首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abnormalities in circulating IgA1 have been demonstrated in patients with IgA nephropathy (IgAN). This study addresses the question of the functional significance of this alteration in creating mesangial injury. Biologic effects of selected IgA glycoforms isolated from serum of IgAN patients and controls and in vitro deglycosylated normal IgA were tested on cultured human mesangial cells (MC). IgA glycoforms, ranging from 250 to 500 kD molecular weight, were isolated by lectin affinity chromatography followed by HPLC. IgA and IgG content was measured by enzyme-linked immunosorbent assay. HPLC fractions were incubated with MC to evaluate proliferation and apoptosis rates and nitric oxide synthesis. Moreover, MC were conditioned with in vitro desialylated and degalactosylated normal IgA. Patients with IgAN displayed increased levels of IgA glycoforms exposing sialic acid in alpha2,6 linkage with N-acetylgalactosamine (Neu5Acalpha2,6GalNAc) (P < 0.02) and GalNAc (P < 0.05), indicating truncation of O-linked glycans of IgA1. Moreover, IgA glycoforms with increased exposure of mannose were observed (P < 0.03), suggesting a defective N-linked glycosylation. No modification in IgG glycosylation was detected. When incubated with MC, the IgA glycoforms isolated from patients with increased exposure of GalNAc, Neu5Acalpha2,6GalNAc, or mannose, significantly depressed the proliferation and increased the apoptotic rate and nitric oxide synthesis activity of cultured MC, in comparison with fractions isolated from controls. Similarly, in vitro desialylated and degalactosylated IgAs significantly depressed the proliferation and enhanced the apoptosis rates of MC. In conclusion, a significant modulation of several human MC functions exerted by serum IgA with increased exposure of GalNAc, Neu5Acalpha2,6GalNAc, and mannose residues isolated from IgAN patients is reported for the first time.  相似文献   

2.
Summary: The complicated network of immune reactions leading to mesangial cell activation and glomerular sclerosis in IgA nephropathy (IgAN) involves interactions between infiltrating cells, mesangial cells and mesangial matrix which are mediated by adhesion molecules. Integrin expression on mesangial cells in culture has recently been described. In the present work we investigated whether integrin expression on cultured human mesangial cells (MC) and mesangial matrix production could be modulated by mesangial matrix components, or by other proteins which may come into contact with MC during pathologic conditions, such as fibrinogen and von Willebrand factor. Moreover, we evaluated the effects induced by polymeric IgA or aggregated IgA or mixed IgA/IgG aggregates on integrin expression. To elucidate a possible role for abnormally glycosylated IgA, we tested IgA pretreated with various enzymes specific for carbohydrate residue components of the side carbohydrate chains of IgA molecules. We found that cultured mesangial cells, highly express the αv β3 integrin receptor for vitronectin and to a lesser extent the α3 β1 receptor for fibronectin and collagens. Among these integrins, αv β3 is modulated by matrix components and particularly enhanced when cells are incubated with proteins which can be abnormally present in the mesangial area, such as fibrinogen, collagen I and von Willebrand factor. IgA and aggregated IgA can modify integrin expression, inducing a decrease in α3 β1 and an increase in αv expression. Moreover, sugars can affect these interactions, since desialylated IgA enhance the expression of integrin β3 chain on cultured mesangial cells and sialic acid per se strongly inhibits it. Conversely, other sugars, represented in the carbohydrate chains of IgA1 including mannose and N-acetylgalactosamine, were found to enhance αv expression. Our data suggest that the interactions of native polymeric IgA, IgA or IgA/IgG aggregates, as well as IgA with altered glycosylation may result in structural rearrangement of mesangial integrins, possibly reflecting on mesangial matrix composition.  相似文献   

