首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
People have advocated barefoot running, claiming that it is better suited to human nature. Humans usually run barefoot using a forefoot strike and run shod using a heel strike. The striking pattern was thought to be a key factor that contributes to the benefit of barefoot running. The purpose of this study is to use scientific data to prove that the striking pattern is more important than barefoot or shod conditions for runners on running injuries prevention. Twelve habitually male shod runners were recruited to run under four varying conditions: barefoot running with a forefoot strike, barefoot running with a heel strike, shod running with a forefoot strike, and shod running with a heel strike. Kinetic and kinematic data and electromyography signals were recorded during the experiments. The results showed that the lower extremity can gain more compliance when running with a forefoot strike. Habitually shod runners can gain more shock absorption by changing the striking pattern to a forefoot strike when running with shoes and barefoot conditions. Habitually shod runners may be subject to injuries more easily when they run barefoot while maintaining their heel strike pattern. Higher muscle activity in the gastrocnemius was observed when running with a forefoot strike, which may imply a greater training load on the muscle and a tendency for injury.  相似文献   

2.
We have reported that peak hip extension is nearly identical in walking and running, suggesting that anatomical constraints, such as flexor muscle tightness may limit the range of hip extension. To obtain a more mechanistic insight into mobility at the hip and pelvis we examined the lengths of the muscle–tendons units crossing the hip joint. Data defining the three-dimensional kinematics of 26 healthy runners at self-selected walking and running speeds were obtained. These data were used to scale and drive musculoskeletal models using OpenSIM. Muscle–tendon unit (MTU) lengths were calculated for the trailing limb illiacus, rectus femoris, gluteus maximus, and biceps femoris long head and the advancing limb biceps femoris and gluteus maximus. The magnitude and timing of MTU length peaks were each compared between walking and running. The peak length of the right (trailing limb) illiacus MTU, a pure hip flexor, was nearly identical between walking and running, while the maximum length of the rectus femoris MTU, a hip flexor and knee extensor, increased during running. The maximum length of the left (leading limb) biceps femoris was also unchanged between walking and running. Further, the timing of peak illiacus MTU length and peak contralateral biceps femoris MTU length occurred essentially simultaneously during running, at a time during gait when the hamstrings are most vulnerable to stretch injury. This latter finding suggests exploring the role for hip flexor stretching in combination with hamstring stretching to treat and/or prevent running related hamstring injury.  相似文献   

3.
Hamstring injury is prevalent with persistently high reinjury rates. We aim to inform hamstring rehabilitation by exploring the electromyographic and kinematic characteristics of running in athletes with previous hamstring injury. Nine elite male Gaelic games athletes who had returned to sport after hamstring injury and eight closely matched controls sprinted while lower limb kinematics and muscle activity of the previously injured biceps femoris, bilateral gluteus maximus, lumbar erector spinae, rectus femoris, and external oblique were recorded. Intergroup comparisons of muscle activation ratios and kinematics were performed. Previously injured athletes demonstrated significantly reduced biceps femoris muscle activation ratios with respect to ipsilateral gluteus maximus (maximum difference ?12.5%, P = 0.03), ipsilateral erector spinae (maximum difference ?12.5%, P = 0.01), ipsilateral external oblique (maximum difference ?23%, P = 0.01), and contralateral rectus femoris (maximum difference ?22%, P = 0.02) in the late swing phase. We also detected sagittal asymmetry in hip flexion (maximum 8°, P = 0.01), pelvic tilt (maximum 4°, P = 0.02), and medial rotation of the knee (maximum 6°, P = 0.03) effectively putting the hamstrings in a lengthened position just before heel strike. Previous hamstring injury is associated with altered biceps femoris associated muscle activity and potentially injurious kinematics. These deficits should be considered and addressed during rehabilitation.  相似文献   

