首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the differences in materials, racing flats have begun to be used not only for racing, but also for daily training. As there are data suggesting a gender difference in overuse injuries in runners, shoe choice may affect loading patterns during running. The purpose was to determine differences in plantar pressure between genders when running in training shoes and racing flats. In-shoe plantar pressure data were collected from 34 subjects (17m, 17f) who ran over-ground in both a racing flat and training shoe. Contact area (CA), maximum force (MF), and contact time under the entire foot and beneath eight foot regions were collected. Each variable was analyzed using a shoe by gender repeated measures ANOVA (α = 0.05). In men, MF was increased in the racing flats (p = 0.016) beneath the medial midfoot (MMF), yet was increased beneath the medial forefoot (MFF) in the training shoe (p = 0.018). Independent of gender, CA was decreased in the racing flats beneath the entire foot (p = 0.029), the MMF (p = 0.013), and the MFF (p = 0.030), and increased beneath the lateral forefoot (LFF) (p = 0.023). In the racing flats, MF was increased beneath the entire foot (p < 0.001) and the LFF (p < 0.001). Independent of the shoe, CA was decreased in men beneath the MFF (p = 0.007) and middle forefoot (p < 0.001), while MF was increased in the LFF (p = 0.002). The LFF is an area of increased stress fracture risk in men. Based on the gender differences in loading, running shoe design should be gender specific in an attempt to prevent injuries.  相似文献   

2.
Evidence suggests a link between the loading of the Achilles tendon and the magnitude of the ankle internal plantar flexion moment during late stance of gait, which is clinically relevant in the management of Achilles tendinopathy. Some studies showed that rocker shoes can reduce the ankle internal plantar flexion moment. However, the existing evidence is not conclusive and focused on walking and scarce in running. Sixteen healthy runners participated in this study. Lower extremity kinetics, kinematics and electromyographic (EMG) signals of triceps surae and tibialis anterior were quantified for two types of shoes during running and walking. The peak ankle plantar flexion moment was reduced significantly in late stance of running (0.27 Nm/kg; p < 0.001) and walking (0.24 Nm/kg; p < 0.001) with the rocker shoe compared to standard shoe. The ankle power generation and plantar flexion moment impulse were also reduced significantly when running and walking with the rocker shoe (p < 0.001). No significant changes in the knee and hip moments were found in running and walking. A significant delay of the EMG peak, approximately 2% (p < 0.001), was present in the triceps surae when walking with rocker shoes. There were no significant changes in the EMG peak amplitude of triceps surae in running and walking. The peak amplitude of tibialis anterior was significantly increased (64.7 μV, p < 0.001) when walking with rocker shoes. The findings show that rocker shoes reduce the ankle plantar flexion moment during the late stance phase of running and walking in healthy people.  相似文献   

3.
The type of surface used for running can influence the load that the locomotor apparatus will absorb and the load distribution could be related to the incidence of chronic injuries. As there is no consensus on how the locomotor apparatus adapts to loads originating from running surfaces with different compliance, the objective of this study was to investigate how loads are distributed over the plantar surface while running on natural grass and on a rigid surface—asphalt. Forty-four adult runners with 4 ± 3 years of running experience were evaluated while running at 12 km/h for 40 m wearing standardised running shoes and Pedar insoles (Novel). Peak pressure, contact time and contact area were measured in six regions: lateral, central and medial rearfoot, midfoot, lateral and medial forefoot. The surfaces and regions were compared by three ANOVAS (2 × 6). Asphalt and natural grass were statistically different in all variables. Higher peak pressures were observed on asphalt at the central (p < 0.001) [grass: 303.8(66.7) kPa; asphalt: 342.3(76.3) kPa] and lateral rearfoot (p < 0.001) [grass: 312.7(75.8) kPa; asphalt: 350.9(98.3) kPa] and lateral forefoot (p < 0.001) [grass: 221.5(42.9) kPa; asphalt: 245.3(55.5) kPa]. For natural grass, contact time and contact area were significantly greater at the central rearfoot (p < 0.001). These results suggest that natural grass may be a surface that provokes lighter loads on the rearfoot and forefoot in recreational runners.  相似文献   

