugs that are primarily absorbed via the paracellular pathway. The objective of this study was to investigate whether modulation of tight junctions would help differentiation of paracellularly absorbed compounds. Tight junctions in Caco-2 cell monolayers were manipulated using calcium depletion approaches to decrease the transepithelial electrical resistance (TEER) of the monolayers, and permeability of hydrophilic compounds were measured under these conditions. Permeability of these compounds were also measured in Calu-3 cells, which have tighter junctions than Caco-2 cells. Calcium depletion loosened the tight junctions of Caco-2 cells to varying levels as measured by the decrease in TEER values of the monolayers. While the absolute permeability of all the model compounds increased as the tight junctions were loosened, the ratios of their permeability relative to mannitol permeability were similar. The permeability of these compounds in the tighter Calu-3 cells were also found to be similar to each other. Altering the tight junctions of Caco-2 cells to obtain leakier cell monolayers, or using a cell line with tighter junctions like Calu-3 cells, did not improve differentiation between well absorbed and poorly absorbed hydrophilic drugs. Mere manipulation of the tight junctions to increase or decrease transepithelial electrical resistance does not appear to be a viable approach to predict human absorption for hydrophilic compounds that are primarily absorbed via the paracellular pathway.  相似文献   

16.
Surface active compounds present in food possibly have the ability to enhance the absorption of water soluble toxic agents. Therefore, we investigated whether fatty acids such as oleic acid and docosahexaenoic acid (DHA), both commonly present in food, negatively affect the integrity of tight junctions (TJ) in the intestinal epithelium and thereby increase the absorption of poorly absorbed hydrophilic substances. Caco-2 cells, which are derived from human absorptive enterocytes, were grown on permeable filters for 20-25 days. Differentiated cell monolayers were apically exposed for 90min to mannitol in emulsions of oleic acid (5, 15 or 30mM) or DHA (5, 15 or 30mM) in an experimental medium with or without Ca(2+) and Mg(2+). Absorption of (14)C-mannitol increased and trans-epithelial electrical resistance (TEER) decreased in cell monolayers exposed to oleic acid and DHA, compared to controls. Cytotoxicity, measured as leakage of LDH, was higher in groups exposed to 30mM oleic acid and all concentrations of DHA. Morphology of the cell monolayers was studied by using fluorescence microscopy. Exposure of cell monolayers to 5mM DHA for 90min resulted in a profound alteration of the cell-cell contacts as detected by staining the cells for beta-catenin. Oleic acid (30mM) treatment also induced dissolution of the cell-cell contacts but the effect was not as pronounced as with DHA. Cell monolayers were also exposed for 180min to 250nM cadmium (Cd) in emulsions of oleic acid (5 or 30mM) or DHA (1 or 5mM), in an experimental medium with Ca(2+) and Mg(2+). Retention of Cd in Caco-2 cells was higher after exposure to 5mM oleic acid but lower after exposure to 30mM oleic acid and DHA. Absorption of Cd through the monolayers increased after DHA exposure but not after exposure to oleic acid. Our results indicate that fatty acids may compromise the integrity of the intestinal epithelium and that certain lipids in food may enhance the paracellular absorption of poorly absorbed hydrophilic substances.  相似文献   

17.
Dodecylmaltoside (DDM), an alkylglycoside showing tissue-permeability-enhancing properties, has been successful in improving nasal and ocular transport of poorly absorbed drugs. It was hypothesized that optimization of DDM concentration would improve the transport of insulin across epithelial monolayers without causing cell damage. Samples of markers and insulin were collected over a 6-h period and transepithelial electrical resistance was measured at concurrent time points to ascertain the effect of DDM on tight junctions. Samples were analyzed for lucifer yellow and insulin using reversed-phase high-performance liquid chromatography and for (3)[H]-mannitol by scintillation counting. A significant increase in the transport of markers and insulin was recorded in DDM-treated cells compared with controls. DDM enhanced the transport of markers and insulin in a concentration-dependent manner. Decreased transepithelial electrical resistance values confirmed that enhanced transport is caused by loosening of tight junctions. Cell recovery was >95% in 8 h indicating the potential of DDM as a penetration enhancer for clinical administration of insulin and other poorly absorbed drugs without causing cell damage.  相似文献   

