首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Met-enkephalin on Ca2+-dependent K+ channel activity were investigated using the cell-attached patch recording technique on isolated parasympathetic neurones of rat intracardiac ganglia. Large-conductance, Ca2+-dependent K+ channels (BK(Ca)) were examined as an assay of agonist-induced changes in the intracellular free calcium ion concentration ([Ca2+]i). These BK(Ca) channels had a conductance of approximately 200 pS and were charybdotoxin- and voltage-sensitive. Caffeine (5 mM), used as a control, evoked a large increase in BK(Ca) channel activity, which was inhibited by 10 microM ryanodine. Met-enkephalin (10 microM) evoked a similar increase in BK(Ca) channel activity, which was dependent on the presence of extracellular Ca2+ and inhibited by either ryanodine (10 microM) or naloxone (1 microM). In Fura-2-loaded intracardiac neurones, Met-enkephalin evoked a transient increase in [Ca2+]i. Met-enkephalin-induced mobilization of intracellular Ca+ may play a role in neuronal excitability and firing behaviour in mammalian intracardiac ganglia.  相似文献   

2.
Whole cell patch-clamp techniques were used to examine neurokinin receptor modulation of Ca2+ channels in small to medium size dorsal root ganglia neurons (<40 pF) that express mainly N- and L-type Ca2+ currents. Low concentrations of substance P enhanced Ca2+ currents (5-40%, <0.2 microM), while higher concentrations applied cumulatively reversed these enhancements (5-28% reductions, >0.5 microM). This apparent inhibition by high concentrations of substance P was blocked by the administration of the NK3 antagonist SB 235,375 (0.2 microM). The NK1 agonist, [Sar9,Met11]-substance P (0.05 to 1.0 microM) did not alter Ca2+ currents; whereas the NK2 agonist, [betaAla8]-neurokinin A (4-10), enhanced Ca2+ currents (5-36% increase, 0.05-0.5 microM). The enhancement was reversed by the NK2 antagonist MEN 10,376 (0.2 microM) but unaffected by the NK3 antagonist SB 235,375 (0.2 microM). The NK3 agonist [MePhe7]-neurokinin B (0.5-1.0 microM) inhibited Ca2+ currents (6-24% decrease). This inhibition was not prevented by the NK2 antagonist MEN 10,376 (0.2 microM) but was blocked by the NK3 antagonist SB 235,375 (0.2 microM). Both the enhancement and inhibition of Ca2+ currents by neurokinin agonists were reversed by the protein kinase C inhibitor bisindolylmaleimide I HCl (0.2-0.5 microM). Following inhibition of Ca2+ channels by [MePhe7]-neurokinin the facilitatory effect of BayK 8644 (5 microM) was increased and the inhibitory effect of the N-type Ca2+ channel blocker w -conotoxin GVIA (1 microM) was diminished, suggesting that the NK3 agonist inhibits N-type Ca2+ channels. Similarly, block of all but N-type Ca2+ channels, revealed that [betaAla8]-neurokinin A (4-10) enhanced the currents while [MePhe7]-neurokinin B inhibited the currents. Inhibition of all but L-type Ca2+ channels, revealed that [betaAla8]-neurokinin A (4-10) enhanced the currents while [MePhe7]-neurokinin B had no effect. Activation of protein kinase C with low concentrations of phorbol-12,13-dibutyrate enhanced Ca2+ currents, but high concentrations inhibited N- and L-type Ca2+ currents. In summary, these data suggest that in adult rat dorsal root ganglia neurons, NK2 receptors enhance both L- and N-type Ca2+ channels and NK3 receptors inhibit N-type Ca2+ channels and that these effects are mediated by protein kinase C phosphorylation of Ca2+ channels.  相似文献   

3.
Although nerve injury is known to up- and down-regulate some metabotropic receptors in vagal afferent neurons of the nodose ganglia (NG), the functional significance has not been elucidated. In the present study, thus, we examined whether nerve injury affected receptor-mediated Ca2+ channel modulation in the NG neurons. In this regard, unilateral vagotomy was performed using male Sprague-Dawley rats. One week after vagotomy, Ca2+ currents were recorded using the whole-cell variant of patch-clamp technique in enzymatically dissociated NG neurons. In sham controls, norepinephrine (NE)-induced Ca2+ current inhibition was negligible. Following vagotomy, however, the NE responses were dramatically increased. This phenomenon was in accordance with up-regulation of alpha2A/B-adrenergic receptor mRNAs as quantified using real-time RT-PCR analysis. In addition, neuropeptide Y (NPY) and prostaglandin E2 responses were moderately augmented in vagotomized NG neurons. The altered NPY response appears to be caused by up-regulation of Y2 receptors negatively coupled to Ca2+ channels. In contrast, nerve injury significantly suppressed opioid (tested with DAMGO)-induced Ca2+ current inhibition with down-regulation of micro-receptors. Taken together, these results demonstrated for the first time that the profile of neurotransmitter-induced Ca2+ channel modulation is significantly altered in the NG neurons under pathophysiological state of nerve injury.  相似文献   

