首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
ObjectivesPrevious studies comparing shoes based on the amount of midsole cushioning have generally used shoes from multiple manufacturers, where factors outside of stack height may contribute to observed biomechanical differences in running mechanics between shoes. Therefore, the purpose of this study was to compare ground reaction forces and ankle kinematics during running between three shoes (maximal, traditional, and minimal) from the same manufacturer that only varied in stack height.DesignWithin-participant repeated measuresMethodsTwenty recreational runners ran overground in the laboratory in three shoe conditions (maximal, traditional, minimal) while three-dimensional kinematic and kinetic data were collected using a 3D motion capture system and two embedded force plates. Repeated measures ANOVAs (α = .05) compared biomechanical data between shoes.ResultsWhile the loading rate was significantly greater in the minimal shoe compared to the maximal shoe, no other differences were seen for the ground reaction force variables. Peak eversion was greater in the maximal and minimal shoe compared to the traditional shoe, while eversion duration and eversion at toe-off were greater in the maximal shoe.ConclusionsPreviously cited differences in ground reaction force parameters between maximal and traditional footwear may be due to factors outside of midsole stack height. The eversion mechanics in the maximal shoes from this study may place runners at a greater risk of injury. Disagreement between previous studies indicates that more research on maximal running shoes is needed.  相似文献   

2.
BackgroundObesity is considered a risk factor for knee osteoarthritis (OA) in part due to its influence on gait biomechanics. The heel strike transient (HST) is a characteristic of the ground reaction force that is indicative of a high rate of loading, but has not been evaluated in obese adults.ObjectiveTo compare the incidence of HST in obese compared to normal weight adults.Methods15 normal-weight (males = 7, age = 20.4 ± 2.1 years, body mass index = 21.6 ± 1.3 kg/m2) and 15 obese (males = 7, age = 21.2 ± 1.9 years, body mass index = 33.5 ± 4.3 kg/m2) young adults completed 10 walking trials at a standardized speed and 10 trials at a self-selected speed while ground reaction force data were sampled. HST incidence was evaluated using a dichotomous method previously identified in the literature, and compared between groups using χ2 analyses.ResultsThe number of individuals classified as possessing the HST differed between the obese and normal-weight groups (8/15 vs. 3/15, p = 0.047). Evaluation of the standardized residuals indicated a significantly greater than expected incidence of the HST in the obese group when walking at a standardized speed.ConclusionOur findings indicate that a greater proportion of obese compared to normal weight participants displayed a HST. The HST may provide a dichotomous method for identifying individuals with aberrant gait biomechanics.  相似文献   

3.
《Gait & posture》2014,39(3):381-385
While recent research debates the topic of natural running in adolescents and adults, little is known about the influence of footwear on running patterns in children. The purpose of this study was to compare shod and barefoot running gait biomechanics in preadolescent children. Kinematic and ground reaction force data of 36 normally developed children aged 6–9 years were collected during running on an instrumented treadmill. Running conditions were randomized for each child in order to compare barefoot running with two different shod conditions: a cushioned and a minimalistic running shoe. Primary outcome was the ankle angle at foot strike. Secondary outcomes were knee angle, maximum and impact ground reaction forces, presence of rear-foot strike, step width, step length and cadence. Ankle angle at foot strike differed with statistical significance (p < 0.001) between conditions. Running barefoot reduced the ankle angle at foot strike by 5.97° [95% CI, 4.19; 7.75] for 8 km h−1 and 6.18° [95% CI, 4.38; 7.97] for 10 km h−1 compared to the cushioned shoe condition. Compared to the minimalistic shoe condition, running barefoot reduced the angle by 1.94° [95% CI, 0.19°; 3.69°] for 8 km h−1 and 1.38° [95% CI, −3.14°; 0.39°] for 10 km h−1. Additionally, using footwear significantly increased maximum and impact ground reaction forces, step length, step width and rate of rear-foot strike. In conclusion, preadolescent running biomechanics are influenced by footwear, especially by cushioned running shoes. Health professionals and parents should keep this in mind when considering footwear for children.  相似文献   