4.
ObjectiveTo determine if there is a relationship among isometric hip strength, hip kinematics, and peak gluteal muscle forces in cross-country runners during running.DesignCross Sectional.SettingUniversity Biomechanics Laboratory.ParticipantsForty-six NCAA Division III collegiate cross-country runners (18 males, 28 females).Main outcome measuresPearson correlation coefficients were used to describe relationships among isometric hip strength, hip kinematics, and peak gluteal muscle forces during the stance phase of running. Strength of correlations were interpreted as little to no relationship (r < 0.25), fair relationship (0.25 ≤ r < 0.5), moderate relationship (0.5 ≤ r < 0.75), and strong relationship (r ≥ 0.75). Correlations were considered significant if p < 0.05.ResultsLittle to no relationships were found among isometric hip strength and gluteal muscle forces during running (r < 0.25). A fair relationship was present between prone external rotation isometric hip strength and peak hip adduction (0.25 < r < 0.5). Little to no relationship was shown between gluteus medius force and hip internal rotation. Moderate relationships were present among peak gluteus medius and minimus muscle forces and peak hip adduction (0.5 < r < 0.75).ConclusionIsometric hip strength does not appear to be related to gluteal muscle forces and hip kinematics during the stance phase of running while gluteal muscle force was moderately related to hip adduction. Factors other than strength may be related to muscle force production and hip kinematics during running.  相似文献   

5.
BackgroundRunning induced-fatigue is an important factor in running related injuries. Runners with different strike types have different running mechanics and suffer from different injury patterns. Underlying mechanism of this difference is not well understood.Research questionThe aim of this study was to examine the effects of running-induced fatigue on plantar pressure distribution in runners with different strike types.Methods30 rearfoot (age = 21.56 ± 2.28 years; height = 1.67 ± 0.08 m; mass = 61.43 ± 11.57 kg; BMI = 21.77 ± 2.9 kg∙m−2) and 30 forefoot (age = 19.73 ± 1.68 years; height = 1.71 ± 0.08 m; mass = 65.7 ± 13.45; BMI = 22.53 ± 3.39 kg∙m−2) strike male and female recreational runners were recruited to this study. Participants ran in 3.3 m/s barefoot along the plantar pressure measuring device (Footscan®, Rsscan International) before and after running-induced fatigue. Fatigue protocol was performed on a treadmill. Peak plantar pressure and peak plantar force (% body weight), contact time and medio-lateral force ratio were calculated while running. Repeated measures ANOVA test was used to investigate the effect of running-induced fatigue on plantar pressure variables (p ≤ 0.05).ResultsAfter running-induced fatigue, in the rearfoot strike group, increases in loading of medial and lateral portions of the heel, first metatarsal and big toe was observed, and in lesser toes and in the forefoot push off phase, the medio-lateral force ratio decreased. While, in the forefoot strike group first to third metatarsals loading increased and fifth metatarsal loading decreased after fatigue, and medio-lateral force ratio in the foot flat and forefoot push off phase increased. In both groups contact time increased after fatigue.SignificanceOur data indicate that running-induced fatigue has different effects on plantar pressure distribution pattern in runners with different strike type. These different effects reflect different adaptation strategies in runners with different strike types, and could explain existence of different injury patterns in runners with different strike types.  相似文献   

6.
BackgroundAtypical frontal plane hip kinematics are associated with iliotibial band syndrome in women runners. Gluteus medius is the primary muscle controlling the hip adduction angle during the loading response of stance. It is unclear if differences exist in gluteus medius activity magnitude and activity duration between runners with previous iliotibial band syndrome and controls. Furthermore, hip neuromechanics may change after a prolonged run.Research QuestionDo differences exist in the hip adduction angle and gluteus medius activity between women with previous iliotibial band syndrome and controls at the beginning and end of a 30-minute moderate paced treadmill run?MethodsThirty women participated (n = 15 controls). Lower extremity kinematics and gluteus medius activity were recorded at the start and end of a 30-minute treadmill run at participants’ self-selected pace. Hip kinematics and gluteus medius activity were analyzed via separate two-way (group x time) mixed-model analysis of variance with time as the repeated measure.ResultsHip neuromechanics were similar at the start and end of a 30-minute treadmill run in women with previous iliotibial band syndrome and controls. However, hip adduction excursion was less in women with previous iliotibial band syndrome compared to controls. Average gluteus medius activity magnitude and activity duration were not significantly different between groups.SignificanceThese findings support the growing body of literature that smaller hip adduction motion is related to previous iliotibial band syndrome in women. Regardless of injury history, gluteus medius activity was similar between groups during the loading phase of stance.  相似文献   