4.
D J Carr  S Mayo  T W Woolley    B R DeCosta 《Immunology》1992,77(4):527-531
(+)-Pentazocine, phencyclidine, and other sigma ligands including 1,3-di-(o)-tolylguanidine (DTG), (+)-1-propyl-3-(3-hydroxyphenyl) piperidine [(+)-PPP] and haloperidol were investigated for their potential immunoregulatory properties. High concentrations (10(-5) M) of DTG and haloperidol were found to suppress in vitro murine splenocyte natural killer activity while equivalent concentrations of (+)-pentazocine, (-)-pentazocine and (+)-PPP were without effect. In a reciprocal fashion, lower doses (10(-9) M) of DTG enhanced natural killer activity. Sigma ligands were also found to affect in vitro polyclonal immunoglobulin production following mitogen stimulation. Specifically, high concentrations (10(-6) M) of haloperidol significantly (P < 0.001) suppressed pokeweed mitogen (PWM)-stimulated IgG and IgM production, yet enhanced lipopolysaccharide (LPS)-stimulated IgM production by murine splenocytes. Lower concentrations (10(-8) to 10(-10) M) enhanced (two- to fourfold) PWM-induced IgM production and LPS-stimulated IgG and IgM production. At high concentrations (10(-6)), (+)-pentazocine suppressed (P < 0.01) LPS-induced polyclonal IgG and IgM but enhanced (P < 0.01) PWM-induced IgM production. Both DTG and (-)-pentazocine (10(-8) to 10(-10) M) significantly augmented (two- to threefold) LPS-stimulated murine splenocyte production of polyclonal IgM. Intracellularly, (-)-pentazocine (10(-9) M), haloperidol (10(-7) M), DTG (10(-7) M) and (+)-PPP (10(-5) to 10(-9) M) enhanced forskolin (10(-6) M)-induced cAMP production in splenic lymphocytes while (+)-pentazocine was without effect. Collectively, the data suggest functional and biologically relevant sigma receptors on cells of the immune system.  相似文献   

5.
The activity patterns of subthalamic nucleus (STN) neurons are intimately related to motor function/dysfunction and modulated directly by dopaminergic neurons that degenerate in Parkinson's disease (PD). To understand how dopamine and dopamine depletion influence the activity of the STN, the functions/signaling pathways/substrates of D2-like dopamine receptors were studied using patch-clamp recording. In rat brain slices, D2-like dopamine receptor activation depolarized STN neurons, increased the frequency/irregularity of their autonomous activity, and linearized/enhanced their firing in response to current injection. Activation of D2-like receptors in acutely isolated neurons reduced transient outward currents evoked by suprathreshold voltage steps. Modulation was inhibited by a D2-like receptor antagonist and occluded by voltage-dependent Ca2+ (Cav) channel or small-conductance Ca2+-dependent K+ (SKCa) channel blockers or Ca2+-free media. Because Cav channels are targets of G(i/o)-linked receptors, actions on step- and action potential waveform-evoked Cav channel currents were studied. D2-like receptor activation reduced the conductance of Cav2.2 but not Cav1 channels. Modulation was mediated, in part, by direct binding of Gbetagamma subunits because it was attenuated by brief depolarization. D2 and/or D3 dopamine receptors may mediate modulation because a D4-selective agonist was ineffective and mRNA encoding D2 and D3 but not D4 dopamine receptors was detectable. Brain slice recordings confirmed that SKCa channel-mediated action potential afterhyperpolarization was attenuated by D2-like dopamine receptor activation. Together, these data suggest that D2-like dopamine receptors potently modulate the negative feedback control of firing that is mediated by the functional coupling of Cav2.2 and SKCa channels in STN neurons.  相似文献   

