首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid hormone (PTH) is a major regulator of osteoclast formation and activation, effects that are associated with reciprocal up- and down-regulation of RANKL and osteoprotegerin (OPG), respectively. The roles of specific downstream signals generated by the activated PTH/PTH-related protein (PTHrP) receptor (PTH1R), such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) and phospholipase C/protein kinase C (PLC/PKC), in controlling RANKL and OPG expression and osteoclastogenesis remain uncertain. In MS1 conditionally transformed clonal murine marrow stromal cells, which support PTH-induced osteoclast formation from cocultured normal spleen cells, PTH(1-34) increased RANKL and macrophage colony-stimulating factor (M-CSF) mRNA expression and decreased that of OPG when present continuously for 7-20 days at 37 degrees C in the presence of dexamethasone (Dex). In cells precultured for 7 days and then treated with PTH(1-34), similar reciprocal regulation of RANKL and OPG occurred, maximally at 6-24 h, that was of greater amplitude than the changes induced by chronic (7-10 days) PTH exposure. These acute effects of PTH(1-34) were mimicked by PKA stimulators (8-bromoadenosine [8Br]-cAMP or forskolin [FSK]), blocked by the PKA inhibitor Rp-cAMPs but unaffected by the PKC inhibitor GF109203X. Amino-truncated PTH(1-34) analogs PTH(5-34) and PTH(7-34) neither increased cAMP production in MS1 cells nor regulated RANKL or OPG mRNA. Reciprocal RANKL/OPG mRNA regulation was induced in MS1 cells by PTH(3-34) but only at high concentrations that also increased cAMP. The highly PKA-selective PTH analog [Gly1,Arg19]human PTH(1-28) exerted effects similar to PTH(1-34) on RANKL and OPG mRNAs and on osteoclast formation, both in MS1/spleen cell cocultures and in normal murine bone marrow cultures. The direct PKC stimulator 12-O-tetradecanoylphorbol-13-acetate (PMA) did not induce RANKL mRNA in MS1 cells, but it did up-regulate OPG mRNA and also antagonized osteoclast formation induced by PTH(1-34) in both MS1/spleen cocultures and normal bone marrow cultures. Thus, cAMP/PKA signaling via the PTH1R is the primary mechanism for controlling RANKL-dependent osteoclastogenesis, although direct PKC activation may negatively regulate this effect of PTH by inducing expression of OPG.  相似文献   

2.
We previously showed that parathyroid hormone (PTH) induces inducible cAMP early repressor (ICER) in osteoblastic cells and mouse calvariae. PTH signaling in osteoblastic cells is transduced by PTH receptor 1, which is coupled to cAMP-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling pathways. In the present study, we examined the role of these pathways in mediating PTH-induced ICER mRNA and protein expression in osteoblastic MC3T3-E1 cells. Using RT-PCR, we found that PTH(1-34), forskolin (FSK), and 8-bromo-cAMP (8Br-cAMP) induced ICER expression, while phorbol myristate acetate (PMA), ionomycin, and PTH(3-34) did not. Similar results were found for the induction of ICER protein. PKA inhibition by H89 markedly reduced PTH- and FSK-induced ICER expression, while PKC depletion by PMA had little effect. We also tested ICER induction by other osteotropic signaling agonists. Other cAMP-PKA pathway activators, such as PTH-related protein (PTHrP), induced ICER expression, while agents that signal through other pathways did not. PTHrP maximally induced ICER mRNA at 2-4 h, which then returned to baseline by 10 h. Finally, PTH, FSK, and PTHrP induced ICER in cultured mouse calvariae and osteoblastic ROS 17/2.8, UMR-106, and Pyla cells. We conclude that ICER expression in osteoblasts requires activation of the cAMP-PKA signaling pathway.  相似文献   