3.
BACKGROUND: It has been suggested that polymeric IgA (pIgA) or IgA immune complexes play a significant pathogenic role in IgA nephropathy (IgAN). Macrophage migration inhibitory factor (MIF) shares many activities with other pro-inflammatory cytokines. In human glomerulonephritis, including IgAN, glomerular expression of MIF is found to correlate with progressive renal injury. We hypothesized that deposition of pIgA within the kidney may lead to enhanced synthesis of MIF by mesangial cells. METHODS: In this study we examined the effect of pIgA and monomeric IgA (mIgA) from randomly selected patients with IgAN in clinical quiescence on the gene expression and protein synthesis of MIF in cultured human mesangial cells (HMC). RESULTS: Both pIgA and mIgA from IgAN patients or matched healthy controls increased MIF gene expression and protein synthesis in a dose-dependent fashion. The magnitude of MIF protein induction by pIgA (100 microg/ml) was similar to that of tumour necrosis factor-alpha (TNF-alpha) at 10 pg/ml. In all subjects, the induction of MIF was higher for pIgA when compared with mIgA (P < 0.01). Furthermore, the up-regulation of MIF synthesis by either pIgA or mIgA was significantly higher in IgAN patients than in healthy controls (P < 0.05). Similarly, pIgA and mIgA were able to induce TNF-alpha gene expression and protein synthesis in mesangial cells. Incubation of mesangial cells with neutralizing antibody to TNF-alpha reduced the MIF synthesis induced by pIgA. CONCLUSION: We demonstrate that pIgA is capable of inducing MIF and TNF-alpha production in HMC, which may play a major pathogenic role in IgAN. Induction of MIF can be partially blocked by neutralizing antibody to TNF-alpha, suggesting the possibility that up-regulation of MIF synthesis in HMC is mediated via an amplifying proinflammatory loop involving TNF-alpha.  相似文献   

4.
Aberrant glycosylation in IgA nephropathy (IgAN)   总被引:20,自引:0,他引:20  
Coppo R  Amore A 《Kidney international》2004,65(5):1544-1547
Immunoglobulin A nephropathy (IgAN) patients exhibit circulating IgA1 with reduced galactose (Gal) and/or sialic acid (Neu5Ac) and increased exposure of N-acetylgalactosamine (GalNAc). These IgA glycoforms fix complement and in mesangial cells regulate integrin expression, enhance nitric oxide synthase (NOS) activity, decrease endothelial growth factor synthesis, meanwhile depressing proliferation and increasing apoptosis. Drugs can be targeted to the effects enhanced by aberrantly glycosylated IgA1 on mesangial cells. Recent data suggest that aberrant IgA1 glycosylation may modulate clinical expression and progression of IgAN.  相似文献   

5.
H C Chen  J Y Guh  J M Chang  Y H Lai 《Nephron》2001,88(3):211-217
BACKGROUND: IgA nephropathy (IgAN) is characterized by predominant deposition of IgA in the glomerular mesangium. Serum IgA is often elevated in patients with IgAN, and it has been postulated that it is responsible for the mesangial lesions. However, the direct effect of circulating IgA on mesangial cells is not clear. METHODS: We investigated the effects of sera and IgA which were isolated from patients with IgAN on thymidine uptake, superoxide and fibronectin production and fibronectin mRNA expression of cultured rat mesangial cells, and we compared the findings to the effects of IgA isolated from patients with non-IgA mesangial proliferative glomerulonephritis (MsPGN) and normal controls. IgA was isolated with affinity chromatography using cyanogen bromide activated Sepharose 4B coupled to sheep antihuman IgA antiserum. RESULTS: Our results demonstrated that both sera and IgA from patients with IgAN dose-dependently increased mitogenesis of mesangial cells as measured by (3)H-labeled thymidine uptake. The thymidine uptake by sera and IgA isolated from patients with IgAN was significantly higher than that of sera and IgA isolated from patients with MsPGN and normal controls. Sera and IgA from patients with IgAN significantly enhanced superoxide and fibronectin production and fibronectin mRNA expression of mesangial cells. The superoxide and fibronectin production was also significantly higher as compared with patients with MsPGN and normal controls. CONCLUSIONS: Our results indicate that circulating IgA isolated from patients with IgAN is different from that of patients with MsPGN and normal controls and may potentially induce oxidative injury and production of extracellular matrix of glomerular mesangial cells in IgAN.  相似文献   