4.
BackgroundHigh-heeled shoes are currently preferred by women due to contemporary aesthetics. However, high-heeled shoes may increase the effort required to ascend stairs and, hence, alter biomechanical performance.Research question: How do high-heel shoe parameters affect the pelvis position, lower extremities kinematics, and ground reaction force in young women during stair ascent motion?MethodsStair ascent experiments were performed with 20 healthy adult women. The participants were instructed to ascend a 3-step staircase, wearing heeled shoes of different heel heights and heel types and one pair of flat shoes as the control group. Changes in lower body biomechanics were analyzed with kinematics and ground reaction force variables collected from the dominant limb. A two-way repeated ANOVA was performed to determine which variables were affected by heel type and which were affected by heel height or a combination of both.ResultsAs the heel height increased, an increased range of ankle dorsiflexion-plantarflexion, as well as pelvic rotation, was observed(P = 0.039 and P = 0.003, respectively). A thinner heel type displayed a larger pelvic forward tilt movement(P = 0.026)and 1st peak vertical force(P = 0.025), as well as a smaller 2nd peak vertical force (P = 0.002). With high heels, increased external rotation of the knee, inversion and plantar flexion, and flexion values of the knee were observed. We also observed decreased external rotation of the pelvis, ankle eversion, varum, and dorsiflexion.SignificanceTo stabilize body posture during stair ascent motion with high-heeled shoes, compensatory response including increasd pelvic range of motion and changing the joint angles of the lower extremities.  相似文献   

5.
BackgroundMedial longitudinal arch characteristics are thought to be a contributing factor to lower limb running injuries. Running biomechanics associated with different foot types have been proposed as one of the potential underlying mechanisms. However, no systematic review has investigated this relationship.Research questionThe aim of this study was to conduct a systematic literature search and synthesize the evidence about the relationship between foot posture and running biomechanics.MethodsFor this systematic review and meta-analysis different electronic databases (Pubmed, Web of Science, Cochrane, SportDiscus) were searched to identify studies investigating the relationship between medial longitudinal arch characteristics and running biomechanics. After identification of relevant articles, two independent researchers determined the risk of bias of included studies. For homogenous outcomes, data pooling and meta-analysis (random effects model) was performed, and levels of evidence determined.ResultsOf the 4088 studies initially identified, a total of 25 studies were included in the qualitative review and seven in the quantitative analysis. Most studies had moderate and three studies a low risk of bias. Moderate evidence was found for a relationship between foot posture and subtalar joint kinematics (small pooled effects: −0.59; 95%CI −1.14 to − 0.003) and leg stiffness (small pooled effect: 0.59; 95%CI 0.18 to 0.99). Limited or very limited evidence was found for a relationship with forefoot kinematics, tibial/leg rotation, tibial acceleration/shock, plantar pressure distribution, plantar fascia tension and ankle kinetics as well as an interaction of foot type and footwear regarding tibial rotation.SignificanceWhile there is evidence for an association between foot posture and subtalar joint kinematics and leg stiffness, no clear relationship was found for other biomechanical outcomes. Since a comprehensive meta-analysis was limited by the heterogeneity of included studies future research would benefit from consensus in foot assessment and more homogenous study designs.  相似文献   

6.
BackgroundDifferences in joint mechanics between running shoes are commonly assessed using discrete parameters, yet statistically significant differences in these parameters between shoes are often scarce with small effect sizes. Statistical parametric mapping (SPM) has been suggested as suitable method for analyzing one-dimensional data such as kinematic, kinetic or muscle intensity time series.Research questionThe purpose of this study was to determine differences in treadmill running mechanics between novel running shoes using SPM.MethodsJoint kinematics, muscle activity and ground reaction force were assessed in 19 rearfoot runners in their own shoes and in two test shoes during treadmill running (test shoe 1: 13 distinct rubber elements in the outer sole, springboard within EVA midsole with posterior elements shifted anteriorly by approximately 1.5 cm; test shoe 2: 17 distinct EVA elements with conventional heel geometry). Joint kinematics were measured using an inertial sensor system, and ground reaction force was measured using an instrumented treadmill.ResultsSPM analysis with repeated measures ANOVA revealed significant reductions in the ankle angle and in tibialis anterior, peroneus longus, vastus medialis and lateralis muscle activity during weight acceptance and in peroneus longus muscle activity during early and late swing and in semitendinosus muscle activity during late swing for the test shoes. Significant differences in muscle activity were observed in the interval of the main activity of the respective muscle. SPM on individual data revealed statistically significant and relevant within-subject differences between conditions in kinematic, muscle activity and ground reaction force patterns.SignificanceInertial sensor systems and SPM may provide an efficient way of detecting changes in joint mechanics between running shoes within runners. Detecting within-subject differences in running mechanics between conditions not only requires statistical criteria but also criteria on the relevance of the magnitude of differences.  相似文献   

