首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stimulator of Interferon Genes (STING) is a crucial protein that controls the immune system's reaction to bacterial and viral infections. As a pattern-recognition receptor, STING is found in immune cells as well as in neurons and glia in the enteric nervous system (ENS). Recent studies have linked STING to the pathogenesis of several neurological disorders like multiple sclerosis (MS), Alzheimer's disease (AD), and gastrointestinal disorders, including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), which are characterized by chronic inflammation and dysregulation of the enteric nervous system (ENS) in the digestive tract. STING plays a crucial role in the pathway that induces the production of interferon in response to viral infection in the central nervous system (CNS). A new study by Dharshika et al. in the current issue of Neurogastroenterology and Motility has demonstrated distinct roles for STING in enteric neurons and glia, namely activation of STING leads to IFN-β production in enteric neurons but not in glia and reducing STING activation in enteric glia does not modulate the severity of Dextran sulfate sodium (DSS) colitis or subsequent loss of enteric neurons. Rather, the role of STING in enteric glia is related to enhancing autophagy. STING can influence gastrointestinal motility and barrier function and therefore be involved in the pathophysiology of IBS and IBD. This mini review highlights the current knowledge of STING in the pathophysiology of CNS and gastrointestinal diseases as well as these newly uncovered roles STING in enteric neurons and glia.  相似文献   

2.
Vassilis Pachnis 《Glia》2015,63(2):229-241
Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca2+ imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co‐express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease. GLIA 2015;63:229–241  相似文献   

3.
Neuronal plasticity plays an important role in physiological and pathological processes within the gastrointestinal (GI) tract. Nogo A is a major contributor to the negative effect central nervous system (CNS) myelin has on neurite outgrowth after injury and may also play a role in maintaining synaptic connections in the healthy CNS. Nogo A is highly expressed during neuronal development but in the CNS declines postnatally concomitantly with a loss of regenerative potential while ganglia of the Peripheral Nervous System (PNS) retain Nogo A. The enteric nervous system shares a number of features in common with the CNS, thus the peripheral distribution of factors affecting plasticity is of interest. We have investigated the distribution of Nogo in the adult mammalian gastrointestinal tract. Nogo A mRNA and protein are detectable in the adult rat GI tract. Nogo A is expressed heterogeneously in enteric neurons throughout the GI tract though expression levels appear not to be correlated with neuronal sub-type. The pattern of expression is maintained in cultured myenteric plexus from the guinea-pig small intestine. As is seen in developing neurons of the CNS, enteric Nogo A is present in both neuronal cell bodies and axons. Our results point to a hitherto unsuspected role for Nogo A in enteric neuronal physiology.  相似文献   

4.
Background The intimate association between glial cells and neurons within the enteric nervous system has confounded careful examination of the direct responsiveness of enteric glia to different neuroligands. Therefore, we aimed to investigate whether neurotransmitters known to elicit fast excitatory potentials in enteric nerves also activate enteric glia directly. Methods We studied the effect of acetylcholine (ACh), serotonin (5‐HT), and adenosine triphosphate (ATP) on intracellular Ca2+ signaling using aequorin‐expressing and Fluo‐4 AM‐loaded CRL‐2690 rat and human enteric glial cell cultures devoid of neurons. The influence of these neurotransmitters on the proliferation of glia was measured and their effect on the expression of c‐Fos as well as glial fibrillary acidic protein (GFAP), Sox10, and S100 was examined by immunohistochemistry and quantitative RT‐PCR. Key Results Apart from ATP, also ACh and 5‐HT induced a dose‐dependent increase in intracellular Ca2+ concentration in CRL‐2690 cells. Similarly, these neurotransmitters also evoked Ca2+ transients in human primary enteric glial cells obtained from mucosal biopsies. In contrast with ATP, stimulation with ACh and 5‐HT induced early gene expression in CRL‐2690 cells. The proliferation of enteric glia and their expression of GFAP, Sox10, and S100 were not affected following stimulation with these neurotransmitters. Conclusions & Inferences We provide evidence that enteric glial cells respond to fast excitatory neurotransmitters by changes in intracellular Ca2+. On the basis of our experimental in vitro setting, we show that enteric glia are not only directly responsive to purinergic but also to serotonergic and cholinergic signaling mechanisms.  相似文献   