6.
BACKGROUND: Sera of patients with IgA nephropathy (IgAN) contain circulating immune complexes (CIC) composed of galactose-deficient IgA1 complexed with antiglycan antibodies. The role of these CIC in the pathogenesis of IgAN is not known. METHODS: We studied how proliferation of cultured mesangial cells (MC) is affected by CIC prepared from sera of IgAN patients and healthy control subjects using size-exclusion chromatography. CIC-containing fractions were added to serum-starved MC in culture, and cell proliferation was measured using (3)H-thymidine incorporation. The results were confirmed by staining MC using an antibody against proliferating cell nuclear antigen. RESULTS: The incubation of starved MC with serum fractions with M(r) 800 to 900 kD, rich with galactose-deficient IgA1, stimulated proliferation, while fractions with smaller complexes were inhibitory. Furthermore, CIC-containing larger molecular mass fractions isolated from serum of an IgAN patient collected during an episode of macroscopic hematuria stimulated MC proliferation more than CIC obtained during a subsequent quiescent phase. To examine the role of IgA, we removed IgA1 from serum before fractionation. The resultant IgA1-depleted fractions were devoid of stimulatory IgA-CIC. Sera of IgAN patients were also fractionated after addition of desialylated galactose-deficient polymeric IgA1 to form additional immune complexes. Supplementation with a small quantity of this IgA1 increased cellular proliferation in assays using serum fractions of M(r)>/=800 to 900 kD; uncomplexed IgA1 did not affect MC proliferation significantly. In contrast, supplementation with a larger quantity of this IgA1 inhibited cellular proliferation in assays using serum fractions of M(r) 700 to 800 kD. CONCLUSION: Overall, these findings suggest that CIC containing aberrantly glycosylated IgA1 affect proliferation of MC in vitro and, thus, likely play a role in the pathogenesis of IgAN.  相似文献   

7.
BACKGROUND: IgA nephropathy (IgAN) is the most common glomerulonephritis with various histologic and clinical phenotypes. The mechanisms underlying the pathogenesis of IgAN remained unclear. But now altered O-glycosylation of serum IgA1 observed in these patients was considered to be a key contributory factor. The aim of the current study is to investigate whether aberrantly glycosylated IgA1 was associated with pathologic phenotypes of IgAN. METHODS: Sera from 107 patients with IgAN recently diagnosed were collected. Fifty patients were with mild mesangial proliferative IgAN, the others were with focal proliferative and sclerosing IgAN. Sera from 22 normal blood donors were used as normal controls. Biotinylated lectins were used in enzyme-linked immunosorbent assay (ELISA) to examine different glycans on IgA1 molecules. The alpha2,6 sialic acid was detected by elderberry bark lectin (SNA), the exposure of terminal galactose (Gal) and N-acetylgalactosamine (GalNAc) were detected by arachis hypogaea [peanut agglutinin (PNA)] and vilsa villosa lectin (VVL), respectively. The serum IgA1 glycans levels corrected by serum IgA1 concentrations were compared between patients and controls. RESULTS: Reduced terminal alpha2,6 sialic acid (1.16 +/- 0.21 vs. 0.98 +/- 0.31) (P= 0.008) and galactosylation (0.30 +/- 0.29 vs. 0.16 +/- 0.19) (P= 0.029) increased exposure of (GalNAc) (0.00 vs. 0.03) (P= 0.024) were demonstrated in serum IgA1 from patients with IgAN as compared with those in controls. More important, the exposures of 2,6 sialic acid and Gal were significantly decreased, especially in patients with focal proliferative and sclerosing IgAN compared with that in patients with mild mesangial proliferative IgAN (0.91 +/- 0.34 vs. 1.05 +/- 0.25) (P= 0.014) (0.108 +/- 0.137 vs. 0.221 +/- 0.219) (P= 0.018). However, no significant difference was found between patients with mild mesangial proliferative IgAN and normal controls (P > 0.05). The exposure of GalNAc of serum IgA1 from patients with focal proliferative and sclerosing IgAN was significantly higher than that of controls (P= 0.017), but had no statistical difference with that of patients with mild mesangial proliferative IgAN. CONCLUSION: The desialylation and degalactosylation of IgA1 in sera of patients with IgAN were closely associated with pathologic phenotypes.  相似文献   