7.
8.
It is estimated that approximately 45% of the U.S. population will develop knee osteoarthritis, a disease that creates significant economic burdens in both direct and indirect costs. Laterally wedged insoles have been frequently recommended to reduce knee abduction moments and to manage knee osteoarthritis. However, it remains unknown whether the lateral wedge will reduce knee abduction moments over a prolonged period of time. Thus, the purposes of this study were to (1) examine the immediate effects of a laterally wedged insole in individuals normally aligned knees and (2) determine prolonged effects after the insole was worn for 1 week. Gait analysis was performed on ten women with and without a laterally wedged insole. After participants wore the wedges for a week, a second gait analysis was performed with and without the insole. The wedged insole did not affect peak knee abduction moment, although there was a significant increase in knee abduction angular impulse after wearing the insoles for 1 week. Furthermore, there was a significant increase in vertical ground reaction force at the instance of peak knee abduction moment with the wedges. While the laterally wedged insole used in the current study did not alter knee abduction moments as expected, other studies have shown alterations. Future studies should also examine a longer acclimation period, the influence of gait speed, and the effect of different shoe types with the insole.  相似文献   

9.
Ankle braces and taping are commonly used to prevent ankle sprains and allow return to play following injury, however, it is unclear how passive restriction of joint motion may effect running gait kinematics and energy expenditure during exercise. The purpose of this study was to determine the effect of different types of ankle supports on lower extremity kinematics and energy expenditure during continuous running. Thirteen healthy physically active adults ran at self-selected speed on the treadmill for 30 min in four different ankle support conditions: semi-rigid hinged brace, lace-up brace, tape and control. Three-dimensional lower extremity kinematics and energy expenditure were recorded every five minutes. The semi-rigid hinged brace was most effective in restricting frontal plane ankle motion. The lace-up brace and tape restricted sagittal plane ankle motion, while semi-rigid hinged bracing allowed for normal sagittal plane ankle kinematics. Kinematic changes from all three ankle supports were generally persistent through 25–30 min of exercise. Only tape influenced knee kinematics, limiting flexion velocity and flexion-extension excursion. Small but significant increased in energy expenditure was found in tape and semi-rigid hinged brace conditions; however, the increases were not to any practically significant level (<0.5 kcal/min).  相似文献   

10.
BackgroundIncreasing cadence in running has been advocated as a means to improve performance and reduce impact forces. Although acoustic pacing can be used for this purpose, it might by itself lead to an increased impact force, which would counteract the decrease in impact force that is being pursued by increasing the cadence with acoustic pacing and thus have a counterproductive effect.Research questionWhat are the effects of acoustic pacing and cadence on peak impact force and loading rate during running?MethodsUnpublished data from a previous study, in which 16 participants ran on an instrumented treadmill with various forms of acoustic pacing, were analyzed to address the research question. Peak impact force and loading rate while running with and without pacing, at three different cadences were extracted from the ground reaction force data and compared statistically between these two main conditions. In addition, we compared step-based and stride-based pacing, and paced and unpaced steps within stride-based pacing conditions.ResultsAs expected, increasing the cadence was accompanied by a significant reduction in peak impact force and instantaneous vertical loading rate, whereas acoustic pacing had no significant effect on the impact forces compared to unpaced running with similar cadence, both before and after pacing. There were also no significant differences in this regard between step-based and stride-based pacing.SignificanceAcoustic pacing does not adversely affect impact force when used to increase cadence in running with the aim of reducing the impact force and can thus be used for this purpose without introducing a counterproductive effect.  相似文献   

11.
BackgroundMeasuring dynamic vertical ground reaction force allows for assessment of important clinical and physical capacity factors such as weight bearing asymmetry, force distribution, and rate of force development. However, current technologies for accurately assessing ground reaction force are typically expensive.Research QuestionThe aim of this study was to examine the validity and reliability of obtaining static and dynamic ground reaction force data from low-cost modified digital bathroom scales.MethodsFour modified bathroom scales, two units each of two different brands, were examined. Repeated mechanical loading trials were performed with known loads ranging from 0.01 to 65 kg, with acquired data compared against the known loading to calculate accuracy, hysteresis, and non-linearity. Dynamic trials consisting of 5 times sit-to-stand and weight-shifting were performed by 32 adults. Absolute and relative agreement intraclass correlation coefficient, and Pearson’s and Spearman’s correlations were performed to determine validity and reliability for the mechanical tests. Bland-Altmann plots were created for each comparison. Mean absolute error (MAE) and unbiased cross-correlation were performed on the dynamic data, comparing the calibrated data to the known values from a Bertec force platform.ResultsHysteresis and non-linearity were excellent (<0.2 % full-scale), and mechanical test results showed excellent reliability and validity. Cross-correlation results for the dynamic data were excellent, however MAE for the more rapid sit-to-stand task was higher than the slower weight-shifting test. This may have been due to the low default sampling rate for the lowest noise setting of the HX711 amplifier (10 Hz).SignificanceIn summary, our results suggest that digital bathroom scales can be easily and inexpensively modified to obtain accurate vertical ground reaction force data, with sensitivity to detect changes of as little as 0.01 kg.  相似文献   