18.
Bothrops moojeni snake venom induces acute renal failure (ARF) as a consequence of morphological and functional alterations in glomerular and tubular cells. It is still unclear whether the ARF results from a direct cytotoxic effect on renal epithelia or from a renal ischemia due to systemic hemodynamic disturbances. This work investigated the in vitro effect of B. moojeni crude venom, using cultured Madin-Darby canine kidney (MDCK) monolayers as a model. The crude venom induced a significant time- and dose-dependent decrease in transepithelial electrical resistance across MDCK monolayers. In addition, the exposure to the venom resulted in cell detachment from the substratum, as revealed by transmission electron microscopy. Immunocytochemical analysis showed no change in the distribution of some junctional proteins, such as occludin, ZO-1, and E-cadherin. Nevertheless, the staining with labeled phalloidin revealed a disarray of the cytoskeleton, specifically of the stress fibers and of the focal adhesion-associated F-actin at the cell-to-matrix contact region. The treatment with B. moojeni venom also increased the cell release of lactate dehydrogenase and decreased cellular uptake of the vital neutral red. In conclusion, B. moojeni crude venom appears to have a direct cytotoxic effect on a renal tubule-derived cell line, also inducing impairment of the cell-matrix interaction.  相似文献   

19.
It was the aim of this study to investigate the influence of the amount of thiol groups being covalently attached to poly(acrylic acid) 450 kDa on its properties. Five different PAA(450)-L-cysteine conjugates (PAA(450)-Cys) were synthesized bearing 53.0 (PAA I), 113.4 (PAA II), 288.8 (PAA III), 549.1 (PAA IV) and 767.0 (PAA V) micromol immobilized thiol groups per gram polymer. Mucoadhesion studies utilizing the rotating cylinder method, tensile studies and disintegration studies were performed. Self-crosslinking properties were measured by the increase in viscosity. Permeation studies were performed on rat small intestine and Caco-2 monolayers using sodium fluorescein as model drug. Following residence times on the rotating cylinder could be identified: PAA I 3.1; PAA II 5.2; PAA III 22.0; PAA IV 33.8; PAA V 53.7; control 1.3 [h]. The disintegration time of all PAA(450)-Cys tablets was strongly dependent on the degree of thiolation of the polymer. Self-crosslinking studies showed that the different PAA(450)-Cys conjugates (3% m/v) in phosphate buffer, pH 6.8, formed intramolecular disulfide bonds. In case of Caco-2 monolayer transport studies following P(app)-values could be identified: PAA I 9.8; PAA II 10.1; PAA III 11.1; PAA IV 8.9; PAA V 8.2; control 6.4 [P(app)x10(-6), cms(-1)]. Mucoadhesive and self-crosslinking properties are strongly dependent on the degree of thiolation of the polymer and with respect to transport studies, an optimum amount of covalently attached L-cysteine could be identified.  相似文献   

20.
The transepithelial transport and uptake of chloroquine were studied in cultured human intestinal Caco-2 cell layers, to investigate whether a specific mechanism facilitates the flux of chloroquine. Due to ionization of chloroquine at the pH of the intestinal lumen, the fraction of the neutral form, which is required for partitioning into biological membranes, is very low, while oral bioavailability has been reported to be nearly complete. Several observations, such as concentration-dependent uptake and temperature-dependent transepithelial flux, suggest the presence of carrier mediated transport. However, alternative mechanisms may be invoked to explain these observations. It is suggested that concentration dependence can originate from ion-trapping in acidic compartments of the cell or non-specific binding to cell components, while temperature-dependent transport can, at least partly, be explained by the temperature dependence of the acid dissociation constants of chloroquine. No differences were observed in the transepithelial flux of the enantiomers of chloroquine. pH-dependent uptake as well as pH-dependent transepithelial transport suggest that the translocation of chloroquine occurs according to the fraction of neutral molecules. From the data obtained in this study, it is concluded that chloroquine crosses the gastrointestinal barrier by passive diffusion. The extensive area of the gastrointestinal tract probably compensates for the low fraction of the neutral molecule. An interesting finding of this study was the concentration-dependent increase in transepithelial electrical resistance across monolayers incubated with chloroquine at the apical side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号