4.
Customised foot orthoses (FOs) featuring extrinsic rearfoot posting are commonly prescribed for individuals with a symptomatic pronated foot type. By altering the angle of the posting it is purported that a controlled dose–response effect during the stance phase of gait can be achieved, however these biomechanical changes have yet to be characterised. Customised FOs were administered to participant groups with symptomatic pronated foot types and asymptomatic normal foot types. The electromyographic (EMG) and plantar pressure effects of varying the dose were measured. Dose was varied by changing the angle of posting from 6° lateral to 10° medial in 2° steps on customised devices produced using computer aided orthoses design software. No effects due to posting level were found for EMG variables. Significant group effects were seen with customised FOs reducing above knee muscle activity in pronated foot types compared to normal foot types (biceps femoris p = 0.022; vastus lateralis p < 0.001; vastus medialis p = 0.001). Interaction effects were seen for gastrocnemius medialis and soleus. Significant linear effects of posting level were seen for plantar pressure at the lateral rearfoot (p = 0.001), midfoot (p < 0.001) and lateral forefoot (p = 0.002). A group effect was also seen for plantar pressure at the medial heel (p = 0.009). This study provides evidence that a customised FOs can provide a dose response effect for selected plantar pressure variables, but no such effect could be identified for muscle activity. Foot type may play an important role in the effect of customised orthoses on activity of muscles above the knee.  相似文献   

5.
BackgroundHallux valgus is a common foot disorder often experienced with secondary callosities and metatarsalgia. Many factors including improper shoes might be responsible in the pathophysiology of the problem. Hallux valgus deformity has been shown to alter the biomechanics of the whole foot rather than affecting only the great toe. Due to changes in the biomechanical functioning of the first ray, other regions of the forefoot area have been shown to bear abnormal loads with increased vertical loading on medial, central and lateral forefoot regions. The purpose of this study was to investigate the pattern of forefoot plantar shear loading in hallux valgus patients and compare these results with those of control subjects.MethodsA total of 28 subjects were recruited for the study of which 14 were clinically diagnosed with hallux valgus. A custom built platform was used to collect peak pressure and shear data. A repeated measures analysis of variance was used to analyze the recorded data.FindingsAntero-posterior shear was significantly lower in the deformity group (p < 0.05). The lateral forefeet of the patients, however, experienced slightly higher shear loads (p > 0.05).InterpretationPropulsive shear force generation mechanism under the medial forefoot was impaired in the disorder group. In general, shear loading of the plantar feet shifted laterally. Previously hypothesized higher medio-lateral shear magnitudes under the hallux were not confirmed.  相似文献   

6.
A better understanding of gait dysfunction for children and youth with Charcot–Marie–Tooth (CMT) will assist in developing appropriate treatments and understanding prognosis for ambulation. The purpose of this retrospective study was to document the typical gait patterns in children and youth (12 ± 4 years) with CMT using motion analysis and relate these findings back to the clinical assessment at the ankle. All patients underwent a motion analysis as a component of treatment decision-making.Lower extremity kinematics and kinetics were evaluated in comparison to a typically developing age-matched reference control group collected in the same gait laboratory. Three patient subgroups were defined based on peak ankle dorsiflexion in terminal stance: greater than typical (n = 23), within typical range (n = 30) and less than typical (n = 13). The three subgroups showed statistically significant differences (p < 0.004) in degree of impairment for ankle plantar flexor and dorsiflexor weakness and ankle plantar flexor contracture. Patients with excessive dorsiflexion in terminal stance had the greatest ankle plantar flexor weakness (median 2) and the greatest dorsiflexor weakness (median 4). Patients with less than typical dorsiflexion in terminal stance were the only patients with a plantar flexor contracture (?2 ± 9°). Delayed peak dorsiflexion in stance was the most common kinematic finding and consistent with ankle plantar flexor weakness. All patients showed significantly less (p < 0.001) peak ankle moments and power generation in terminal stance than the typically developing controls. We concluded that children and youth with CMT present differently in terms of impairment and associated gait issues which therefore require patient specific treatment strategies.  相似文献   