7.
BackgroundRunners with a rearfoot strike pattern typically show high vertical ground reaction force loading rates (LRs), that are associated with injuries, compared with forefoot strikers. However, some runners with a rearfoot strike pattern run in a way that reduces LRs. Our purpose was to identify differences in running mechanics between rearfoot strike runners with high and low vertical LRs.Methods42 healthy runners, 21 with high (≥ 80.5 BW/s) and 21 with low (≤ 46.3 BW/s) LRs, were included in the current study. Lower extremity kinematic and kinetic data were then collected while participants ran along a 30 m runway. Running mechanics were calculated, including sagittal plane knee stiffness during early stance, the components of knee stiffness (Δ knee flexion and flexion moment), sagittal joint angles at initial contact, as well as cadence. The two LR groups were compared for differences in outcome variables using independent t-tests or Mann Whitney U tests.FindingsKnee stiffness was significantly lower in the low LR group (p < 0.01, d = 0.87), due to higher knee flexion excursion (p < 0.01, d = 1.38). At initial contact, the low LR group showed lower hip and knee flexion, but greater ankle and foot dorsiflexion (p = 0.01–0.04, d = 0.64–0.93). No differences were found in cadence.InterpretationThese results provide potential targets, related to gait kinematics and kinetics, for gait retraining aimed at reducing LRs in rearfoot strike runners.  相似文献   

8.
Barefoot running: biomechanics and implications for running injuries   总被引:2,自引:0,他引:2  
Despite the technological developments in modern running footwear, up to 79% of runners today get injured in a given year. As we evolved barefoot, examining this mode of running is insightful. Barefoot running encourages a forefoot strike pattern that is associated with a reduction in impact loading and stride length. Studies have shown a reduction in injuries to shod forefoot strikers as compared with rearfoot strikers. In addition to a forefoot strike pattern, barefoot running also affords the runner increased sensory feedback from the foot-ground contact, as well as increased energy storage in the arch. Minimal footwear is being used to mimic barefoot running, but it is not clear whether it truly does. The purpose of this article is to review current and past research on shod and barefoot/minimal footwear running and their implications for running injuries. Clearly more research is needed, and areas for future study are suggested.  相似文献   

9.
10.
Foot strike pattern and movement variability have each been associated with running injuries. Foot contact angle (FCA) is a common measure of strike pattern. Thus, variability in FCA could be an important running injury risk factor. The purposes of this study were to compare (a) foot contact angle (FCA) and its variability between runners with and without injury history and, (b) FCA variability between habitual rearfoot strike (RFS) and non-RFS runners during a prolonged run. Twenty-three runners with and 21 without injury history participated. Motion capture was used to collect kinematic data during a 40 min treadmill run. Average FCA and its variability were compared between injury groups and among four time points. FCA and its variability were not different between runners with and without injury history or among time points during the run. FCA variability was lower in non-RFS compared to RFS runners (P < 0.001). Lower FCA variability in non-RFS runners may have implications for higher injury risks due to repeated localized tissue loading. Prospective analyses on the effects of lower FCA variability on injury risk are needed.  相似文献   

11.

Introduction

Habitually shod rear-foot strike (RFS) runners demonstrate changes in spatiotemporal variables when running barefoot; however, it is unknown whether these changes are a function of running barefoot and/or adopting different foot-strike patterns. Therefore, the purpose of this study was to examine changes in spatiotemporal variables when habitually shod RFS runners transition to barefoot running.

Methods

Inverse dynamic methodology was used to examine 22 habitually shod RFS runners who performed overground running, shod and barefoot. Runners were grouped according to their novice barefoot foot-strike pattern: RFS, mid-foot strike (MFS) and forefoot strike (FFS). Runners were also grouped to examine differences between shod and barefoot running.

Results

Of the 22 RFS shod runners, 5 adopted a FFS, 9 adopted a MFS, and 8 maintained a RFS during novice barefoot running. We report a significant main effect of running barefoot for spatiotemporal variables, but not for foot-strike pattern. Relative to when shod, all groups of runners took shorter strides and steps. RFS and MFS runners also exhibited higher step frequency and exhibited shorter step and cycle times, while RFS and FFS runners both exhibited shorter stance times. These findings indicate that barefoot running has a significant influence on spatiotemporal measures, regardless of utilized foot-strike pattern.
  相似文献   