12.

Objectives

To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain.

Design

Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence.

Methods

Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2–4).

Results

Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (p < 0.001) compared to the control condition. Running in a minimalist shoe at preferred cadence reduced patellofemoral joint stress by 15% and joint reaction force by 17% (p < 0.001), compared to the control condition. Running in control shoes at an increased cadence reduced patellofemoral joint stress and joint reaction force by 16% and 19% (p < 0.001), respectively, compared to the control condition.

Conclusions

In individuals with patellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain.  相似文献   

13.
ObjectivesTo determine whether increasing pitching distance for adult baseball pitchers would affect their upper extremity kinetics, full-body kinematics, and pitched ball kinematics (ball velocity, duration of ball flight, vertical and horizontal break, strike percentage).DesignControlled laboratory study.MethodsTwenty-six collegiate baseball pitchers threw sets of five full-effort fastballs from three different pitching distances (18.44 m, 19.05 m, 19.41 m) in a randomized order. Ball velocity, horizontal and vertical break, duration of ball flight, and strike percentage were computed by a ball tracking system, while pitching kinetics and kinematics were calculated with a 12-camera optical motion capture system. Repeated measures analysis of variance was utilized to detect significant differences among the three different pitching distances (p < 0.05).ResultsNo significant differences in pitching kinetics and kinematics were observed among the varying pitching distances. Ball velocity and strike percentage were also not significantly different among the pitching distances, however, the duration of ball flight and horizontal and vertical break significantly increased with pitching distance.ConclusionsIncreasing pitching distance may not alter upper extremity kinetics, full-body kinematics, ball velocity or strike percentage in adult pitchers. However, as pitching distance increases the duration of ball flight and amount of horizontal and vertical break also increase. Increased ball flight duration could be an advantage for the hitter while increased ball break could help the pitcher. In conclusion, it is unlikely that moving the mound backwards would significantly affect pitching biomechanics and injury risk; however, the effects on pitching and hitting performance are unknown.  相似文献   

14.

Objectives

The use of microsensor technologies to conduct research and implement interventions in sports and exercise medicine has increased recently. The objective of this paper was to determine the validity and reliability of the ViPerform as a measure of load compared to vertical ground reaction force (GRF) as measured by force plates.

Design

Absolute reliability assessment, with concurrent validity.

Methods

10 professional triathletes ran 10 trials over force plates with the ViPerform mounted on the mid portion of the medial tibia. Calculated vertical ground reaction force data from the ViPerform was matched to the same stride on the force plate. Bland–Altman (BA) plot of comparative measure of agreement was used to assess the relationship between the calculated load from the accelerometer and the force plates. Reliability was calculated by intra-class correlation coefficients (ICC) with 95% confidence intervals.

Results

BA plot indicates minimal agreement between the measures derived from the force plate and ViPerform, with variation at an individual participant plot level. Reliability was excellent (ICC = 0.877; 95% CI = 0.825–0.917) in calculating the same vertical GRF in a repeated trial. Standard error of measure (SEM) equalled 99.83 units (95% CI = 82.10–119.09), which, in turn, gave a minimum detectable change (MDC) value of 276.72 units (95% CI = 227.32–330.07).