3.
Lee SK  Lorenzo JA 《BONE》2002,31(1):252-259
Parathyroid hormone (PTH) stimulates receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA and inhibits osteoprotegerin (OPG) mRNA expression in murine bone marrow cultures. To understand the mechanisms influencing these responses, we investigated the role of the protein kinase A (PKA) and protein kinase C (PKC) pathways in the regulation of RANKL and OPG mRNA expression in murine bone marrow cultures. Murine bone marrow cells were stimulated with bovine PTH(1-34) and (1-34) amide, which activate both pathways; PTH(3-34), which more selectively activates the PKC and calcium pathways; and human PTH (1-31), which stimulates adenylyl cyclase, but not protein kinase C. We also examined agents that more directly activate either the PKA pathway (forskolin [FSK] and 8-bromo cAMP [8-Br-cAMP]) or the PKC pathway (phorbol 12-myristate 13-acetate [PMA]) in murine bone marrow cultures. After 1 h, RANKL mRNA expression was stimulated to a similar degree by agents that activate either or both the PKA and PKC pathways. However, this effect was sustained for 24 h only with agents that stimulated PKA. OPG mRNA expression was inhibited by all agents that stimulated PKA at 6 h. In contrast, PKC-specific stimulators [PMA and bPTH(3-34)] had no effect on OPG regulation in this culture system. To determine the involvement of the PKC signaling pathway in responses of RANKL, bone marrow cells were pretreated with PMA for 24 h and then treated with PTH(1-34) or FSK for 2 h. PMA pretreatment did not alter the ability of PTH or FSK to stimulate RANKL or inhibit OPG mRNA expression. Treatment of cells with H-89, a PKA inhibitor, significantly reduced the ability of PTH and FSK to induce RANKL and inhibit OPG mRNA expression. Calphostin C, a PKC inhibitor, significantly reduced PMA-stimulated RANKL mRNA expression without altering PTH- or FSK-mediated effects on RANKL or OPG mRNA. Cycloheximide, an inhibitor for protein synthesis, inhibited PTH-stimulated RANKL mRNA expression by 60% without altering the effect of PTH on OPG mRNA expression. To examine the involvement of prostaglandin in PMA-mediated responses, cells were treated with indomethacin, a nonspecific prostaglandin G/H synthase (PGHS) inhibitor, or NS-398, a selective inhibitor of PGHS-2. Neither PGHS inhibitor altered PMA-induced effects on RANKL and OPG mRNA expression. These results demonstrate that the PKA pathway is predominantly involved in the effects of PTH on RANKL mRNA expression in murine bone marrow cultures, but there is also a PKC-mediated response, which is not sustained. Inhibition of OPG by PTH appears to be a selective PKA response.  相似文献   

4.
5.
Podocyte function appears to be regulated by vasoactive factors. In vivo podocytes express parathyroid hormone-related protein (PTHrP), the N-terminal fragment of which has vasoactive properties. Since the signaling pathway(s) of PTHrP(1-36) are unknown in podocytes, differentiated cells of a conditionally immortalized mouse podocyte cell line were studied. Gene expression of PTHrP and the PTH/PTHrP receptor was investigated by RT-PCR; protein distribution of PTHrP was examined by immunofluorescence. Accumulation of cAMP was determined by an enzyme immunoassay; [Ca2+]i was measured by fura-2 ratio imaging. PTHrP and PTH/PTHrP receptor mRNA was detected in differentiated podocytes. Immunoreactive PTHrP exhibited a granular distribution in the cytoplasm of differentiated podocytes. With regard to the signaling pathway(s) of PTHrP(1-36), a concentration-dependent increase of cAMP levels with an EC50 value of 4 +/- 2 nM was found. PTHrP(1-36) (1 microM) increased cAMP levels 5.5 +/- 1.1-fold above baseline as compared with a 25.4 +/- 4.2-fold increase in response to forskolin (10 microM). The PTH/PTHrP receptor antagonist PTHrP(7-34) significantly diminished the PTHrP(1-36)-induced cAMP increase. While superfusion of podocytes with bradykinin (100 nM) increased [Ca2+]i, PTHrP(1-36) (100 nM) was without effect on [Ca2+]i. However, PTHrP(1-36) attenuated the bradykinin-induced increase in [Ca2+]i. Our results suggest that PTHrP is an autocrine hormone in podocytes, which selectively activates the cAMP pathway through the PTH/PTHrP receptor.  相似文献   