7.
ObjectivesTo determine the effect of contouring of an in-shoe foot orthosis on plantar contact area and surface pressure, as well as perceived comfort and support at the foot-orthosis interface during stationary cycling.DesignA randomised, repeated measures control study.MethodsTwelve cyclists performed steady-state seated cycling at a cadence of 90 rpm using a contoured orthosis and a flat insert of similar hardness. Contact area (CA) and plantar mean pressure (PP) were measured using the PEDAR® system, determined for seven discrete plantar regions and represented as the percentage of the total CA and PP respectively (CA% and PP%). Perceived comfort and support were rated using a visual analogue scale (VAS).ResultsThe contoured orthosis produced a significantly greater CA% at the medial midfoot (p = 0.001) and lateral midfoot (p = 0.009) with a standardised mean difference (SMD) of 1.3 and 0.9 respectively. The contoured orthosis also produced a significantly greater PP% at the hallux (p = 0.003) compared to the flat insert with a SMD of 1.1. There was a small non-significant effect (SMD < 0.4) for the perceived comfort measures between conditions, but perceived support was significantly greater at the arch (p = 0.000) and heel (p = 0.013) with the contoured orthoses (SMD of 1.5 and 0.9, respectively).ConclusionsContoured orthoses influenced the plantar surface of the foot by increasing contact area as well as a perception of greater support at the midfoot while increasing relative pressure through the hallux when compared to a flat insert during stationary cycling. No difference in perceived comfort was noted.  相似文献   

8.
Health and safety regulations in many countries require workers at risk to wear safety shoes in a factory environment. These shoes are often heavy, rigid, and uncomfortable. Wearing safety shoes daily leads to foot problems, discomfort and fatigue, resulting also in the loss of numerous working days. Currently, knowledge of the biomechanical effects of insoles in safety shoes, during working activities, is very limited.Seventeen workers from a metalworking factory were selected and clinically examined for any foot conditions. Workers feet were 3D scanned, with regards to their plantar view, and the images used to design 34 custom-insoles, based on foot and safety shoe models.Three insoles were blind-tested by each worker: custom (CUS); prefabricated with the safety-shoe (PSS), and off-the-shelf (OTS). Foot-to-insole pressure distribution was measured in seven motor tasks replicating typical working activities: single and double-leg standing; weight lifting; stair ascending and descending; normal and fast walking.Wearing CUS within safety shoes resulted in a greater uniform pressure distribution across plantar regions for most of the working activities. Peak pressure at the forefoot during normal walking was the lowest in the custom insole (CUS 275.9 ± 55.3 kPa; OTS 332.7 ± 75.5 kPa; PSS 304.5 ± 54.2 kPa). Normal and fast walking were found to be the most demanding activities in terms of peak pressure.Wearing safety shoes results in high pedobarographic parameters in several foot regions. The use of custom insoles designed on the foot morphology helps decrease peak pressure and pressure-time integral compared to prefabricated featureless insoles.  相似文献   

9.
Although mild leg length discrepancy is related to lower limb injuries, there is no consensus regarding its effects on the biomechanics of the lower limbs during gait. Biomechanical data of 19 healthy participants were collected while they walked under different conditions as described: (1) control condition—wearing flat thick sandals; (2) short limb condition—wearing a flat thick sandal on the left and a flat thin sandal on the right foot; (3) long limb condition: wearing flat thin sandal on the left and flat thick sandal on the right foot. The thick and thin sandals had 1.45 cm of mean thickness difference. The right lower limb data were analyzed for all conditions. Ankle, knee, hip and pelvis kinematics and internal moments were measured with a motion capture system and six force platforms. Principal component analysis was used to compare differences between conditions. The scores of the principal components were compared between conditions using one-way repeated measures ANOVA. Twelve gait variables were different between conditions: rearfoot dorsiflexion and inversion (p < 0.001); ankle dorsiflexion and inversion moments (p < 0.001); knee flexion angle and moment (p < 0.001); knee adduction moment (p < 0.001); hip flexion angle and moment (p < 0.001); hip adduction angle (p = 0.001) and moment (p = 0.022); and pelvic ipsilateral drop (p < 0.001). Mild leg length discrepancy caused compensatory changes during gait, apparently to equalize the functional length of the lower limbs. However, these strategies did not fully succeed, since both short and long limb conditions affected pelvic motion in the frontal plane. These results suggest that mild leg length discrepancy should not be overlooked in clinical settings.  相似文献   