8.
BACKGROUND: IgA nephropathy (IgAN), characterized by mesangial IgA deposition, runs a variable clinical course with tubulointerstitial damage and renal failure in no less than 30% of patients. Histologically, IgA is rarely detected in renal tubules. The direct toxicity by IgA on renal tubules remains uncertain. We hypothesize that mediators released from human mesangial cells (HMC) triggered by IgA deposition may lead to activation of proximal tubular epithelial cells (PTEC). METHODS: The binding of IgA to PTEC or HMC was assessed by flow cytometry. IgA-HMC medium was prepared by collecting the spent medium in which growth arrested HMC were incubated with IgA isolated from patients with IgAN, healthy control subjects, or other nephritic control patients. PTEC was cultured with the IgA-HMC medium in the presence or absence of neutralizing antibodies to TNF-alpha, IL-1beta, TGF-beta, or PDGF. Gene expression and protein synthesis of TNF-alpha, MIF, or ICAM-1 by PTEC were determined by RT-PCR and ELISA, respectively. RESULTS: The binding of IgA isolated from patients with IgAN to PTEC was increased when compared to binding of IgA from healthy control subjects (P < 0.005). However, the binding to PTEC was less than one tenth that of HMC in IgAN. The binding to PTEC was not mediated through known IgA receptors, as shown by competitive binding assays and gene expression of the receptors. Despite the in vitro binding, PTEC cultured with isolated IgA exhibited no increased cell proliferation or enhanced synthesis of TNF-alpha, MIF, or sICAM-1. However, when PTEC were cultured with IgA-HMC medium prepared from IgAN patients, there was enhanced proliferation of PTEC (P < 0.001) and increased synthesis of TNF-alpha, MIF, and sICAM-1 when compared with PTEC cultured with IgA-HMC medium from control subjects (P < 0.001). The synthesis of MIF and sICAM-1 by PTEC cultured with IgA-HMC medium was reduced by neutralizing antibodies to TNF-alpha (P < 0.001) but not by neutralizing antibodies to IL-1beta, TGF-beta, or PDGF. CONCLUSION: Our finding implicates that TNF-alpha released from the mesangium after IgA deposition activates renal tubular cells. The glomerulotubular communication could play an important role in the pathogenesis of tubulointerstitial damage in IgAN.  相似文献   

9.
BACKGROUND: Enhanced gene expression for the renin-angiotensin system (RAS) is detected in glomerular mesangial cells in IgA nephropathy (IgAN). Preliminary studies showed a reduced glomerular gene expression of angiotensin II subtype 1 receptor (AT1R), suggesting a regulatory response to high intrarenal angiotensin II (Ang II) concentration in IgAN. METHODS: We examined the effect of polymeric IgA1 (pIgA1) from patients with IgAN on the expression of Ang II receptors in cultured human mesangial cells (HMC). RESULTS: Polymeric IgA1 from patients with IgAN down-regulated the expression of AT1R in HMC in a dose-dependent manner. When similar experiments were conducted with addition of an angiotensin-converting enzyme inhibitor (captopril) or an AT1R antagonist (losartan), there was a significant increase in the expression of AT1R. Blockade of Ang II with captopril or losartan alone resulted in a stepwise increase of AT1R in cultured HMC. Down-regulation of Ang II subtype 2 receptor (AT2R) was not observed in HMC cultured with pIgA1 from patients with IgAN. The acute suppressive effect of pIgA1 from IgAN on the expression of AT1R was confirmed in HMC incubated with IgA isolated from 15 IgAN patients, 15 healthy subjects, and other glomerulonephritides control subjects. Reduced glomerular expression of AT1R (but not AT2R) was also demonstrated in renal biopsies from patients with IgAN. CONCLUSION: Our findings demonstrate an altered AT1R expression in HMC in response to raised intrarenal Ang II in IgAN. Our in vitro studies also support that an imbalance of AT1R and AT2R activity in HMC following exposure to pIgA plays a significant pathogenetic role in the inflammatory injury in IgAN.  相似文献   