6.
Parathyroid hormone (PTH) is a promising anabolic agent for the treatment of osteoporosis. However, PTH is also potently catabolic. To help delineate the molecular mediators of PTH's opposing effects on skeletal metabolism, we have examined PTH-induced regulator of G-protein signaling-2 (RGS-2) expression and function in murine osteoblasts. RGS proteins are GTPase-activating proteins (GAPs) that regulate GTP-binding protein-coupled receptor (GPCR) signaling by enhancing the intrinsic GTPase activity of Galpha subunits. We found that 10 nmol/L PTH maximally induced RGS-2 mRNA in murine MC3T3-E1 cells, rat Py1a and ROS-17/2.8 cells, primary mouse osteoblasts (MOB cells), and mouse calvariae organ culture at 1-2 h posttreatment. PTH signaling through its receptor, PTHR1, is coupled to cAMP-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling pathways. We examined the effect of selective signaling agonists and antagonists on RGS-2 expression in MOB cells to determine which pathway(s) mediates PTH-induced RGS-2 expression. Although selective activation of all three pathways led to RGS-2 expression, cAMP-PKA activation with 10 nmol/L PTH and 10 micromol/L forskolin elicited the strongest induction. Similarly, RGS-2 mRNA expression was most strongly inhibited by the PKA inhibitor, H89 (10-30 micromol/L). The phorbol ester, PMA (1 micromol/L), which activates the PKC pathway, and ionomycin (1 micromol/L), which activates the calcium pathway, produced small but detectable elevations in RGS-2 mRNA levels. Overnight treatment with 1 micromol/L PMA to deplete PKC did not affect subsequent RGS-2 induction by PTH, but significantly inhibited PMA-induced RGS-2 expression. Treatment with 1-100 nmol/L PTH(3-34), which does not activate cAMP-PKA signaling, did not induce RGS-2 expression. MOB cells pretreated with 3 microg/mL cycloheximide produced sustained RGS-2 mRNA levels 2 h after 10 nmol/L PTH treatment. Actinomycin D (5 microg/mL) completely blocked 10 nmol/L PTH-induced RGS-2 expression. Finally, we tested the effect of RGS-2 overexpression on PTH- and fluprostenol-induced interleukin (IL)-6 promoter activity in MOB cells. PTH induces IL-6 through PKA activation, whereas fluprostenol induces IL-6 through PKC activation. We found that RGS-2 overexpression significantly inhibited IL-6 promoter activity following fluprostenol treatment, but not following PTH treatment. We conclude that RGS-2 is a PTH-induced primary response gene in murine osteoblasts that is induced mainly through the cAMP-PKA pathway and specifically inhibits Galphaq-coupled receptors.  相似文献   

7.
Intermittent administration of the N-terminal fragment of parathyroid hormone (PTH) and PTH-related protein (PTHrP) induces bone anabolic effects. However, the effects of the C-terminal domain of PTHrP on bone turnover remain controversial. We examined the putative mechanisms whereby this PTHrP domain can affect osteoblastic differentiation, using human osteosarcoma MG-63 cells and osteoblastic cells from human trabecular bone. Intermittent exposure to PTHrP (107-139), within 10-100 nM, for only ≤24 hours during cell growth stimulated alkaline phosphatase (ALP) and Runt homology domain protein (Runx2) activities as well as osteocalcin (OC) and osteoprotegerin (OPG) expression but inhibited receptor activator of nuclear factor κB (NF-κB) ligand. Continuous exposure to this PTHrP peptide reversed these effects. The stimulatory effects of transient treatment with PTHrP (107-139) on OC mRNA and/or OPG protein expression were unaffected by a neutralizing anti-insulin-like growth factor I antibody or [Asn10, Leu11, d-Trp12]PTHrP (7-34) in these cells. On the other hand, the former antibody and the latter PTHrP antagonist abrogated the PTHrP (1-36)-induced increase in these osteoblastic products. Transient exposure to PTHrP (107-139), in contrast to PTHrP (1-36), stimulated vascular endothelial growth factor receptor 2 (VEGFR2) mRNA levels in these cells. Moreover, induction of ALP activity as well as OC and OPG expression by PTHrP (107-139) was blunted by SU5614, a permeable tyrosine kinase inhibitor of VEGFR2. Protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) inhibitors abolished the PTHrP (107-139)-stimulated VEGFR2 and OPG mRNA levels in these cells. These results indicate that intermittent exposure to PTHrP (107-139) exerts potential anabolic effects through the PKC/ERK pathway and, subsequently, VEGFR2 upregulation in vitro in human osteoblastic cells. A. R. de Gortázar and V. Alonso contributed equally to this work. This work was presented in part at the International Conference on Progress in Bone and Mineral Research, November 27–29, 2003, Vienna, Austria (published in Bone 33:S17, 2003); at the XLI Congress of the European Renal Association, May 15–18, 2004, Lisbon, Portugal; and at the 26th Annual Meeting of the American Society for Bone and Mineral Research, October 1–5, 2004, Seattle, WA (published in J Bone Miner Res 19[suppl 1]:S194, 2004).  相似文献   