10.
ObjectivesImproving foot orthoses (FOs) in patients with rheumatoid arthritis (RA) by using in-shoe plantar pressure measurements seems promising. The objectives of this study were to evaluate (1) the outcome on plantar pressure distribution of FOs that were adapted using in-shoe plantar pressure measurements according to a protocol and (2) the protocol feasibility.MethodsForty-five RA patients with foot problems were included in this observational proof-of concept study. FOs were custom-made by a podiatrist according to usual care. Regions of Interest (ROIs) for plantar pressure reduction were selected. According to a protocol, usual care FOs were evaluated using in-shoe plantar pressure measurements and, if necessary, adapted. Plantar pressure–time integrals at the ROIs were compared between the following conditions: (1) no-FO versus usual care FO and (2) usual care FO versus adapted FO. Semi-structured interviews were held with patients and podiatrists to evaluate the feasibility of the protocol.ResultsAdapted FOs were developed in 70% of the patients. In these patients, usual care FOs showed a mean 9% reduction in pressure–time integral at forefoot ROIs compared to no-FOs (p = 0.01). FO adaptation led to an additional mean 3% reduction in pressure–time integral (p = 0.05). The protocol was considered feasible by patients. Podiatrists considered the protocol more useful to achieve individual rather than general treatment goals. A final protocol was proposed.ConclusionsUsing in-shoe plantar pressure measurements for adapting foot orthoses for patients with RA leads to a small additional plantar pressure reduction in the forefoot. Further research on the clinical relevance of this outcome is required.  相似文献   

11.
Sagittal plane alignment of the foot presents challenges when the subject wears shoes during gait analysis. Typically, visual alignment is performed by positioning two markers, the heel and toe markers, aligned with the foot within the shoe. Alternatively, software alignment is possible when the sole of the shoe lies parallel to the ground, and the change in the shoe’s sole thickness is measured and entered as a parameter. The aim of this technical note was to evaluate the accuracy of visual and software foot alignment during shod gait analysis. We calculated the static standing ankle angles of 8 participants (mean age: 8.7 years, SD: 2.9 years) wearing bilateral solid ankle foot orthoses (BSAFOs) with and without shoes using the visual and software alignment methods. All participants were able to stand with flat feet in both static trials and the ankle angles obtained in BSAFOs without shoes was considered the reference. We showed that the current implementation of software alignment introduces a bias towards more ankle dorsiflexion, mean = 3°, SD = 3.4°, p = 0.006, and proposed an adjusted software alignment method. We found no statistical differences using visual alignment and adjusted software alignment between the shoe and shoeless conditions, p = 0.19 for both. Visual alignment or adjusted software alignment are advised to represent foot alignment accurately.  相似文献   

12.
The purpose of our study was to examine dynamic foot function during gait as it relates to plantar loading in individuals with DM (diabetes mellitus and neuropathy) compared to matched control subjects. Foot mobility during gait was examined using a multi-segment kinematic model, and plantar loading was measured using a pedobarograph in subjects with DM (N = 15), control subjects (N = 15). Pearson product moment correlation was used to assess the relationship between variables of interest. Statistical significance and equality of correlations were assessed using approximate tests based on Fisher's Z transformation (α = 0.05). In individuals with DM, first metatarsal sagittal plane excursion during gait was negatively associated with pressure time integral under the medial forefoot (r = ?0.42 and ?0.06, DM and Ctrl, P = 0.02). Similarly, lateral forefoot sagittal plane excursion during gait was negatively associated with pressure time integral under the lateral forefoot (r = ?0.56 and ?0.11, DM and Ctrl, P = 0.02). Frontal plane excursion of the calcaneus was negatively associated with medial (r = ?0.57 and 0.12, DM and Ctrl, P < 0.01) and lateral (r = ?0.51 and 0.13, DM and Ctrl, P < 0.01) heel and medial forefoot pressure time integral (r = ?0.56 and ?0.02, DM and Ctrl, P < 0.01). The key findings of our study indicate that reductions in segmental foot mobility were accompanied by increases in local loading in subjects with DM. Reduction in frontal plane calcaneal mobility during walking serves as an important functional marker of loss of foot flexibility in subjects with DM.  相似文献   