10.
BACKGROUND: IgA nephropathy (IgAN) is characterized by raised serum IgA1 and predominant mesangial IgA1 deposits of polymeric nature. The mechanism of polymeric IgA1 (pIgA1) deposition in the kidney mesangium is poorly understood in IgAN. It has been suggested that increased sialic acid content and anionic charge of the pIgA1 molecules may be operational in the IgA1 deposition in human mesangial cells (HMCs). The present study examined the binding of pIgA1 with different surface charges to HMCs. The binding characteristics of IgA1 to HMCs in the presence of polycation (poly-L-lysine) or polyanion (heparin) were also investigated. METHODS: IgA1 was purified in sera from patients with IgAN and from healthy controls by jacalin affinity chromatography. IgA1 was further separated into pIgA1 and monomeric IgA1 (mIgA1) by fast protein liquid chromatography (FPLC). pIgA1 or mIgA1 with different net charges on their surface were resolved by ion exchange chromatography (IEC) with a Mono Q column. The binding characteristics of pIgA1 and mIgA1 to HMCs in the presence or absence of polycation or polyanion were examined by flow cytometry. RESULTS: In patients with IgAN, the absolute amount of mIgA1 and pIgA1 is significantly higher than that of healthy controls (P < 0. 001). There was significant increase in binding of pIgA1 from patients with IgAN to HMC and cell lysate. pIgA1 that interacted strongly with the ion exchanger also bound more to HMCs when compared with IgA1 interacted weakly with the ion exchanger (P < 0. 001). The anionic charged pIgA1 from patients was significantly higher than that of healthy controls (P < 0.001). Preincubation with poly-L-lysine increased the binding of pIgA1 to HMCs. The binding of pIgA1 to HMCs was decreased by preincubation with heparin. CONCLUSIONS: The binding of IgA to HMCs is charge dependent. Polymeric IgA with the highest net negative charge binds more to HMCs. Preincubation with polyanion decreased the binding of polymeric IgA to HMCs. These results suggest an important role for anionic charge in IgA1 deposition onto the kidney mesangial cells.  相似文献   

11.
BACKGROUND: Physicochemical alterations of the IgA molecule are supposed to play a pathogenetic role in IgA nephropathy (IgAN). The present study was carried out to analyze the structural variety of O-glycans on the IgA1 hinge region in IgAN. Sera from 9 IgAN patients and 9 healthy controls were individually examined to evaluate the IgA1 content and binding lectins (jacalin and Helix aspersa), using enzyme-linked immunosorbent assay (ELISA) techniques. The IgA1 from pooled sera were separated by affinity chromatography (jacalin), and the fragment containing the hinge region was prepared by pyridylethylation and trypsin treatment. The IgA fragments containing the hinge glycopeptide (33-mer hinge peptide core (HP) + O-glycans) were separated by jacalin affinity chromatography. Because we used jacalin, we only analyzed the Gal-3GalNAc residue containing IgA. The molecular weight (MW) of the IgA1 fragments was estimated using an ion trap mass spectrometer equipped with an electrospray ion source (ESI/MS). RESULTS: IgA1 concentration in pathological sera was higher than in the control serum (p<0.01). Compared with controls, serum IgA1 from IgAN patients showed significantly greater binding to the 2 lectins, jacalin (p<0.01) and Helix aspersa (HA, p<0.001), which are specific for O-linked Gal-beta1,3-GalNAc and GalNAc, respectively. Analyses of pooled sera showed that the number of O-glycosidic chains was comparable in IgAN and normal sera. With regards to the individual residues, we found that IgAN sera contained less sugar and galactose and sialic acid moieties than sera from control subjects, was reduced in IgAN sera, while terminal N-acetylgalactosamine levels were higher when compared with normal serum.CONCLUSIONS: Abnormalities of hinge region O-linked glycans were confirmed using advanced spectrometry technology. The pathogenetic implications for aggregation and defective removal of IgA1 are discussed.  相似文献   

