首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Combinatorial chemistry and high-throughput screening have increased the possibility of finding new lead compounds at much shorter time periods than conventional medicinal chemistry. However, too much promising drug candidates often fail because of unsatisfactory ADME properties. In silico ADME studies are expected to reduce the risk of late-stage attrition of drug development and to optimize screening and testing by looking at only the promising compounds. To this end, many in silico approaches for predicting ADME properties of compounds from their chemical structure have been developed, ranging from data-based approaches such as quantitative structure-activity relationship (QSAR), similarity searches, and 3-dimensional QSAR, to structure-based methods such as ligand-protein docking and pharmacophore modelling. In addition, several methods of integrating ADME properties to predict pharmacokinetics at the organ or body level have been studied. In this article, we briefly summarize in silico ADME approaches.  相似文献   

2.
3.
Computational chemistry software for lead discovery has become well established in pharmaceutical industry and has found its way to the desktop computers of medicinal chemists for different purposes, providing insight on the mode of action and binding properties, and creating new ideas for lead structure refinement. In this review we investigate the performance and reliability of recent state-of-the-art data modeling techniques, as well as ligand-based and structure-based modeling approaches for 3D virtual screening. We discuss and summarize recently published success stories and lately developed techniques. Parallel screening is one of these emerging approaches allowing for efficient activity in silico profiling of several compounds against different targets or anti-targets simultaneously. This is of special interest to medicinal chemists, as the approach allows revealing unknown binding modes ('target-fishing') as well as integrated ADME profiling or--more generally--the prediction of off-target effects.  相似文献   

4.
High-throughput screening technologies in biological sciences of large libraries of compounds obtained via combinatorial or parallel chemistry approaches, as well as the application of design rules for drug-likeness, have resulted in more hits to be evaluated with respect to their ADME or drug metabolism and pharmacokinetic properties. The traditional in vivo methods using preclinical species, such as rat, dog or monkey, are no longer sufficient to cope with this demand. This editorial discusses the changes towards medium- to high-throughput in vitro and in silico ADME screening. In addition, much more attention is now put on early safety and risk assessment of promising lead series and potential clinical candidates.  相似文献   

5.
Evaluation and optimization of drug metabolism and pharmacokinetic data plays an important role in drug discovery and development and several reliable in vitro ADME models are available. Recently higher throughput in vitro ADME screening facilities have been established in order to be able to evaluate an appreciable fraction of synthesized compounds. The ADME screening process can be dissected in five distinct steps: (1) plate management of compounds in need of in vitro ADME data, (2) optimization of the MS/MS method for the compounds, (3) in vitro ADME experiments and sample clean up, (4) collection and reduction of the raw LC-MS/MS data and (5) archival of the processed ADME data. All steps will be described in detail and the value of the data on drug discovery projects will be discussed as well. Finally, in vitro ADME screening can generate large quantities of data obtained under identical conditions to allow building of reliable in silico models.  相似文献   

6.
7.
In the past decades, it has become increasingly apparent that in addition to therapeutic effect, drugs need to exhibit favourable absorption, distribution, metabolism and excretion (ADME) characteristics to produce a desirable response in vivo. As the recent progress in drug discovery technology enables rapid synthesis of vast numbers of potential drug candidates, robust methods are required for the effective screening of compounds synthesized within such programs, so that compounds with poor pharmacokinetic properties can be rejected at an early stage of drug development. Furthermore, a viable in silico method would save resources by enabling virtual screening of drug candidates already prior to synthesis. This review gives a general overview of the approaches aimed at predicting biological permeation, one of the cornerstones behind the ADME behaviour of drugs. The most important experimental and computational models are reviewed. Physicochemical factors underlying the permeation process are discussed.  相似文献   

8.
9.
10.
In modern drug discovery process, ADME/Tox properties should be determined as early as possible in the test cascade to allow a timely assessment of their property profiles. To help medicinal chemists in designing new compounds with improved pharmacokinetics, the knowledge of the soft spot position or the site of metabolism (SOM) is needed. In recent years, large number of in silico approaches for metabolism prediction have been developed and reported. Among these methods, QSAR models and combined quantum mechanics/molecular mechanics (QM/MM) methods for predicting drug metabolism have undergone significant advances. This review provides a perspective of the utility of QSAR and QM/MM approaches on drug metabolism prediction, highlighting the present challenges, limitations, and future perspectives in medicinal chemistry.  相似文献   

11.
Primary high-throughput screening of commercially available small molecules collections often results in hit compounds with unfavorable ADME/Tox properties and low IP potential. These issues are addressed empirically at follow-up lead development and optimization stages. In this work, we describe a rational approach to the optimization of hit compounds discovered during screening of a kinase focused library against abl tyrosine kinase. The optimization strategy involved application of modern chemoinformatics techniques, such as automatic bioisosteric transformation of the initial hits, efficient solution-phase combinatorial synthesis, and advanced methods of knowledge-based libraries design.  相似文献   

12.
To design diverse combinatorial libraries or to select diverse compounds to augment a screening collection, computational chemists frequently reject compounds that are > or =0.85 similar to one already chosen for the combinatorial library or in the screening set. Using Daylight fingerprints, this report shows that for IC(50) values determined as a follow-up to 115 high-throughput screening assays, there is only a 30% chance that a compound that is > or = 0.85 (Tanimoto) similar to an active is itself active. Although this enrichment is greater than that found with random screening and docking to three-dimensional structures, this low fraction of actives within similar compounds occurs not only because of deficiencies in the Daylight fingerprints and Tanimoto similarity calculations but also because similar compounds do not necessarily interact with the target macromolecule in similar ways. The current study emphasizes the statistical or probabilistic nature of library design and that perfect results cannot be expected.  相似文献   