6.
Yanovsky Y  Zhang W  Misgeld U 《Neuroscience》2005,136(4):1027-1036
Neurons in substantia nigra pars reticulata express the messenger RNA for SK2 but not for SK3 subunits that form small-conductance, Ca2+-dependent K+ channels in dopamine neurons. To determine pathways for the activation of small-conductance, Ca2+-dependent K+ channels in substantia nigra pars reticulata neurons of rats and mice, we studied effects of the selective blocker of small-conductance, Ca2+-dependent K+ channels, apamin (0.01 or 0.3 microM). Apamin diminished the afterhyperpolarization following each action potential and induced burst discharges in substantia nigra pars reticulata neurons. Apamin had a robust effect already at a low (10 nM) concentration consistent with the expression of the SK2 subunit. Afterhyperpolarizations were also reduced by the Ca2+ channel blockers Ni2+ (100 microM) and omega-conotoxin GVIA (1 microM). Depletion of intracellular Ca2+ stores did not change the afterhyperpolarization. However, we observed outward current pulses that occurred independently from action potentials and were abrogated by apamin. Apart from a faster time course, they shared all properties with spontaneous hyperpolarizations or outward currents that ryanodine receptor-mediated Ca2+ release from intracellular stores induces in juvenile dopamine neurons. Sensitization of ryanodine receptors by caffeine silenced substantia nigra pars reticulata neurons. This effect was abolished by the depletion of intracellular Ca2+ stores. We conclude that SK2 channels in substantia nigra pars reticulata neurons are activated by Ca2+ influx through at least two types of Ca2+ channels in the membrane and by ryanodine receptor-mediated Ca2+ release from intracellular stores. Ryanodine receptors do not amplify small-conductance, Ca2+-dependent K+ channel activation by the Ca2+ influx during a single spike. Yet, ryanodine receptor-mediated Ca2+ release and, thereby, an activation of small-conductance, Ca2+-dependent K+ channels by intracellular Ca2+ are available for excitability modulation in these output neurons of the basal ganglia system.  相似文献   

7.
To characterize further the somastatin (SOM) receptor mediating Ca2+ current reduction in rat superior cervical ganglion (SCG) neurons, the effects of three synthetic SOM octapeptide analogs, D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (IM-4-82), D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (DC 13-116), and D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-OL (SMS 201-995), which bind preferentially to pituitary SOM receptors (SOMa) were investigated. Ca2+ currents were recorded using the whole-cell variant of the patch-clamp technique from neurons isolated enzymatically from adult rat SCG. Application of the SOM analogs (0.003-3 microM) produced a rapid, reversible, and concentration-dependent decrease in Ca2+ current amplitude in addition to slowing the rising phase of the Ca2+ current. Estimates of the concentration producing half-maximal block (EC50) and maximum attainable block (Bmax) for DC 13-116, IM 4-28, and SMS 201-995 were 196, 67, and 9.5 nM, respectively, and 52, 57, and 48%, respectively. The results suggest that the SOM receptor on SCG neurons more closely resembles the SOMa receptor of the anterior pituitary than the SOMb receptor of cerebral cortical membranes.  相似文献   

8.
Three new trishomocubane analogues based on the 4-azahexacyclo[5.4.1.0(2,6).0(3,10).0(5,9).0(8,11)] dodecane-3-ol skeleton have been synthesised and assessed for their affinities at both sigma-1 and sigma-2 receptors. The effect of various N-substitution on the polycyclic moiety was examined. All synthesised compounds displayed high affinity for sigma-1 receptors (9-10 nM) and good affinity for sigma-2 receptors (230-310 nM), suggesting that substitution at the nitrogen moiety of the trishomocubane is well tolerated and represents a platform for the development of improved higher affinity sigma receptor ligands. The interaction of these functionalised trishomocubanes on the binding of the known sigma receptor radioligand, 4-[123I]IBP, was evaluated in the rat brain. Although 4-[123I]IBP had been used for imaging sigma receptors in tumours, this is the first examination of sigma receptor binding in the rat brain and therefore the potential of 4-[123I]IBP for imaging the brain was also evaluated. In vivo specificity and selectivity of 4-[123I]IBP binding was examined by studying the effects of pre-administration of sigma receptor binding drugs (+)-pentazocine and unlabelled 4-IBP. This resulted in a blockade of only 42% of 4-[123I]IBP uptake in the brain indicating high degree of non-specific binding suggesting that it may not be suitable for imaging sigma receptors in the brain. The inhibition of 4-[123I]IBP uptake using the two of the three trishomocubanes displayed a consistent blockade of 48-30% in all brain structures. This demonstrates for the first time the ability of functionalised trishomocubanes to interact with sigma receptors in vivo.  相似文献   