12.
SUMMARY: Deposits of IgA together with complement in different body tissues support the hypothesis that IgA can trigger inflammatory mechanisms. IgA nephropathy (IgAN) is characterized by predominant mesangial IgA1 deposits of a polymeric nature. So far, the mechanism of polymeric IgA1 deposition in the kidney mesangium is poorly understood in IgAN. the exact pathophysiological sequel preceding renal fibrosis following the mesangial deposition of IgA immune complexes remains speculative. Recent in vitro studies revealed that binding of IgA to mesangial cells led to increased expression of growth factors, cytokines, and integrins. the release of these proinflammatory factors is likely to enhance inflammatory injury. In addition, the local renin-angiotensin system present in renal tissues also contributes to renal fibrosis through the activation of transforming growth factor-β. the question of whether polymeric IgA isolated from patients with IgAN exerted any upregulatory effect on the synthesis of macrophage migration inhibitory factor (MIF) and components of the renin-angiotensin system in human mesangial cells was explored. the in vitro studies revealed that polymeric IgA from IgAN patients upregulated the gene expression of renin and MIF in human mesangial cells in a dose-dependent manner. These findings further support the notion that glomerular deposition of IgA is not only a pathological epiphenomenon of IgAN, but that polymeric IgA exerts a pathophysiologic effect on the mesangial cells leading to renal fibrosis.  相似文献   

13.
The effects of polymeric IgA1 (pIgA1) and monomeric IgA1 (mIgA1) from patients with IgA nephropathy (IgAN) on the renin-angiotensin system (RAS) and TGF-beta synthesis were examined in cultured human mesangial cells (HMC). Both pIgA1 and mIgA1 induced renin gene expression in HMC, in a dose-dependent manner. Similar findings were observed for TGF-beta gene and protein expression. The values measured in HMC incubated with pIgA1 were significantly higher than those in HMC incubated with equivalent amounts of mIgA1. When similar experiments were performed with the addition of either captopril or losartan, there was a significant increase in the renin gene expression by HMC, whereas the synthesis of TGF-beta was markedly reduced. The TGF-beta signal transduction pathways in HMC were studied by measuring the receptor-regulated Smad proteins (Smad 2 and 3) and common-partner Smad proteins (Smad 4). pIgA1 from patients with IgAN upregulated Smad activity in HMC, and the activity observed in HMC that had been preincubated with pIgA1 was readily suppressed with optimal concentrations of captopril or losartan. The effects of pIgA1 on the RAS were further examined in HMC incubated with IgA isolated from 30 patients with IgAN, 30 healthy subjects, and disease control subjects with other diseases. pIgA1 induction of angiotensin II or TGF-beta synthesis in HMC was significantly greater with preparations from patients with IgAN, compared with healthy or disease control subjects. The findings support a pathogenetic role of pIgA1 in IgAN through upregulation of the RAS and TGF-beta, leading to chronic renal failure with renal fibrosis.  相似文献   

14.
BACKGROUND: The IgA1 molecule, which is predominantly deposited in glomeruli in IgA nephropathy (IgAN), is a unique serum glycoprotein because it has O-glycan side chains in its hinge region. Our study was conducted to investigate the O-glycan structure in the glomerular IgA1 in IgAN. METHODS: The IgA1 was separated from 290 renal biopsy specimens of 278 IgAN patients and from four serum IgA1 samples (IgAN, 2; control, 2). The variety of O-glycan glycoform was determined by estimating the precise molecular weights of the IgA1 hinge glycopeptides using matrix-assisted laser desorption ionization time of flight mass spectrometry. RESULTS: The peak distribution of IgA1 hinge glycopeptides clearly shifted to lesser molecular weights in both glomerular and serum IgA1 in IgAN compared with the serum IgA1 of controls. In the five major peaks of IgA1 hinge glycopeptides in each sample, the numbers of carbohydrates composing O-glycans (GalNAc, Gal, and NANA) in the deposited and serum IgA1 in IgAN patients were significantly fewer than those in the serum IgA1 in the control groups. CONCLUSION: The O-glycan side chains in the hinge of the glomerular IgA1 were highly underglycosylated in IgAN. These results indicate that the decreased sialylation and galactosylation of the IgA1 hinge glycopeptides play a crucial role in its glomerular deposition in IgAN.  相似文献   