13.
《Gait & posture》2015,41(4):570-574
Inconsistent findings with regard to plantar pressure while walking in the diabetic population may be due to the heterogeneity of the studied groups resulting from the classification/grouping criteria adopted. The clinical diagnosis and classification of diabetes have inherent uncertainties that compromise the definition of its onset and the differentiation of its severity stages. A fuzzy system could improve the precision of the diagnosis and classification of diabetic neuropathy because it takes those uncertainties into account and combines different assessment methods. Here, we investigated how plantar pressure abnormalities evolve throughout different severity stages of diabetic polyneuropathy (absent, n = 38; mild, n = 20; moderate, n = 47; severe, n = 24). Pressure distribution was analysed over five areas while patients walked barefoot. Patients with mild neuropathy displayed an increase in pressure–time integral at the forefoot and a lower peak pressure at the heel. The peak and pressure–time integral under the forefoot and heel were aggravated in later stages of the disease (moderate and severe) compared with early stages of the disease (absent and mild). In the severe group, lower pressures at the lateral forefoot and hallux were observed, which could be related to symptoms that develop with the aggravation of neuropathy: atrophy of the intrinsic foot muscles, reduction of distal muscle activity, and joint stiffness. Although there were clear alterations over the forefoot and in a number of plantar areas with higher pressures within each severity stage, they did not follow the aggravation evolution of neuropathy classified by the fuzzy model. Based on these results, therapeutic interventions should begin in the early stages of this disease to prevent further consequences of the disease.  相似文献   

14.
ObjectivesThe purpose of this study was to examine the influence of semi-rigid foot orthoses on forefoot–rearfoot joint coupling patterns in individuals with different navicular drop measures during heel–toe running.DesignTen trials were collected from twenty-three male subjects who ran slowly shod at 170 steps per minute (2.23 m/s) with a semi-rigid orthoses and without.MethodsForefoot–rearfoot coupling motions were assessed using a vector coding technique during four intervals across the first 50% of stance. Subjects were divided into two groups based on navicular drop measures. A three way ANOVA was performed to examine the interaction and main effects of stance interval, orthoses condition and navicular drop (p < 0.05).ResultsThere were no interaction effects among stance interval, orthoses condition, or navicular drop (p = 0.14) whereas an interaction effect of orthoses condition and stance interval was observed (p = 0.01; effect size = 0.74). Forefoot–rearfoot coupling motion in the no-orthoses condition increased from heel-strike to foot-flat phase at a rate faster than the orthoses condition (p = 0.02).ConclusionsFoot orthoses significantly decrease the forefoot–rearfoot joint coupling angle by reducing forefoot frontal plane motion relative to the rearfoot. Navicular drop measures did not influence joint coupling relationships between the forefoot and rearfoot during the first 50% of stance regardless of orthotic condition.  相似文献   

15.
ObjectivesThe purpose of this study was to determine the relationships among passive measures of weight-bearing dorsiflexion range of motion, non-weight-bearing dorsiflexion range of motion and dorsiflexion stiffness, thereby establishing whether they assess similar mechanical characteristics, as each measure has been implicated in injury risk during landings.DesignCross-sectional study.MethodsPassive weight-bearing dorsiflexion range of motion, non-weight-bearing dorsiflexion range of motion and dorsiflexion stiffness were quantified for 42 males (22.8 ± 5.0 years). The relationship between each data set was calculated using Pearson product-moment correlation coefficients.ResultsAlthough weight-bearing dorsiflexion range of motion and non-weight-bearing dorsiflexion range of motion were significantly correlated, the strength of the relationship was poor (r2 = 0.18; p = 0.004). Weight-bearing dorsiflexion range of motion (mean = 43.0 ± 5.0°) was significantly greater than non-weight-bearing dorsiflexion range of motion (29.8 ± 5.9°; p < 0.001) and weight-bearing dorsiflexion range of motion and non-weight-bearing dorsiflexion range of motion were also poorly correlated with passive dorsiflexion stiffness (1.48 ± 0.55 Nm °?1; r2 = 0.04 and r2 = 0.14, respectively), despite the latter relationship being significant (p = 0.017).ConclusionsPassive dorsiflexion stiffness was not strongly associated with dorsiflexion range of motion, despite the significant correlation in the non-weight-bearing condition. It must be acknowledged that passive dorsiflexion stiffness was weakly associated with dorsiflexion range of motion, although the strength of the association suggests that it may not necessarily determine dorsiflexion range of motion. Furthermore, the functional dorsiflexion limits of the ankle during weight-bearing tasks may be underestimated or misrepresented by non-weight-bearing measures of dorsiflexion range of motion. Therefore, although ankle dorsiflexion range of motion and dorsiflexion stiffness have been implicated in injury risk during weight-bearing tasks such as landings, it may be due to different mechanisms.  相似文献   