Conclusions

The ViPerform does not calculate absolute values of vertical GRF similar to those measured by a force plate. It does provide a valid and reliable calculation of an athlete’s lower limb load at constant velocity.  相似文献   

15.
BackgroundThere is evidence that frontal plane lower limb malalignment (e.g., genu varus) is a risk factor for knee osteoarthritis development. However, only scarce information is available on gait biomechanics and muscle activity in boys with genu varus.Research questionTo examine the effects of knee varus alignment on lower limb kinematics, kinetics and muscular activity during walking at self-selected speed in boys with genu varus versus healthy age-matched controls.MethodsThirty-six boys were enrolled in this study and divided into a group of boys with genu varus (n = 18; age: 11.66 ± 1.64 years) and healthy controls (n = 18; age: 11.44 ± 1.78 years). Three-dimensional kinematics, ground reaction forces, loading rates, impulses and free moments of both limbs were recorded during five walking trials at self-selected speed. Surface electromyography was recorded for rectus femoris and vastus lateralis/medialis muscles.ResultsNo significant between-group differences were found for gait speed. Participants in the genu varus group versus controls showed larger peak knee flexion (p = 0.030; d = 0.77), peak knee adduction (p < 0.001; d = 1.63), and peak ankle eversion angles (p < 0.001; d = 2.06). Significantly higher peak ground reaction forces were found at heel contact (vertical [p = 0.002; d = 1.16] and posterior [p < 0.001; d = 1.63] components) and at push off (vertical [p = 0.010; d = 0.93] and anterior [p < 0.001; d = 1.34] components) for genu varus versus controls. Peak medial ground reaction force (p = 0.032; d = 0.76), vertical loading rate (p < 0.001; d = 1.52), anterior-posterior impulse (p = 0.011; d = 0.92), and peak negative free moment (p = 0.030; d = 0.77) were significantly higher in genu varus. Finally, time to reach peak forces was significantly shorter in genu varus boys compared with healthy controls (p < 0.01; d = 0.73–1.60). The genu varus group showed higher activities in vastus lateralis (p < 0.001; d = 1.82) and vastus medialis (p = 0.013; d = 0.90) during the loading phase of walking.SignificanceOur study revealed genu varus specific gait characteristics and muscle activities. Greater knee adduction angle in genu varus boys may increase the load on the medial compartment of the knee joint. The observed characteristics in lower limb biomechanics and muscle activity could play a role in the early development of knee osteoarthritis in genu varus boys.  相似文献   

16.
BackgroundThe efficacy of foot orthoses in reducing patellofemoral pain (PFP) is well documented; however, the mechanisms by which foot orthoses modulate pain and function are poorly understood.Research questionThis within-subject study investigated the immediate effects of foot orthoses on lower limb kinematics and angular impulses during level walking and stair ambulation in individuals with persistent PFP.MethodsForty-two participants with persistent PFP (≥3 months duration) underwent quantitative gait analysis during level walking, stair ascent and stair descent while using: (i) standard running sandals (control); and (ii) standard running sandals fitted with prefabricated foot orthoses. Hip, knee, and ankle joint kinematics and angular impulses were calculated and statistically analyzed using paired t-tests (p < 0.05).ResultsRelative to the control condition, foot orthoses use was associated with small but significant decreases in maximum ankle inversion angles during walking (mean difference [95% confidence interval]: −1.00° [−1.48 to −0.53]), stair ascent (−1.06° [−1.66 to −0.45]) and stair decent (−0.94° [−1.40 to −0.49]). Foot orthoses were also associated with decreased ankle eversion impulse during walking (−9.8Nms/kg [−12.7 to −6.8]), and decreased ankle dorsiflexion and eversion impulse during stair ascent (−67.6Nms/kg [−100.7 to −34.6] and −17.5Nms/kg [−23.6 to −11.4], respectively) and descent (−50.4Nms/kg [−77.2 to −23.6] and −11.6Nms/kg [−15.6 to −7.5], respectively). Ankle internal rotation impulse decreased when participants ascended stairs with foot orthoses (−3.3Nms/kg [−5.4 to −1.3]). Limited changes were observed at the knee and hip.SignificanceIn individuals with persistent PFP, small immediate changes in kinematics and angular impulses – primarily at the ankle – were observed when foot orthoses were worn during walking or stair ambulation. The clinical implications of these small changes, as well as the longer-term effects of foot orthoses on lower limb biomechanics, are yet to be determined.  相似文献   