12.
BackgroundAnterior cruciate ligament reconstruction provides successful clinical outcomes. However, reconstruction cannot restore normative lower limb mechanics during running. While numerous studies have investigated running characteristics in individuals with anterior cruciate ligament reconstruction, no study has been compared foot strike patterns among them.Research questionIf ground reaction forces and lower extremity muscle activities in individuals with anterior cruciate ligament reconstruction and healthy control ones differ during three running strike patterns?MethodsIn this cross-sectional study, fourteen healthy adult males and fourteen adult males with anterior cruciate ligament reconstruction were recruited to participate. Surface electromyography of selected lower limb muscles and ground reaction forces were measured during three-strike patterns: rearfoot strike pattern, midfoot strike pattern, and forefoot strike pattern during barefoot running (∼ 3.3 m/s).ResultsThe results revealed that the strike patterns influenced the peak lateral ground reaction force (P < 0.001) and peak vertical impact ground reaction force (P = 0.002) during the stance phase of running for both groups. The strike pattern also influenced the tibialis anterior (P < 0.001) and vastus lateralis (P = 0.035) activities during the early stance phase for both groups. However, the vastus medialis (P = 0.030) presented reduced activity, and the biceps femoris (P = 0.039) presented increased activity in the anterior cruciate ligament reconstruction group. Tibialis anterior (P = 0.021), gastrocnemius medialis (P < 0.001) and vastus medialis (P < 0.001) presented lesser activity irrespective of strike patterns in the anterior cruciate ligament reconstruction group.SignificanceRunning with a forefoot strike pattern may be associated with lesser rearfoot eversion due to lower peak lateral ground reaction forces than running with a rearfoot strike pattern or midfoot strike pattern. Moreover, the altered muscle activities could contribute to the elevated risk of future joint injury in the anterior cruciate ligament reconstruction population.  相似文献   

13.
PURPOSE: Running over obstacles of sufficient height requires heel strike (HS) runners to make a transition in landing strategy to a forefoot (FF) strike, resulting in similar ground reaction force patterns to those observed while landing from a jump. Identification of the biomechanical variables that distinguish between the landing strategies may offer some insight into the reasons that the transition occurs. The purpose of this study was to investigate the difference in foot strike patterns and kinetic parameters of heel strike runners between level running and running over obstacles of various heights. METHODS: Ten heel strike subjects ran at their self-selected pace under seven different conditions: unperturbed running (no obstacle) and over obstacles of six different heights (10%, 12.5%, 15%, 17.5%, 20%, and 22.5% of their standing height). The obstacle was placed directly before a Kistler force platform. Repeated measures ANOVAs were performed on the subject means of selected kinetic parameters. RESULTS: The statistical analysis revealed significant differences (P < 0.004) for all of the parameters analyzed. The evaluation of the center of pressure and the ground reaction forces indicated that the foot strike patterns were affected by the increased obstacle height. Between the 12.5% and 15% obstacle conditions, the group response changed from a heel strike to a forefoot strike pattern. CONCLUSIONS: At height > 15%, the pattern was more closely related to the foot strike patterns found in jumping activities. This strategy change may represent a gait transition effected as a mechanism to protect against increased impact forces. Greater involvement of the ankle and the calf muscles could have assisted in attenuating the increased impact forces while maintaining speed after clearing the obstacle.  相似文献   

14.
BackgroundStudies have found no or minimal differences in running kinematics between flexible and inflexible adult runners. The interaction between hamstring flexibility and running kinematics has not been reported in adolescent long-distance runners.Research questionDoes hamstring flexibility influence running kinematics in adolescent long-distance runners?MethodsAdolescent long-distance runners (n = 140, ages 9–19) were enrolled in our cross-sectional study. Hamstring flexibility was assessed with the forward bending Beighton task. Runners were categorized if they tested positive or negative on the forward bending task. Participants ran at a comfortable self-selected speed on a treadmill. Runners who tested positive on the forward bending task (n = 17) were matched with runners who tested negative on the task (n = 17) according to sex, physical maturation, and running speed. Statistical parametric mapping compared trunk, pelvis, hip, and knee kinematic waveforms throughout the gait cycle and independent sample t tests compared temporal-spatial parameters between the groups.ResultsRunners who tested positive on the forward bending task demonstrated significantly greater anterior pelvic tilt during stance (average difference = 4.8° ± 0.4°, p < .001) and swing (average difference = 4.3° ± 0.2°, p < .01) compared to runners who tested negative on the forward bending task. No significant differences were found between groups for the remaining kinematic waveforms or for any temporal-spatial parameters (p > .05).SignificanceThis is the first study to report the interaction between hamstring flexibility and running kinematics in adolescent long-distance runners. The greater anterior pelvic tilt demonstrated by runners with greater hamstring flexibility may place more eccentric demands on the hamstring musculature. However, as there were no other differences in joint kinematics or temporal-spatial parameters between groups, greater hamstring flexibility does not appear to have a significant interaction with running kinematics when running at sub-maximal speeds. Our results suggest hamstring flexibility does not predispose adolescent long-distance runners to sub-optimal segment positions associated with running-related injuries.  相似文献   