13.
The pharmaceutical industry is rapidly adopting virtual screening techniques aimed at identifying chemical compounds that have the required ingredients to become successful drugs. The need for a high-throughput yet inexpensive evaluation of the molecules in silico, before they are tested or even made, is necessitated by the increasing costs of drug discovery and the current ‘drought’ in the new drug approvals. The computational filtering step is especially important for combinatorial chemistry, where billions of compounds can be synthesized from the commodity reagents. Neural networks have a proven ability to model complex relationships between pharmaceutically relevant properties and chemical structures of compounds, and have the potential to improve diversity and quality of virtual screening. This review describes how neural networks are currently used and might be further used in virtual screening of combinatorial libraries.  相似文献   

14.
Computational approaches are becoming increasingly popular for the discovery of drug candidates against a target of interest. Proteins have historically been the primary targets of many virtual screening efforts. While in silico screens targeting proteins has proven successful, other classes of targets, in particular DNA, remain largely unexplored using virtual screening methods. With the realization of the functional importance of many non-cannonical DNA structures such as G-quadruplexes, increased efforts are underway to discover new small molecules that can bind selectively to DNA structures. Here, we describe efforts to build an integrated in silico and in vitro platform for discovering compounds that may bind to a chosen DNA target. Millions of compounds are initially screened in silico for selective binding to a particular structure and ranked to identify several hundred best hits. An important element of our strategy is the inclusion of an array of possible competing structures in the in silico screen. The best hundred or so hits are validated experimentally for binding to the actual target structure by a high-throughput 96-well thermal denaturation assay to yield the top ten candidates. Finally, these most promising candidates are thoroughly characterized for binding to their DNA target by rigorous biophysical methods, including isothermal titration calorimetry, differential scanning calorimetry, spectroscopy and competition dialysis.This platform was validated using quadruplex DNA as a target and a newly discovered quadruplex binding compound with possible anti-cancer activity was discovered. Some considerations when embarking on virtual screening and in silico experiments are also discussed.  相似文献   

15.
Following studies in the late 1990s that indicated that poor pharmacokinetics and toxicity were important causes of costly late-stage failures in drug development, it has become widely appreciated that these areas should be considered as early as possible in the drug discovery process. However, in recent years, combinatorial chemistry and high-throughput screening have significantly increased the number of compounds for which early data on absorption, distribution, metabolism, excretion (ADME) and toxicity (T) are needed, which has in turn driven the development of a variety of medium and high-throughput in vitro ADMET screens. Here, we describe how in silico approaches will further increase our ability to predict and model the most relevant pharmacokinetic, metabolic and toxicity endpoints, thereby accelerating the drug discovery process.  相似文献   

16.
Virtual screening, especially the structure-based virtual screening, has emerged as a reliable, cost-effective and time-saving technique for the discovery of lead compounds. Here, the basic ideas and computational tools for virtual screening have been briefly introduced, and emphasis is placed on aspects of recent development of docking-based virtual screening, scoring functions in molecular docking and ADME/Tox-based virtual screening in the past three years (2000 to 2003). Moreover, successful examples are provided to further demonstrate the effectiveness of virtual screening in drug discovery.  相似文献   

17.
Advances in high-throughput virtual screening using docking, predictive ADME methods and their integration with informatics and high-performance computing are reviewed. Docking approaches have led to the identification of novel active compounds. Predictive ADME methods have improved on selective test sets with broader training sets, though extensive validation is lacking.  相似文献   

18.
19.
Computer systems for the prediction of xenobiotic metabolism   总被引:4,自引:0,他引:4  
The aim of pharmaceutical research and development is to ensure a continuing pipeline of new chemical entities (NCEs) displaying high therapeutic efficacy with few or no side effects. Failure of promising lead candidates late in the drug discovery processes is regarded as commercially unacceptable in today's increasingly competitive business environment. An inappropriate ADME/Toxicity profile in humans is the major cause of failure of lead candidates in late clinical stages of drug development. Combinatorial chemistry techniques coupled with high throughput screening protocols means that pharmaceutical companies are now dealing with an unprecedented number of NCEs on an annual basis. As a consequence, screening for undesirable ADME/Toxicity properties in the early stages of drug development, preferably pre-synthesis, is now considered the essential paradigm. In silico assessment of NCEs is rapidly emerging as the next wave of technology for early ADME/Toxicity prediction. In this review, we discuss the major commercially available products for the assessing the potential metabolic activity of xenobiotic substances in mammalian systems.  相似文献   

20.
Human immunodeficiency virus type-1 (HIV-1) integrase is one of three enzymes encoded by the HIV genome for effective viral replication, and therefore an attractive target for chemotherapeutic interventions in the development of AIDS treatment. In this study, chemical feature-based pharmacophore models of different classes of integrase strand transfer inhibitors have been developed. The best HypoRefine pharmacophore models, Hypo1, which have the best correlation coefficients (0.92) and the lowest RMSs (0.78), contain two hydrogen bond acceptor lipids, one hydrogen bond donor, and one hydrophobic aromatic with four excluded volumes. After filtering by Lipinski’s rule of five, the best pharmacophore model was utilized as a 3D search query to perform a virtual screening to retrieve potential inhibitors. The hit compounds were subsequently subjected to docking studies by GOLD program to refine the retrieved hits. Finally, 4 top ranked compounds based on GOLD score fitness function and rescoring by X-score were investigated for compliance with the standard ranges through in silico ADME studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号