17.
Taping is often used to manage the high rate of knee injuries in ballet dancers; however, little is known about the effect of taping on lower‐limb biomechanics during ballet landings in the turnout position. This study investigated the effects of Kinesiotape (KT), Mulligan's tape (MT) and no tape (NT) on knee and hip kinetics during landing in three turnout positions. The effect of taping on the esthetic execution of ballet jumps was also assessed. Eighteen pain‐free 12–15‐year‐old female ballet dancers performed ballet jumps in three turnout positions, under the three knee taping conditions. A Vicon Motion Analysis system (Vicon Oxford, Oxford, UK) and Advanced Mechanical Technology, Inc. (Watertown, Massa chusetts, USA) force plate collected lower‐limb mechanics. The results demonstrated that MT significantly reduced peak posterior knee shear forces (P = 0.025) and peak posterior (P = 0.005), medial (P = 0.022) and lateral (P = 0.014) hip shear forces compared with NT when landing in first position. KT had no effect on knee or hip forces. No significant differences existed between taping conditions in all landing positions for the esthetic measures. MT was able to reduce knee and the hip forces without affecting the esthetic performance of ballet jumps, which may have implications for preventing and managing knee injuries in ballet dancers.  相似文献   

18.
High tibial osteotomy (HTO) can cause alterations in patellar height, depending on the surgical technique, the amount of correction and the postoperative management. Alterations in patella location after HTO may lead to postoperative complications. However, information on changes in dynamic patellar kinematics following HTO is very limited. We conducted a biomechanical study, to analyze the effect of open (OWO) and closed wedge osteotomy (CWO) on patellar tracking. Using an inventive experimental set-up, we studied the 3D dynamic patellar tracking in ten cadaver knees before and after valgus HTO. In each specimen, corrections of 7° and 15° of valgus according to, both, the OWO and CWO technique, were performed. Patellar height significantly increased with CWO and decreased with OWO. Both, OWO and CWO led to significant changes in the patellar tracking parameters tilt and rotation. We also found significant differences between OWO and CWO. Valgus high tibial osteotomy increased the medial patellar tilt and reduced the medial patellar rotation. These effects were more profound after OWO. No significant differences were found for the effect on medial–lateral patellar translation. These observations can be taken into consideration in the decision whether to perform an OWO or a CWO in a patient with medial compartment osteoarthritis of the knee.  相似文献   

19.
BackgroundImpaired ankle inversion movement discrimination (AIMD) can lead to ankle sprain injuries. The aim of this study was to explore whether wearing textured insoles improved AIMD compared with barefoot, ballet shoes and smooth insoles, among dancers.MethodsForty-four adolescent male and female dancers, aged 13–19, from The Australian Ballet School were tested for AIMD while barefoot, wearing ballet shoes, smooth insoles, and textured insoles.ResultsNo interaction was found between the four different footwear conditions, the two genders, or the two levels of dancers in AIMD (p > .05). An interaction was found between the four different footwear conditions and the three tertiles when tested in ballet shoes (p = .006). Although significant differences were found between the upper tertiles and the lower tertiles when tested with ballet shoes, barefoot and with smooth insoles (p < .001; p < .001; p = .047, respectively), when testing with textured insoles dancers in the lower tertile obtained similar scores to those obtained by dancers in the upper tertile (p = .911).ConclusionTextured insoles improved the discrimination scores of dancers with low AIMD, suggesting that textured insoles may trigger the cutaneous receptors in the plantar surface, increasing the awareness of ankle positioning, which in turn might decrease the chance of ankle injury.  相似文献   

20.
ObjectivesInvestigate the impact of lace-up ankle braces on landing biomechanics.DesignWithin-subject repeated measures. Participants completed a drop jump, drop land, and netball-specific task in braced and unbraced conditions.SettingBiomechanical research laboratory.ParticipantsTwenty female high school netballers.Main outcome measuresLeg, knee, and ankle stiffness, knee/ankle stiffness ratio, knee and ankle sagittal excursion, peak vertical ground reaction force, time-to-peak vertical ground reaction force, and loading rate.ResultsIn the brace condition leg stiffness increased bilaterally during the drop land (ES = 0.21, 0.22), ankle stiffness increased bilaterally during the drop jump (ES = 0.37, 0.29) and drop land (ES = 0.40, 0.60), and knee/ankle stiffness ratio decreased in all three tasks (ES = −0.22 to −0.45). Ankle sagittal excursion decreased bilaterally during the drop jump (ES = −0.35, −0.53) and drop land (ES = −0.23, −0.46), and decreased in the lead limb during the netball jump (ES = −0.36). Knee excursion decreased bilaterally during the drop jump (ES = −0.36, −0.40) and in the lead limb during netball task (ES = −0.59). Lead limb TTP was greater during the netball jump (ES = 0.41).ConclusionsLace-up ankle braces may increase leg and joint stiffness and reduce joint excursion during landing but do not appear to affect landing forces. The observed effect on landing biomechanics may predispose young netballers to injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号