15.
BACKGROUND: Most intensive investigations on the pathogenesis of IgA nephropathy have focused on the process before IgA deposition and the characteristics of IgA/IgA immune complex (IgA IC), but it still remains uncertain whether mesangial IgA ICs may cause glomerular injuries directly or are only secondary events of another pathological process. To assess the role of IgA ICs in IgA nephropathy, we investigated the characteristics of Fc alpha receptor (Fc alphaR) and FcR gamma chain which is a signalling subunit of FcR in human mesangial cells (MCs). METHODS: Gene expression of Fc alphaR and FcR gamma chain of human cultured MCs was examined by RT-PCR and subsequent Southern blot analyses. Sequence analyses after subcloning were also performed for further confirmation. Expression of Fc alphaR and FcR gamma chain at the protein level and their physical association in MCs were determined by immunoprecipitation after stimulation of the cells with heat-aggregated IgA. RESULTS: Two distinct cDNA products were amplified from each cultured MC line. The sequence of the major product of approximately 900 bp was completely identical to that of Fc alphaR previously described. The smaller product had a 288 bp deletion which corresponded to exon 2 encoding the extracellular domain 2 of Fc alphaR. Gene expression of FcR gamma chain was also confirmed. Furthermore, we proved the physical association of Fc alphaR with the FcR gamma chain by co-immunoprecipitation under stimulation with a high dose of the heat-aggregated IgA. CONCLUSION: These findings suggested that polymeric IgA and/or IgA IC can directly activate MCs via Fc alphaR associated with the gamma chain. Our data also indicated that phenotypic variations of Fc alphaR occur on MC, such as splicing forms, the chain association and/or the alpha chain expression itself, which may contribute to the pathogenesis of IgA nephropathy.  相似文献   

16.
IgA nephropathy (IgAN) is a complex trait determined by genetic and environmental factors. Most IgAN patients exhibit a characteristic undergalactosylation of the O-glycans of the IgA1 hinge region, which promotes formation and glomerular deposition of immune complexes. It is not known whether this aberrant glycosylation is the result of an acquired or inherited defect, or whether the presence of aberrant IgA1 glycoforms alone can produce IgAN. A newly validated lectin enzyme-linked immunosorbent assay (ELISA) was used to determine the serum level of galactose-deficient IgA1 (Gd-IgA1) in a cohort of 89 IgAN patients and 266 of their relatives. High Gd-IgA1 levels (> or =95th percentile for controls) were observed in all 5 available patients with familial IgAN, in 21 of 45 (47%) of their at-risk relatives (assuming autosomal dominant inheritance), and in only 1 of 19 (5%) of unrelated individuals who married into the family. This provides evidence that abnormal IgA1 glycosylation is an inherited rather than acquired trait. Similarly, Gd-IgA1 levels were high in 65 of 84 (78%) patients with sporadic IgAN and in 50 of 202 (25%) blood relatives. Heritability of Gd-IgA1 was estimated at 0.54 (P = 0.0001), and segregation analysis suggested the presence of a major dominant gene on a polygenic background. Because most relatives with abnormal IgA1 glycoforms were asymptomatic, additional cofactors must be required for IgAN to develop. The fact that abnormal IgA1 glycosylation clusters in most but not all families suggests that measuring Gd-IgA1 may help distinguish patients with different pathogenic mechanisms of disease.  相似文献   