8.

Summary

Parathyroid hormone (PTH) augments bone metabolism and bone mass when given intermittently. Enhanced blood flow is requisite to support high tissue metabolism. The bone arteries are responsive to all three PTH analogs, which may serve to augment skeletal blood flow during intermittent PTH administration.

Introduction

PTH augments bone metabolism. Yet, mechanisms by which PTH regulates bone blood vessels are unknown. We deciphered (1) endothelium-dependent and endothelium-independent vasodilation to PTH 1–84, PTH 1–34, and PTHrP 1–34, (2) the signaling pathways (i.e., endothelial nitric oxide synthase [eNOS], cyclooxygenase [COX], protein kinase C [PKC], and protein kinase A [PKA]), and (3) receptor activation.

Methods

Femoral principal nutrient arteries (PNAs) were given cumulative doses (10?13–10?8 M) of PTH 1–84, PTH 1–34, and PTHrP 1–34 with and without signaling pathway blockade. Vasodilation was also determined following endothelial cell removal (i.e., denudation), PTH 1 receptor (PTH1R) inhibition and to sodium nitroprusside (SNP; a nitric oxide [NO] donor).

Results

Vasodilation was lowest to PTH 1–34, and maximal dilation was highest to PTHrP 1–34. Inhibition of eNOS reduced vasodilation to PTH 1–84 (?80 %), PTH 1–34 (?66 %), and PTHrP 1–34 (?48 %), evidencing the contribution of NO. Vasodilation following denudation was eliminated (PTH 1–84 and PTHrP 1–34) and impaired (PTH 1–34, 17 % of maximum), highlighting the importance of endothelial cells for PTH signaling. Denuded and intact PNAs responded similarly to SNP. Both PKA and PKC inhibition diminished vasodilation in all three analogs to varying degrees. PTH1R blockade reduced vasodilation to 1, 12, and 12 % to PTH 1–84, PTH 1–34, and PTHrP 1–34, respectively.

Conclusions

Vasodilation of femoral PNAs to the PTH analogs occurred via activation of the endothelial cell PTH1R for NO-mediated events. PTH 1–84 and PTHrP 1–34 primarily stimulated PKA signaling, and PTH 1–34 equally stimulated PKA and PKC signaling.
  相似文献   