16.
《Gait & posture》2008,27(4):553-559
This study investigated the biomechanical strategy adopted by older adults with medial compartment knee osteoarthritis for successful obstacle crossing. Fifteen older adults with bilateral medial compartment knee OA and 15 healthy controls were recruited to walk and cross obstacles of heights of 10%, 20% and 30% of their leg lengths. Kinematic and kinetic data were obtained using a three-dimensional (3D) motion analysis system and forceplates. The groups had comparable walking speeds, toe clearances and horizontal foot–obstacle distances (p > 0.05). When the swing toe was above the obstacle, the OA group showed smaller swing knee flexion (p = 0.01) and stance hip adduction (p = 0.003) and internal rotation (p = 0.04). They showed greater swing ankle dorsiflexion (p = 0.04) as well as swing-side pelvic listing (p = 0.006) and backward rotation (p = 0.02). They also exhibited greater peak knee abductor moments (p = 0.02) during early stance while adopting similar knee abductor moments (p = 0.04) and greater hip abductor moments (p = 0.04) when the leading toe was above the obstacle and thereafter. Smaller knee extensor (p < 0.004), yet greater hip extensor moments (p < 0.04), were found in the OA group throughout the stance phase. People with medial compartment knee OA had acquired different biomechanical strategies to compensate for the compromised function of the diseased knee.  相似文献   

17.
《Gait & posture》2014,39(4):570-574
Inconsistent findings with regard to plantar pressure while walking in the diabetic population may be due to the heterogeneity of the studied groups resulting from the classification/grouping criteria adopted. The clinical diagnosis and classification of diabetes have inherent uncertainties that compromise the definition of its onset and the differentiation of its severity stages. A fuzzy system could improve the precision of the diagnosis and classification of diabetic neuropathy because it takes those uncertainties into account and combines different assessment methods. Here, we investigated how plantar pressure abnormalities evolve throughout different severity stages of diabetic polyneuropathy (absent, n = 38; mild, n = 20; moderate, n = 47; severe, n = 24). Pressure distribution was analysed over five areas while patients walked barefoot. Patients with mild neuropathy displayed an increase in pressure–time integral at the forefoot and a lower peak pressure at the heel. The peak and pressure–time integral under the forefoot and heel were aggravated in later stages of the disease (moderate and severe) compared with early stages of the disease (absent and mild). In the severe group, lower pressures at the lateral forefoot and hallux were observed, which could be related to symptoms that develop with the aggravation of neuropathy: atrophy of the intrinsic foot muscles, reduction of distal muscle activity, and joint stiffness. Although there were clear alterations over the forefoot and in a number of plantar areas with higher pressures within each severity stage, they did not follow the aggravation evolution of neuropathy classified by the fuzzy model. Based on these results, therapeutic interventions should begin in the early stages of this disease to prevent further consequences of the disease.  相似文献   

18.

Objectives

To evaluate the effects of hardness and posting of orthoses on plantar profile and perceived comfort and support during cycling.

Design

A repeated measures study with randomised order of orthoses, hardness, and posting conditions.