5.
6.
Background The enteric nervous system (ENS) contains chemically coded populations of neurons that serve specific functions for the control of the gastrointestinal tract. The ability of neurons to modify their chemical code in response to luminal changes has recently been discovered. It is possible that enteric neuronal plasticity may sustain the adaptability of the gut to changes in intestinal activity or injury, and that gut neurons may respond to an altered intestinal environment by changing their neuropeptide expression. Methods We used immunohistochemical methods to investigate the presence and localization of several neuronal populations and enteric glia in both the small (ileum) and large (cecum) intestine of piglets. We assessed their abundance in submucosal and myenteric plexus from animals treated with the probiotic Pediococcus acidilactici compared with untreated controls. Key Results The treated piglets had a larger number of galanin‐ and calcitonin gene‐related peptide (CGRP)‐immunoreactive neurons than controls, but this was limited to the submucosal plexus ganglia of the ileum. Moreover, immunohistochemistry revealed that glial fibrillary acidic protein‐positive enteric glial cells were significantly higher in the inner and outer submucosal plexuses of treated animals. Conclusions & Inferences The neuronal and glial changes described here illustrate plasticity of the ENS in response to an altered luminal environment in the gastrointestinal tract.  相似文献   

7.
The circuitry of the enteric nervous system   总被引:2,自引:0,他引:2  
Abstract A brief account of the aquisition of knowledge of the enteric nervous system and the ways in which technological developments have contributed to analysis of the reflex circuits is presented. The review concentrates on the motility controlling circuits in the small intestine of the guinea-pig, where much more is known than for any other region or species. In this region, the basic circuit is known. Primary sensory neurons connect monosynaptically to motor neurons, and also make connections via chains of interneurons, which in turn provide outputs to the motor neurons. The ascending excitatory and descending inhibitory reflexes are manifested through these circuits. Sufficient details of the functions and connections of all neuron classes are available to permit activity in the reflex pathways to be realistically simulated in a computer model, which is briefly described.  相似文献   

8.
Ligand-gated ion channels in the enteric nervous system   总被引:6,自引:0,他引:6  
There are many cell surface receptors expressed by neurones in the enteric nervous system (ENS). These receptors respond to synaptically released neurotransmitters, circulating hormones and locally released substances. Cell surface receptors are also targets for many therapeutically used drugs. This review will focus on ligand-gated ion channels, i.e. receptors in which the ligand binding site and the ion channel are parts of a single multimeric receptor. Ligand-gated ion channels expressed by enteric nerves are: nicotinic acetylcholine receptors (nAChRs), P2X receptors, 5-hydroxytryptamine3 (5-HT3) receptors, gamma-aminobutyric acid (GABAA) receptors, N-methyl-d-aspartate (NMDA) receptors,alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and glycine receptors. P2X, 5-HT3 and nAChRs participate in fast synaptic transmission in S-type neurones in the ENS. Fast synaptic transmission occurs in some AH-type neurones, and AH neurones express all the ligand-gated ion channels listed above. Ligand-gated ion channels may be localized at extra-synaptic sites in some AH neurones and these extra-synaptic receptors may be useful targets for drugs that can be used to treat disorders of gastrointestinal function.  相似文献   

9.
The neurons and glia that comprise the enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, are derived from vagal and sacral regions of the neural crest. In order to form the ENS, neural crest-derived precursors undergo a number of processes including survival, migration and proliferation, prior to differentiation into neuronal subtypes, some of which form functional connections with the gut smooth muscle. Investigation of the developmental processes that underlie ENS formation has progressed dramatically in recent years, in no small part due to the attention of scientists from a range of disciplines on the genesis of Hirschsprung's disease (aganglionic megacolon), the major congenital abnormality of the ENS. This review summarizes recent advances in the field of early ENS ontogeny and focuses on: (i) the spatiotemporal migratory pathways followed by vagal and sacral neural crest-derived ENS precursors, including recent in vivo imaging of migrating crest cells within the gut, (ii) the roles of the RET and EDNRB signalling pathways and how these pathways interact to control ENS development, and (iii) how perpendicular migrations of neural crest cells within the gut lead to the formation of the myenteric and submucosal plexi located between the smooth muscle layers of the gut wall.  相似文献   

10.
The human enteric nervous system   总被引:4,自引:0,他引:4  
  相似文献   

11.
The P2X(7) purinergic receptor subtype has been cloned and emphasized as a prototypic P2Z receptor involved in neurotransmission in the central nervous system and ATP-mediated lysis of macrophages in the immune system. Less is known about the neurobiology of P2X(7) receptors in the enteric nervous system (ENS). We studied the distribution of the receptor with indirect immunofluorescence and used selective agonists and antagonists to analyze pharmacologic aspects of its electrophysiologic behavior as determined with intracellular "sharp" microelectrodes and patch-clamp recording methods in neurons identified morphologically by biocytin injection in the ENS. Application of ATP or 2'- (or-3'-) O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzBzATP) activated an inward current in myenteric neurons. Brilliant blue G, a selective P2X(7) antagonist, suppressed the responses to both agonists. Potency of the antagonist was greatest (smaller IC(50)) for the current evoked by BzBzATP. The P2X(7) antagonists 1-[N,O-bis (1,5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-piperazine (KN-62) and oxidized ATP also suppressed the BzBzATP-activated current. Micropressure application of BzBzATP evoked rapidly activating depolarizing responses in intracellular studies with "sharp" microelectrodes. Oxidized-ATP suppressed these responses in both myenteric and submucosal neurons. Rapidly activating depolarizing responses evoked by application of nicotinic, serotonergic 5-HT(3), or gamma-aminobutyric acid A (GABA(A)) receptor agonists were unaffected by brilliant blue G. Immunoreactivity for the P2X(7) receptor was widely distributed surrounding ganglion cell bodies and associated with nerve fibers in both myenteric and submucous plexuses. P2X(7) immunoreactivity was colocalized with synapsin and synaptophysin and surrounded ganglion cells that contained either calbindin, calretinin, neuropeptide Y, substance P, or nitric oxide synthase. The mucosa, submucosal blood vessels, and the circular muscle coat also showed P2X(7) receptor immunoreactivity.  相似文献   