9.
10.
 目的 探讨甲状旁腺素(parathyroid hormone, PTH)(1-34)对UMR106成骨细胞表达破骨细胞抑制性凝集素 (osteoclast inhibitory lectin, OCIL)基因mRNA的调节及其信号转导机制。方法 培养大鼠UMR106成骨细胞,采用PTH(1-34)及蛋白激酶A(PKA)、蛋白激酶C(PKC)、钙离子、MAPK通路的激动剂或阻断剂干预细胞不同时间后,收集细胞提取总RNA,实时荧光定量PCR检测OCIL mRNA的表达水平。结果 PTH(1-34)以剂量和时间依赖方式促进OCIL mRNA 表达。10 nmol/L PTH(1-34)作用6 h后促进OCIL mRNA表达,24 h上调效应最显著,约为对照组[未加入PTH(1-34)]的 2.8倍。PTH(1-34)对OCIL mRNA表达促进作用的起始时间及高峰时间均晚于其对RANKL的诱导和对OPG的抑制。蛋白激酶A通路激动剂福司可林(FSK)、双丁酰基环腺苷磷酸(db?cAMP)及钙离子载体A23187均不同程度促进OCIL mRNA 表达,最大上调效应分别约为对照组的4.2、4.5和5.1倍。蛋白激酶C激动剂佛波酯(PMA)作用早期(2~6 h)抑制OCIL mRNA表达,作用6 h后最大抑制率达50%;PMA作用后期(24 h)对OCIL mRNA的抑制作用逆转为促进效应。PKA阻断剂 KT5720、钙调蛋白(CaMK)阻断剂W?7、钙调蛋白激酶Ⅱ阻断剂KN?62及丝裂原激活的蛋白激酶(MAPK)阻断剂PD98059 均下调PTH(1-34)诱导的OCIL mRNA表达,最大抑制率分别为56%、61%、63%和50%。各信号通路间存在交互作用。 MAPK通路阻断剂PD98059减少PKA激动剂FSK或db?cAMP诱导的OCIL mRNA表达,抑制率分别为98%和63%;但不影 响A23187诱导的OCIL mRNA水平增高。结论 PKA通路、钙/钙调蛋白通路和MAPK通路可介导PTH(1-34)诱导的OCIL mRNA表达。  相似文献   

11.
Parathyroid hormone (PTH) has significant anabolic and catabolic effects on bone. We hypothesize that PTH-induced primary response genes are important determinants of osteoblast function. PTH induces osteoblastic gene expression through PTHR1, a heptahelical receptor that triggers cyclic adenosine monophosphate (cAMP)–protein kinase A (PKA), protein kinase C (PKC), and calcium signaling. By using representational difference analysis we found that receptor activity modifying protein-3 (RAMP3) is a PTH-induced primary response gene in osteoblastic cells. RAMP3 is a coactivator that directs calcitonin receptor (CTR) and CTR-like receptor (CRLR) glycosylation, trafficking, and ligand-binding specificity. Our purpose was to characterize PTH-induced RAMP3 messenger ribonucleic acid (mRNA) levels in primary mouse osteoblasts (MOBs) and to determine which signaling pathway mediates this effect. 10 nM PTH maximally induced RAMP3 mRNA levels in MOBs at 4 hours. Protein synthesis inhibition with 3 μg/mL cycloheximide did not affect PTH-induced RAMP3 mRNA levels. Selective activation of cAMP-PKA signaling with, 10 μM forskolin (FSK) and PKC signaling with 1 μM phorbol 12-myristate 13-acetate (PMA) significantly increased RAMP3 mRNA levels, whereas 1 μM ionomycin (a calcium ionophore) had no effect. Pretreatment with 30 μM H89, a PKA inhibitor, significantly blocked PTH- and FSK-induced RAMP3 mRNA levels. Pretreatment with 1 μM PMA, which depletes PKC, had no effect on PTH- and FSK-induced RAMP3 mRNA levels but blocked PMA-induced RAMP3 mRNA levels. 100 nM PTH (3-34), which activates PKC and calcium but not PKA, had no effect on RAMP3 mRNA levels. These findings indicate that RAMP3 is a PTH-induced primary response gene in primary MOBs and that PTH regulates RAMP3 gene expression primarily through the cAMP-PKA pathway.  相似文献   