15.
BackgroundWhile there is substantial information available regarding expected biomechanical adaptations associated with adult running-related injuries, less is known about adolescent gait profiles that may influence injury development.Research questionsWhich biomechanical profiles are associated with prevalent musculoskeletal lower extremity injuries among adolescent runners, and how do these profiles compare across injury types and body regions?MethodsWe conducted a cross-sectional study of 149 injured adolescents (110 F; 39 M) seen at a hospital-affiliated injured runner’s clinic between the years 2016–2021. Biomechanical data were obtained from 2-dimensional video analyses and an instrumented treadmill system. Multivariate analyses of variance covarying for gender and body mass index were used to compare continuous biomechanical measures, and Chi-square analyses were used to compare categorical biomechanical variables across injury types and body regions. Spearman’s rho correlation analyses were conducted to assess the relationship of significant outcomes.ResultsPatients with bony injuries had significantly higher maximum vertical ground reaction forces (bony: 1.87 body weight [BW] vs. soft tissue: 1.79BW, p = 0.05), and a higher proportion of runners with contralateral pelvic drop at midstance (χ2 =5.3, p = 0.02). Maximum vertical ground reaction forces and pelvic drop were significantly yet weakly correlated (ρ = 0.20, p = 0.01). Foot strike patterns differed across injured body regions, with a higher proportion of hip and knee injury patients presenting with forefoot strike patterns (χ2 =22.0, p = 0.01).SignificanceThese biomechanical factors may represent risk factors for injuries sustained by young runners. Clinicians may consider assessing these gait adaptations when treating injured adolescent patients.  相似文献   

16.
BackgroundThe use of insoles, which is increasingly widespread, can promote changes in biomechanics during running.Research questionCan the use of insoles with various patterns of infracapital support influence factors related to the dynamic stability of the lower limbs during running on a treadmill in recreational runners?MethodsThis is controlled single-blind repeated measures. Static baropodometric data were collected, as well as kinematic data for the lower limbs and electromyographic data for the gluteus maximus and gluteus medius muscles, for twelve recreational runners on a treadmill using four models of insoles (neutral and with forefoot elements - infracapital bar).ResultsNeutral insoles were able to reduce laterolateral displacement, increase the displacement of the mass to the posterior, and increase the lateral rotation of the left knee and medial rotation of the right hip. Insoles with a 2 mm total infracapital bar were able to move the mass to the posterior, increase laterolateral displacement and activate the gluteus medius. Insoles with a 2 mm medial infracapital bar were able to increase the displacement of the mass to the posterior, increase the adduction of left hip and the medial rotation of right hip, and activate the gluteus medius. Insoles with a 4 mm medial infracapital element were able to move the body mass to the posterior and to the left, increase laterolateral displacement, increase the adduction of left hip, the medial rotation of right hip and the abduction of right knee.SignificanceThe insoles evaluated in the present study were able to modify biomechanical variables of recreational runners related to dynamic stability during running on a treadmill and static baropodometric variables.  相似文献   

17.
BackgroundBarefoot running has gained popularity among physical activity practitioners, but there is a lack of information regarding the acute adaptations to this running technique without supervision. Information about acute adaptations can help to define the best way to insert barefoot running in the routine of runners willing to, and also provide orientation for those people who want to experience this technique.Research questionWhat acute adaptations can be observed among recreational runners exposed to barefoot running?MethodsSagittal 2D kinematics, plantar pressure, foot sensitivity and delayed onset muscle soreness were compared between conditions of shod and barefoot running in 13 recreational runners who performed two trials of 5 km treadmill running.ResultsWe found an acute effect of barefoot running on foot landing that changes from a rearfoot strike to a forefoot strike pattern. This change most likely contributed to the increase in neuromuscular recruitment of calf muscles (i.e. gastrocnemius and soleus) resulting in higher perception of delayed onset muscle soreness. Barefoot running also elicited higher stride cadence. Plantar pressure before and after running revealed higher pressure in the different foot regions after barefoot running. Foot sensitivity increased after running regardless of the footwear condition.ConclusionBarefoot running has acute effects on running technique including higher perception of delayed onset muscle soreness in the 48 h following the exercise.SignificanceOur results highlight the importance of following participants for days after a first session of barefoot running in order to properly manage the acute adaptation periods as well provide precise advices for those trying the barefoot technique.  相似文献   