9.
Among autonomic neurons, sympathetic neurons of the major pelvic ganglia (MPG) are unique by expressing low-voltage-activated T-type Ca2+ channels. To date, the T-type Ca2+ channels have been poorly characterized, although they are believed to be potentially important for functions of the MPG neurons. In the present study, thus we investigated characteristics and molecular identity of the T-type Ca2+ channels using patch-clamp and RT-PCR techniques. When the external solution contained 10 mM Ca2+ as a charge carrier, T-type Ca2+ currents were first activated at -50 mV and peaked around -20 mV. Besides the low-voltage activation, T-type Ca2+ currents displayed typical characteristics including transient activation/inactivation and voltage-dependent slow deactivation. Overlap of the activation and inactivation curves generated a prominent window current around resting membrane potentials. Replacement of the external Ca2+ with 10 mM Ba2+ did not affect the amplitudes of T-type Ca2+ currents. Mibefradil, a known T-type Ca2+ channel antagonist, depressed T-type Ca2+ currents in a concentration-dependent manner (IC50 = 3 microM). Application of Ni2+ also produced a concentration-dependent blockade of T-type Ca2+ currents with an IC50 of 10 microM. The high sensitivity to Ni2+ implicates alpha1H in generating the T-type Ca2+ currents in MPG neurons. RT-PCR experiments showed that MPG neurons predominantly express mRNAs encoding splicing variants of alpha1H (called pelvic Ta and Tb, short and long forms of alpha1H, respectively). Finally, we tested whether the low-threshold spikes could be generated in sympathetic MPG neurons expressing T-type Ca2+ channels. When hyperpolarizing currents were injected under a current-clamp mode, sympathetic neurons produced postanodal rebound spikes, while parasympathetic neurons were silent. The number of the rebound spikes was reduced by 10 microM Ni2+ that blocked 50% of T-type Ca2+ currents and had a little effect on HVA Ca2+ currents in sympathetic MPG neurons. Furthermore, generation of the rebound spikes was completely prevented by 100 microM Ni2+ that blocked most of the T-type Ca2+ currents. In conclusions, T-type Ca2+ currents in MPG neurons mainly arise from alpha1H among the three isoforms (alpha1G, alpha1H, and alpha1I) and may contribute to generation of low-threshold spikes in sympathetic MPG neurons.  相似文献   

10.
The modulatory effect of D(2) dopamine receptor activation on calcium currents was studied in neostriatal projection neurons at two stages of rat development: postnatal day (PD)14 and PD40. D(2)-class receptor agonists reduced whole cell calcium currents by about 35% at both stages, and this effect was blocked by the D(2) receptor antagonist sulpiride. Nitrendipine partially occluded this modulation at both stages, indicating that modulation of Ca(V)1 channels was present throughout this developmental interval. Nevertheless, modulation of Ca(V)1 channels was significantly larger in PD40 neurons. omega-Conotoxin GVIA occluded most of the Ca(2+) current modulation in PD14 neurons. However, this occlusion was greatly decreased in PD40 neurons. omega-Agatoxin TK occluded a great part of the modulation in PD40 neurons but had a negligible effect in PD14 neurons. The data indicate that dopaminergic D(2)-mediated modulation undergoes a change in target during development: from Ca(V)2.2 to Ca(V)2.1 Ca(2+) channels. This change occurred while Ca(V)2.2 channels were being down-regulated and Ca(V)2.1 channels were being up-regulated. Presynaptic modulation mediated by D(2) receptors reflected these changes; Ca(V)2.2 type channels were used for release in young animals but very little in mature animals, suggesting that changes took place simultaneously at the somatodendritic and the synaptic membranes.  相似文献   