12.
13.
Parathyroid hormone (PTH) plays a key role in the development and homeostasis of mineralized tissues such as bone and dentine. We have reported that PTH (1-34) administration can increase dentine formation in mice and that this hormone modulates in vitro mineralization of odontoblast-like cells. The purpose of the present study was to investigate whether PTH (1-34) participates in the proliferative and apoptotic signaling of odontoblast-like cells (MDPC23). MDPC23 cells were exposed to 50 ng/ml hPTH (1-34) or vehicle for 1 (P1), 24 (P24), or 48 (P48) hours, and the cell proliferation, apoptosis, and cell number were evaluated. To examine whether changes in the proliferative and apoptotic signaling in response to PTH involve protein kinases A (PKA) and/or C (PKC), MDPC23 cells were exposed to PTH with or without PKC or PKA signaling pathway inhibitors. Overall, the results showed that the PKA pathway acts in response to PTH exposure maintaining levels of cell proliferation, while the PKC pathway is mainly involved for longer exposure to PTH (24 or 48 h), leading to the reduction of cell proliferation and increase of apoptosis. The exposure to PTH reduced the cell number in relation to the control group in a time-dependent manner. In conclusion, PTH modulates odontoblast-like cell proliferative and apoptotic response in a time-dependent manner. Both PKC and PKA pathways participate in PTH-induced modulation in an antagonist mode.  相似文献   

14.
15.
16.
17.
18.
Parathyroid hormone-related protein (PTHrP) has been implicated as being important in the growth of tumor cells responsive to the peptide. We utilized a rat osteoblastic osteosarcoma cell line, UMR 106-01, which has PTHrP receptors and a PTHrP-responsive adenylate cyclase/cAMP messenger system, to produce a modified cell line that overexpresses PTHrP. The human PTHrP cDNA sequence was transfected by electroporation into UMR 106-01 cells and the stable cell lines UMR-36 and UMR-34 were established. The modified cell line, UMR-36, had increased levels of PTHrP mRNA compared with control cell lines and secreted PTHrP into the culture medium at levels of 0.01-0.1 pmol/10(7) cells in 12 h. The secreted peptide was biologically active as indicated by its ability to activate adenylate cyclase. The number of UMR-36 cells following 9 days in culture was reduced by up to 80% compared with control lines, which was associated with decreased (3)H-thymidine incorporation into genomic DNA. Addition of 1000-fold excess of the PTHrP antagonist, PTHrP(7-34), to UMR-36 cells resulted in the escape of growth inhibition and increased rate of growth. In vivo, tumors derived from UMR-36 cells were smaller in size compared with tumors derived from control cells. In conclusion, increased autocrine secretion of, and responsiveness to, PTHrP results in inhibited growth kinetics of an osteoblast-like bone tumor cell line in vitro and in vivo.  相似文献   

19.
Parathyroid hormone (PTH)-related protein (PTHrP) is widely expressed in normal fetal and adult tissues and regulates growth and differentiation in a number of organ systems. Although various renal cell types produce PTHrP, and PTHrP expression in rat proximal renal tubules is upregulated in response to ischemic injury in vivo, the role of PTHrP in the kidney is unknown. To study the effects of injury on PTHrP expression and its consequences in more detail, the immortalized human proximal tubule cell line HK-2 was used in an in vitro model of ATP depletion to mimic in vivo renal ischemic injury. These cells secrete PTHrP into conditioned medium and express the type I PTH/PTHrP receptor. Treatment of confluent HK-2 cells for 2 h with substrate-free, glucose-free medium containing the mitochondrial inhibitor antimycin A (1 microM) resulted in 75% depletion of cellular ATP. After an additional 2 h in glucose-containing medium, cellular ATP levels recovered to approximately 75% of baseline levels. PTHrP mRNA levels, as measured in RNase protection assays, peaked at 2 h into the recovery period (at four times baseline expression). The increase in PTHrP mRNA expression was correlated with an increase in PTHrP protein content in HK-2 cells at 2 to 6 h into the recovery period. Heat shock protein-70 mRNA expression was not detectable under baseline conditions but likewise peaked at 2 h into the recovery period. Treatment of HK-2 cells during the recovery period after injury with an anti-PTHrP(1-36) antibody (at a dilution of 1:250) resulted in significant reductions in cell number and uptake of [3H]thymidine, compared with nonimmune serum at the same titer. Similar results were observed in uninjured HK-2 cells. It is concluded that this in vitro model of ATP depletion in a human proximal tubule cell line reproduces the pattern of gene expression previously observed in vivo in rat kidney after ischemic injury and that PTHrP plays a mitogenic role in the proliferative response after energy depletion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号