18.
PURPOSE: This research examined how ground reaction forces (GRF) changed with fatigue induced by an exhaustive treadmill run in female runners. A separate retrospective and prospective analysis correlated initial magnitude of GRF and fatigue-induced changes in GRF with lower-extremity injury. METHODS: Ninety adult female runners had vertical GRF measured before and after an exhaustive treadmill run. Subjects initially were questioned about previous running injuries, and were contacted during the following year and asked to report any additional running injuries. RESULTS: Fatigue induced by the exhaustive treadmill run resulted in decreased impact peak and loading rates in all runners by an average of 6 and 11%, respectively. The changes in GRF were attributed to altered running cadence, step length, and lower-extremity joint kinematics. It is unclear whether these changes were attempts by the runners to minimize impact forces and protect against injury, or represented a fatigue-induced loss of optimal performance capabilities. An interaction between injury in the previous year and change in impact loading rate with fatigue was observed, suggesting previously injured runners are exposed to relatively higher impact forces over time. CONCLUSION: Habitual female runners appear to adapt their running style with fatigue, resulting in altered GRF. Changes in GRF with fatigue may be associated with lower-extremity running injuries.  相似文献   

19.
BackgroundNovice runners with pronated feet are at an increased risk of running-related injuries. However, not all runners with pronated feet have increased foot pronation during running. Moreover, although foot muscle morphology is related to static foot alignment, the relationship between foot muscle morphology and foot kinematics during running remains unclear. We aimed to determine foot kinematic patterns during running among novice runners with pronated feet and the presence of a relationship between these foot kinematic patterns and foot muscle morphology.MethodsTwenty-one novice runners with pronated feet participated in this study, and data on 39 lower limbs were collected. Data on foot kinematics during running (rearfoot strike) were collected using a three-dimensional motion capture system in terms of navicular height (NH) at initial contact and dynamic navicular drop (DND). A hierarchical cluster analysis method was used to identify the optimal number of clusters based on these two foot-related kinematic variables. Following identification of the clusters, differences in cluster variables and cross-sectional areas of selected foot muscles assessed using ultrasonography in each cluster were examined. The muscles of interest included the abductor hallucis, flexor hallucis brevis and longus, flexor digitorum brevis and longus, and peroneus longus.ResultsThree subgroups were identified based on foot kinematics during running: cluster 1, lowest NH at initial contact and larger DND; cluster 2, moderate NH at initial contact and smaller DND; and cluster 3, highest NH at initial contact and larger DND. Clusters 1 and 3 had a larger abductor hallucis compared with cluster 2, and cluster 3 had a larger flexor hallucis brevis compared with cluster 2.SignificanceThese subgroups may differ in terms of resistance to and type of running-related injury. Moreover, foot kinematics during running is possibly impacted by the morphology and function of medial intrinsic foot muscles.  相似文献   

20.
Elevated patellofemoral joint kinetics during running may contribute to patellofemoral joint symptoms. The purpose of this study was to test for independent effects of foot strike pattern and step length on patellofemoral joint kinetics while running. Effects were tested relative to individual steps and also taking into account the number of steps required to run a kilometer with each step length. Patellofemoral joint reaction force and stress were estimated in 20 participants running at their preferred speed. Participants ran using a forefoot strike and rearfoot strike pattern during three different step length conditions: preferred step length, long (+10%) step length, and short (?10%) step length. Patellofemoral kinetics was estimated using a biomechanical model of the patellofemoral joint that accounted for cocontraction of the knee flexors and extensors. We observed independent effects of foot strike pattern and step length. Patellofemoral joint kinetics per step was 10–13% less during forefoot strike conditions and 15–20% less with a shortened step length. Patellofemoral joint kinetics per kilometer decreased 12–13% using a forefoot strike pattern and 9–12% with a shortened step length. To the extent that patellofemoral joint kinetics contribute to symptoms among runners, these running modifications may be advisable for runners with patellofemoral pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号