11.
Wu ZZ  Pan HL 《Neuroscience letters》2004,368(1):96-101
Voltage-gated Ca(2+) channels in the primary sensory neurons are important for neurotransmitter release and regulation of nociceptive transmission. Although multiple classes of Ca(2+) channels are expressed in the dorsal root ganglion (DRG) neurons, little is known about the difference in the specific channel subtypes among the different types of DRG neurons. In this study, we determined the possible difference in high voltage-activated Ca(2+) channel currents between isolectin B(4) (IB(4))-positive and IB(4)-negative small-sized (15-30 microm) DRG neurons. Rat DRG neurons were acutely isolated and labeled with IB(4) conjugated to a fluorescent dye. Whole-cell patch clamp recordings of barium currents flowing through calcium channels were performed on neurons with and without IB(4). The peak current density of voltage-gated Ca(2+) currents was not significantly different between IB(4)-positive and IB(4)-negative neurons. Also, both nimodipine and omega-agatoxin IVA produced similar inhibitory effects on Ca(2+) currents in these two types of neurons. However, block of N-type Ca(2+) channels with omega-conotoxin GVIA produced a significantly greater reduction of Ca(2+) currents in IB(4)-positive than IB(4)-negative neurons. Furthermore, the IB(4)-positive neurons had a significantly smaller residual Ca(2+) currents than IB(4)-negative neurons. These data suggest that a higher density of N-type Ca(2+) channels is present in IB(4)-positive than IB(4)-negative small-sized DRG neurons. This differential expression of the subtypes of high voltage-activated Ca(2+) channels may contribute to the different function of these two classes of nociceptive neurons.  相似文献   

12.
Cardiovascular disease is rare in premenopausal women compared to men. The authors investigate sex hormone-induced endothelin-1 (ET-1) release and the involvement of classic sex hormone receptors as well as the ability of sigma-1/cocaine receptors to respond to sex hormones. ET-1 release was measured in the supernatant of endothelial cells after treatment with beta-estradiol, progesterone, testosterone, or combined with their antagonists, and with the sigma-1 receptor ligand ditolylguanidine (DTG), or haloperidol, a sigma-1 receptor antagonist. Binding assays were performed using 2.5 x 10(-8) M [3H]DTG. Female sex hormones decreased ET-1 release whereas testosterone increased it, sex hormone antagonists only slightly attenuated or had no effect on the respective hormone's effect. DTG totally blocked the female sex hormone-induced inhibition on ET-1 release, whereas testosterone-induced stimulation was not affected. However, haloperidol blocked both. [3H]DTG binding was displaced by beta -estradiol but not by testosterone. DTG-binding sites account for 513 +/- 114 per cell, KD 8.79 nM. These data suggest that besides classic steroid hormone receptors, sigma-1/cocaine receptors mediate the effects of female sex hormones on ET-1 release, an up to now unknown signalling pathway. Results also suggest that female and male sex hormones may bind to different sites on sigma-1 receptors, exerting opposite pharmacological effects.  相似文献   

13.
The origin of intracellular Ca2+ concentration ([Ca2+]i) transients stimulated by nicotinic (nAChR) and muscarinic (mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+]i increases that were reduced to approximately 60% of control in the presence of either atropine (1 microM) or mecamylamine (3 microM) and to <20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+]i response was reduced to 50% by 10 microM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+]i responses. Perforated-patch whole cell recording at -60 mV shows that the rise in [Ca2+]i is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+]i and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.  相似文献   

14.
Muscarinic acetylcholine receptors (mAChRs) are known to mediate the acetylcholine inhibition of Ca(2+) channels in central and peripheral neurons. Stellate ganglion (SG) neurons provide the main sympathetic input to the heart and contribute to the regulation of heart rate and myocardial contractility. Little information is available regarding mAChR regulation of Ca(2+) channels in SG neurons. The purpose of this study was to identify the mAChR subtypes that modulate Ca(2+) channel currents in rat SG neurons innervating heart muscle. Accordingly, the modulation of Ca(2+) channel currents by the muscarinic cholinergic agonist, oxotremorine-methiodide (Oxo-M), and mAChR blockers was examined. Oxo-M-mediated mAChR stimulation led to inhibition of Ca(2+) currents through voltage-dependent (VD) and voltage-independent (VI) pathways. Pre-exposure of SG neurons to the M(1) receptor blocker, M(1)-toxin, resulted in VD inhibition of Ca(2+) currents after Oxo-M application. On the other hand, VI modulation of Ca(2+) currents was observed after pretreatment of cells with methoctramine (M(2) mAChR blocker). The Oxo-M-mediated inhibition was nearly eliminated in the presence of both M(1) and M(2) mAChR blockers but was unaltered when SG neurons were exposed to the M(4) mAChR toxin, M(4)-toxin. Finally, the results from single-cell RT-PCR and immunofluorescence assays indicated that M(1) and M(2) receptors are expressed and located on the surface of SG neurons. Overall, the results indicate that SG neurons that innervate cardiac muscle express M(1) and M(2) mAChR, and activation of these receptors leads to inhibition of Ca(2+) channel currents through VI and VD pathways, respectively.  相似文献   