12.
Diabetes and the enteric nervous system   总被引:1,自引:0,他引:1  
Diabetes is associated with several changes in gastrointestinal (GI) motility and associated symptoms such as nausea, bloating, abdominal pain, diarrhoea and constipation. The pathogenesis of altered GI functions in diabetes is multifactorial and the role of the enteric nervous system (ENS) in this respect has gained significant importance. In this review, we summarize the research carried out on diabetes-related changes in the ENS. Changes in the inhibitory and excitatory enteric neurons are described highlighting the role of loss of inhibitory neurons in early diabetic enteric neuropathy. The functional consequences of these neuronal changes result in altered gastric emptying, diarrhoea or constipation. Diabetes can also affect GI motility through changes in intestinal smooth muscle or alterations in extrinsic neuronal control. Hyperglycaemia and oxidative stress play an important role in the pathophysiology of these ENS changes. Antioxidants to prevent or treat diabetic GI motility problems have therapeutic potential. Recent research on the nerve-immune interactions demonstrates inflammation-associated neurodegeneration which can lead to motility related problems in diabetes.  相似文献   

13.
Abstract  The enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract that controls essential functions such as motility, secretion and blood flow, comprises a vast number of neurons and glial cells that are organized into complex networks of interconnected ganglia distributed throughout the entire length of the gut wall. Enteric neurons and glia are derived from neural crest cells that undergo extensive migration, proliferation, differentiation and survival in order to form a functional ENS. Investigations of the developmental processes that underlie ENS formation in animal models, and of the common human congenital ENS abnormality Hirschsprung's disease, have been intimately related and recently led to major advances in the field. This review touches on some of these advances and introduces two topics that are elaborated upon in this journal issue: (i) genome wide approaches for profiling gene expression in wild type and mutant ENS that have been used to identify novel molecules with important roles in enteric neurogenesis, and (ii) the use of multilineage ENS progenitors isolated from embryonic or postnatal gut as novel cell replacement therapies for Hirschsprung's disease. Such studies will not only unravel the mechanisms underlying ENS development, but will also shed light on the pathogenesis of ENS developmental disorders and help to establish novel therapeutic strategies for restoring or repairing malfunctioning enteric neural circuits prevalent in numerous gastrointestinal diseases.  相似文献   

14.
Made up of millions of enteric neurons and glial cells, the enteric nervous system (ENS) is in a key position to modulate the secretomotor function and visceral pain of the gastrointestinal tract. The early life developmental period, through which most of the ENS development occurs, is highly susceptible to microenvironmental perturbation. Over the past decade, accumulating evidence has shown the impact of stress and early life adversity (ELA) on host gastrointestinal pathophysiology. While most of the focus has been on alterations in brain structure and function, limited experimental work in rodents suggest that the enteric nervous system can also be directly affected, as shown by changes in the number, phenotype, and reactivity of enteric nerves. The work of Medland et al. in the current issue of this journal demonstrates that such alterations also occur in pigs, a larger mammalian species with high translational value to human. This work also highlights a sex‐differential susceptibility of the ENS to the effect of ELA, which could contribute to the higher prevalence of GI disorders in women. In this mini‐review, we will discuss the development and composition of the ENS and related gastrointestinal sensory motor and secretory functions. We will then focus on the influence of stress on the enteric nervous system, with a particular emphasis on neurodevelopmental changes. Finally, we will discuss the influence of sex on those parameters.  相似文献   