17.
Summary: The carbohydrate moieties on glycoproteins, including immunoglobulins (Ig), are involved in a broad spectrum of biological functions. As revealed by enzymatic or chemical removal of carbohydrate moieties, inhibition of glycosylation, or site-directed mutagenesis of asparagine residues to prevent N-linked glycosylation, carbohydrates on Ig have been shown to participate in binding, internalization and catabolism by hepatocytes or other cells, binding to Fc receptors on phagocytic cells, activation of complement, and opsonization. the structure of human IgA1 is unique among all Ig. the heavy chain contains a hinge region with a characteristic primary structure not seen in any other Ig, and which contains five short O-linked oligosaccharide side-chains composed of serine-linked N-acetylgalactosamine (GalNAc) and βl-3-linked galactose (Gal). Both of these monosaccharides may be sialylated. In contrast to ubiquitous N-linked side-chains, O-linked carbohydrate moieties are found rarely among human serum glycoproteins. We have demonstrated that IgA1 proteins from the sera of patients with IgA nephropathy (IgAN) are galactosylated to a lesser extent than those from healthy controls. Decreased content of Gal and decreased reactivity of IgA from IgAN patients with lectins specific for GalNAc indicate that these structural changes occur on glycans located in the hinge region of IgA1. Thus, in addition to rheumatoid arthritis, systemic lupus erythmatosus, inflammatory bowel disease and other disorders, IgA nephropathy may represent another example of a chronic disease in which aberrancies of carbohydrates are observed and may participate in aetiopathogenesis.  相似文献   

18.
19.
BACKGROUND: IgA nephropathy (IgAN) is characterized by deposition in the glomerular mesangium of IgA together with C3, C5b-9, and properdin. IgG deposition as a risk factor in IgAN was recently confirmed by a long-term follow-up of patients with IgAN. We previously reported on an acute model of IgA-mediated glomerular inflammation in Wistar rats. METHODS: To investigate the effect of the combination of IgA and IgG on glomerular injury, Wistar rats were injected with a minimum dose of rat IgG in the presence or absence of a subnephritogenic dose of polymeric rat IgA. Subsequently, glomerular complement activation, influx of inflammatory cells, proteinuria, and hematuria were assessed. RESULTS: Administration of IgG to the rats resulted in maximal proteinuria of 20.3 +/- 12.1 mg/24 h on day 2 and an absence of overt glomerular inflammation. Administration of polymeric rat IgA antibodies to rats resulted in hematuria with a moderate mesangial complement deposition. In the combination group, however, glomerular deposition of C5b-9 was dramatically increased. This was accompanied by increased proteinuria as compared with rats receiving IgA or IgG antibody injections alone on day 7. Microhematuria occurred in rats receiving either polymeric rat IgA or IgG alone or the combination. While both rat IgG and polymeric IgA induced minor mesangial cell (MC) proliferation and MC lysis, the combination resulted in a pronounced, significant increased percentage of aneurysm formation on day 7 after injection. CONCLUSIONS: We conclude that in this model of IgA-induced glomerulopathy, a selective, complement-dependent glomerular inflammation is induced in Wistar rats by glomerular codeposition of rat isotypic monoclonal antibodies.  相似文献   

20.
Abnormal O-glycosylation of IgA1 may contribute to pathogenic mechanisms in IgA nephropathy (IgAN). Observations of altered lectin binding to IgA1 in IgAN suggest that the O-glycan chains may be undergalactosylated, but precise structural definition of the defect has proved technically difficult, and it remains unconfirmed. This is the first study using fluorophore-assisted carbohydrate electrophoresis (FACE) to analyze IgA1 O-glycans in IgAN and controls. IgA1 was purified from serum, and the intact O-glycans were released by hydrazinolysis at 60 degrees C. After re-N-acetylation, the glycans were fluorophore-labeled and separated by polyacrylamide gel electrophoresis. Sequential exoglycosidase digestions of IgA1 allowed identification of the different O-glycan bands on FACE gels, and their relative frequencies in IgA1 samples were measured by ultraviolet densitometry. Lectin binding of the IgA1 samples was also measured. In some patients with IgAN, FACE analysis demonstrated a significant increase in the percentage of IgA1 O-glycan chains consisting of single N-acetyl galactosamine (GalNAc) units rather than the more usual galactosylated and sialylated forms. This finding was confirmed using both desialylated IgA1 and enzymatically released O-glycans. Good correlation was also found between O-glycan agalactosylation on FACE analysis and IgA1 lectin binding in IgAN, supporting the value of lectins as tools for detection of this abnormality. This is the first study in which all of the predicted O-glycan forms of IgA1 have been analyzed simultaneously, and demonstrates that in IgAN, the IgA1 Oglycan chains are truncated, with increased terminal GalNAc. This abnormality has the potential to significantly affect IgA1 behavior and handling with pathogenic consequences in IgAN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号