15.
Endocannabinoids released by postsynaptic cells inhibit neurotransmitter release in many central synapses by activating presynaptic cannabinoid CB1 receptors. In particular, in the cerebellum, endocannabinoids inhibit synaptic transmission at granule cell to Purkinje cell synapses by modulating presynaptic calcium influx via N-, P/Q-, and R-type calcium channels. Using whole cell patch-clamp techniques, we show that in addition to this presynaptic action, both synthetic and endogenous cannabinoids inhibit P-type calcium currents in isolated rat Purkinje neurons independent of CB1 receptor activation. The IC50 for the anandamide (AEA)-induced inhibition of P-current peak amplitude was 1.04 +/- 0.04 microM. In addition, we demonstrate that all the tested cannabinoids in a physiologically relevant range of concentrations strongly accelerate inactivation of P currents. The effects of AEA cannot be attributed to the metabolism of AEA because a nonhydrolyzing analogue of AEA, methanandamide inhibited P-type currents with a similar efficacy. All effects of cannabinoids on P-type Ca2+ currents were insensitive to antagonists of CB1 cannabinoid or vanilloid TRPV1 receptors. In cerebellar slices, WIN 55,212-2 significantly affected spontaneous firing of Purkinje neurons in the presence of CB1 receptor antagonist, in a manner similar to that of a specific P-type channel antagonist, indicating a possible functional implication of the direct effects of cannabinoids on P current. Taken together these findings demonstrate a functionally important direct action of cannabinoids on P-type calcium currents.  相似文献   

16.
There is growing evidence linking alterations in serotonergic signaling in the prefrontal cortex to the etiology of schizophrenia. Prefrontal pyramidal neurons are richly innervated by serotonergic fibers and express high levels of serotonergic 5-HT(2)-class receptors. It is unclear, however, how activation of these receptors modulates cellular activity. To help fill this gap, whole cell voltage-clamp and single-cell RT-PCR studies of acutely isolated layer V-VI prefrontal pyramidal neurons were undertaken. The vast majority (>80%) of these neurons had detectable levels of 5-HT(2A) or 5-HT(2C) receptor mRNA. Bath application of 5-HT(2) agonists inhibited voltage-dependent Ca(2+) channel currents. L-type Ca(2+) channels were a particularly prominent target of this signaling pathway. The L-type channel modulation was blocked by disruption of G(alphaq) signaling or by inhibition of phospholipase Cbeta. Antagonism of intracellular inositol trisphosphate signaling, chelation of intracellular Ca(2+), or depletion of intracellular Ca(2+) stores also blocked this modulation. Inhibition of the Ca(2+)-dependent phosphatase calcineurin prevented receptor-mediated modulation of L-type currents. Last, the 5-HT(2) receptor modulation was robustly expressed in neurons from Ca(v)1.3 knockout mice. These findings argue that 5-HT(2) receptors couple through G(alphaq) proteins to trigger a phospholipase Cbeta/inositol trisphosphate signaling cascade resulting in the mobilization of intracellular Ca(2+), activation of calcineurin, and inhibition of Ca(v)1.2 L-type Ca(2+) currents. This modulation and its blockade by atypical neuroleptics could have wide-ranging effects on synaptic integration and long-term gene expression in deep-layer prefrontal pyramidal neurons.  相似文献   

17.
The weaver (wv) mutation affects the pore-forming region of the inwardly rectifying potassium channel (GIRK) leading to degeneration of cerebellar granule and midbrain dopaminergic neurons. The mutated channel (wvGIRK) loses its potassium selectivity, allowing sodium (Na+) and possibly calcium ions (Ca2+) to enter the cell. Here we performed whole cell patch-clamp recordings combined with microfluorometry to investigate possible differences in calcium ([Ca2+]i) dynamics in native dopaminergic neurons (expressing the wvGIRK2 subunits) in the midbrain slice preparation from homozygous weaver (wv/wv) and control (+/+) mice. Under resting conditions, [Ca2+]i was similar in wv/wv compared with +/+ neurons. Activation of wvGIRK2 channels by D2 and GABAB receptors increased [Ca2+]i in wv/wv neurons, whereas activation of wild-type channels decreased [Ca2+]i in +/+ neurons. The calcium rise in wv/wv neurons was abolished by antagonists of the voltage-gated calcium channels (VGCC); voltage clamp of the neuron at -60 mV; and hyperpolarization of the neuron to -80 mV or more, in current clamp, and was unaffected by TTX. Therefore we propose that wvGIRK2 channels in native dopamine neurons are not permeable to Ca2+, and when activated by D2 and GABAB receptors they mediate membrane depolarization and an indirect Ca2+ influx through VGCC rather than via wvGIRK2 channels. Such calcium influx may be the trigger for calcium-mediated excitotoxicity, responsible for selective neuronal death in weaver mice.  相似文献   