15.
Actions of the 5-HT(4) serotonergic receptor partial agonist, tegaserod, were investigated on mucosal secretion in the guinea-pig and human small intestine and on electrophysiological behaviour of secretomotor neurons in the guinea-pig small intestinal submucosal plexus. Expression of 5-HT(4) receptor protein and immunohistochemical localization of the 5-HT(4) receptor in the submucosal plexus in relation to expression and localization of choline acetyltransferase and the vesicular acetylcholine (ACh) transporter were determined for the enteric nervous system of human and guinea-pig small intestine. Immunoreactivity for the 5-HT(4) receptor was expressed as ring-like fluorescence surrounding the perimeter of the neuronal cell bodies and co-localized with the vesicular ACh transporter. Exposure of mucosal/submucosal preparations to tegaserod in Ussing chambers evoked increases in mucosal secretion reflected by stimulation of short-circuit current. Stimulation of secretion had a relative high EC(50) of 28.1 +/- 1.3 mumol L(-1), was resistant to neural blockade and appeared to be a direct action on the secretory epithelium. Tegaserod acted at presynaptic 5-HT(4) receptors to facilitate the release of ACh at nicotinic synapses on secretomotor neurons in the submucosal plexus. The 5-HT(2B) receptor subtype was not involved in actions at nicotinic synapses or stimulation of secretion.  相似文献   

16.
Neuroimmune interactions are an integral part of gut physiology and involved in the pathogenesis of inflammatory and functional bowel disorders. Mast cells and their mediators are important conveyors in the communication from the innate enteric immune system to the enteric nervous system (ENS). However, it is not known whether a mediator cocktail released from activated human mast cells affects neural activity in the ENS. We used the Multi-Site Optical Recording Technique to image single cell activity in guinea-pig and human ENS after application of a mast cell mediator cocktail (MCMC) that was released from isolated human intestinal mucosa mast cells stimulated by IgE-receptor cross-linking. Local application of MCMC onto individual ganglia evoked an excitatory response consisting of action potential discharge. This excitatory response occurred in 31%, 38% or 11% neurons of guinea-pig submucous plexus, human submucous plexus, or guinea-pig myenteric plexus, respectively. Compound action potentials from nerve fibres or fast excitatory synaptic inputs were not affected by MCMC. This study demonstrates immunoneural signalling in the human gut and revealed for the first time that an MCMC released from stimulated human intestinal mast cells induces excitatory actions in the human and guinea-pig ENS.  相似文献   

17.
A multisite optical recording technique consisting of an array of 464 photodiodes was used to measure dynamic changes in transmembrane potentials (Vm) of guinea-pig and mouse enteric neurones stained with the voltage-sensitive dye Di-8-ANEPPS. Optical recordings of Vm changes in enteric neurones which were evoked by depolarizing current pulses or synaptic activation mirrored the Vm changes measured intracellularly in the same neurone. Action potentials had fractional change in fluorescence of -0.09 +/- 0.06% and their peak to peak noise level was 20 +/- 14% of the action potential amplitude. Optical recordings after electrical stimulation of interganglionic nerve strands revealed slow EPSPs, nicotinergic supra- and subthreshold fast EPSPs as well as propagation of action potentials along interganglionic strands. Local application of acetylcholine onto a single ganglion induced reproducibly and dose dependently action potential discharge demonstrating the feasibility of neuropharmacological studies. The optical mapping made it possible to record action potentials simultaneously in a large number of neurones with high spatiotemporal resolution that is unattainable by conventional techniques. This technique presents a powerful tool to study excitability spread within enteric circuits and to assess differential activation of enteric populations in response to a number of stimuli which modulate neuronal activity directly or through synaptic mechanisms.  相似文献   

18.
19.
t.  lebouvier      §    e.  coron        t.  chaumette      s.  paillusson      s. bruley  des varannes        m.  neunlist      & p.  derkinderen      § 《Neurogastroenterology and motility》2010,22(1):e11-e14
Abstract  Better characterization of enteric neuropathies during the course of gastrointestinal diseases could be of great diagnostic and/or therapeutic interest. However, studies using whole mounts of the enteric nervous system (ENS) are restricted to specific diseases requiring surgery and are also limited by the small number of specimens available. Therefore, we here describe a novel method to obtain whole mounts of submucosal plexus in routine colonic biopsies. We show that a single biopsy displays a substantial number of submucosal ganglia and neurons and that it can be reliably used to perform morphometric and neurochemical analysis and Western Blots quantification of neuronal or glial markers. This method of analysis of the human ENS will enable us to gain better insight into the characterization of enteric neuropathies in living patients.  相似文献   

20.
Abstract  The enteric nervous system (ENS) is vulnerable to a variety of genetic, metabolic or environmental threats, resulting in clinical disorders characterized by loss or malfunction of neuronal elements. These disorders have been difficult to treat and there is much enthusiasm for novel therapies such as neural stem cell (NSC) transplantation to restore ENS function in diseased segments of the gut. Recent research has indicated the potential for a variety of innovative approaches to this effect using NSC obtained from the central nervous system (CNS) as well as gut derived enteric neuronal progenitors. The main goal of this review is to summarize the current status of NSC research as it applies to the ENS, delineate a roadmap for effective therapeutic strategies using NSC transplantation and point out the numerous challenges that lie ahead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号