Methods

Twenty-three cyclists cycled at a cadence of 90 rpm and a perceived exertion rating of twelve. Contoured soft and hard orthoses with or without a medial forefoot or lateral forefoot post were evaluated. Plantar contact area, mean pressure and peak pressure were measured for nine plantar regions using the pedar®-X system and represented as a percentage of the total (CA%, MP%, and PP% respectively). Perceived comfort and support was rated on a visual analogue scale.

Results

The softer orthosis significantly increased CA% (p = 0.014) across the midfoot and heel with a decrease in the toe region and forefoot. MP% (p = 0.034) and PP% (p = 0.012) were significantly increased at the mid and lateral forefoot with reductions in MP% at the midfoot and in PP% at the hallux and toes. Forefoot posting significantly increased CA% (p = 0.018) at the toes and forefoot and decreased it at the heel. PP% was significantly altered (p = 0.013) based on posting position. Lateral forefoot posting significantly decreased heel comfort (p = 0.036).

Conclusion

When cycling, a soft, contoured orthosis increased contact across the midfoot and heel, modulating forefoot and midfoot plantar pressures but not altering comfort or support. Forefoot postings significantly modified contact areas and plantar pressures and reduced comfort at the heel.  相似文献   

19.
The joint deformity that arises as a result of Charcot neuroarthropathy, leads to gait modification. Ulceration risk associated with the deformity is generally assessed by measuring plantar pressure magnitude (PPM). However, as PPM is partially dependent on gait speed and treatment interventions may impact speed, the use of PPM to validate treatment is not ideal. This study suggests a novel assessment protocol, which is speed independent and can objectively (1) characterize abnormality in dynamic plantar loading in patients with foot Charcot neuroarthropathy and (2) screen improvement in dynamic plantar loading after foot reconstruction surgery. To examine whether the plantar pressure distribution (PPD) measured using EMED platform, was normal, a customized normal distribution curve was created for each trial. Then the original PPD was fitted to the customized normal distribution curve. This technique yields a regression factor (RF), which represents the similarity of the actual pressure distribution with a normal distribution. RF values may range from negative 1 to positive 1 and as the value increases positively so does the similarity between the actual and normalized pressure distributions. We tested this novel score on the plantar pressure pattern of healthy subjects (N = 15), Charcot patients pre-operation (N = 4) and a Charcot patient post-foot reconstruction (N = 1). In healthy subjects, the RF was 0.46 ± 0.1. When subjects increased their gait speed by 29%, PPM was increased by 8% (p < 10?5), while RF was not changed (p = 0.55), suggesting that RF value is independent of gait speed. In preoperative Charcot patients, the RF < 0, however, RF increased post-surgery (RF = 0.42), indicating a transition to normal plantar distribution after Charcot reconstruction.  相似文献   

20.
IntroductionOutsole parameters of the shoe can be adapted to offload regions of pain or region of high pressures. Previous studies already showed reduced plantar pressures in the forefoot due to a proximally placed apex position and higher longitudinal bending stiffness (LBS). The aim of this study was to determine the effect of changes in rocker radii and high LBS on the plantar pressure profile during gait.Method10 participants walked in seven shoe conditions of which one control shoe and six rocker shoes with small, medium and large rocker radii and low and high longitudinal bending stiffness. Pedar in-shoe plantar pressure measuring system was used to quantify plantar pressures while walking on a treadmill at self-selected walking speed. Peak plantar pressure, maximum mean pressure and force-time integral were analyzed with Generalized Estimated Equation (GEE) and Tukey post hoc correction (α = .05).ResultsSignificantly lower plantar pressures were found in the first toe, toes 2–5, distal and proximal forefoot in all rocker shoe conditions as compared to the control shoe. Plantar pressures in the first toe and toes 2–5 were significantly lower in the small radius compared to medium and large radii. For the distal forefoot both small and medium radii significantly reduced plantar pressure compared to large radii. Low LBS reduced plantar pressure at the first toe significantly compared to high LBS independent of the rocker radius. Plantar pressures in the distal forefoot and toes 2–5 were lower in high LBS compared to low LBS.ConclusionManipulation of the rocker radius and LBS can effectively reduce peak plantar pressures in the forefoot region during gait. In line with previous studies, we showed that depending on the exact target location for offloading, different combinations of rocker radius and LBS need to be adopted to maximize treatment effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号