18.
Canonical olfactory signal transduction involves the activation of cyclic AMP-activated cation channels that depolarize the cilia of receptor neurons and raise intracellular calcium. Calcium then activates Cl(-) currents that may be up to tenfold larger than cation currents and are believed to powerfully amplify the response. We identified Anoctamin2 (Ano2, also known as TMEM16B) as the ciliary Ca(2+)-activated Cl(-) channel of olfactory receptor neurons. Ano2 is expressed in the main olfactory epithelium (MOE) and in the vomeronasal organ (VNO), which also expresses the related Ano1 channel. Disruption of Ano2 in mice virtually abolished Ca(2+)-activated Cl(-) currents in the MOE and VNO. Ano2 disruption reduced fluid-phase electro-olfactogram responses by only ~40%, did not change air-phase electro-olfactograms and did not reduce performance in olfactory behavioral tasks. In contrast with the current view, cyclic nucleotide-gated cation channels do not need a boost by Cl(-) channels to achieve near-physiological levels of olfaction.  相似文献   

19.
Our work assesses the effects of mu opioid receptor activation on high-threshold Ca2+/Ba2+ currents in freshly dispersed pyramidal neurons of the medial prefrontal cortex in rats. Application of the specific mu receptor agonist (D-Ala2+, N-Me-Phe4+, Gly5+-ol)-enkephalin (DAMGO) at 1 microM decreased Ca2+ current amplitudes from 0.72 to 0.49 nA. The effect was abolished by naloxone and omega-Conotoxin GVIA. Inhibition was not abolished by strong depolarisation of the cell membrane. In addition, a macroscopic Ba2+ current recorded in cell-attached configuration was inhibited when DAMGO was applied outside the patch pipette. An adenylyl cyclase inhibitor (SQ 22536) and a protein kinase A inhibitor (H-89) decreased Ca2+ current amplitude. Moreover, the inhibitory effect of mu opioid receptors on Ca2+ currents required the activation of protein kinase A. We conclude that activation of mu opioid receptors in medial prefrontal cortex pyramidal neurons inhibits N type Ca2+ channel currents, and that protein kinase A is involved in this transduction pathway.  相似文献   

20.
Multiple lines of investigation have explored the role of sigma receptors in mental depression. Sigma receptors particularly, sigma-1 subtype is known to modulate the release of various catecholamines in the brain and may play, in some way, a role in the mechanism of action of various antidepressants. The present study investigated the possible involvement of sigma receptors in modulating the antidepressant-like effect of venlafaxine (dual serotonin and norepinephrine reuptake inhibitor) in the mouse forced swim test (FST). Immobility period in the forced swim test was registered for a total period of 6 min. Venlafaxine produced dose-dependent (4–16 mg/kg, i.p.) reduction in immobility period. Pretreatment of mice with (+)-pentazocine (2.5 mg/kg, i.p.), a high-affinity sigma-1 receptor agonist, produced synergism with subeffective dose of venlafaxine (2 mg/kg, i.p.). On the contrary, pretreatment with progesterone (10 mg/kg, s.c.), a sigma-1 receptor antagonist neurosteroid, rimcazole (5 mg/kg, i.p.), another sigma-1 receptor antagonist, or BD 1047 (1 mg/kg, i.p.), a novel sigma-1 receptor antagonist, reversed the anti-immobility effects of venlafaxine (8 mg/kg i.p.). The various modulators used in the study did not produce any changes in locomotor activity per se except venlafaxine which at higher dose (16 mg/kg, i.p.) significantly increased the locomotor activity in mice. The results for the first time demonstrated that the anti-immobility effects of venlafaxine in the FST possibly involve an interaction with sigma-1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号