首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Plasmodium vivax is most common but non-cultivable human malaria parasite which is poorly characterized at the molecular level. Here, we describe the identification and characterization of a P. vivax Tryptophan-Rich Antigen (PvTRAg) which contains unusually high (8.28%) tryptophan residues and is expressed by all blood stages of the parasite. The pvtrag gene comprises a 978bp open reading frame interrupted by two introns. The first intron is located in the 5'-untranslated region while the second one is positioned 174bp downstream to the ATG codon. The encoded approximately 40kDa protein contains a transmembrane domain near the N-terminus followed by a tryptophan-rich domain with significantly high surface probability and antigenic index. It is localized in the parasite cytoplasm as well as in the cytoplasm of the parasitized erythrocyte. The purified E. coli expressed recombinant PvTRAg protein showed a very high seropositivity rate for the presence of antibodies amongst the P. vivax patients, indicating that the antigen generates significant humoral immune response during the natural course of P. vivax infection. Analysis of various field isolates revealed that the tryptophan-rich domain is highly conserved except for three-point mutations. The PvTRAg could be a potential vaccine candidate since similar tryptophan-rich antigens of P. yoelii have shown protection against malaria in murine model.  相似文献   

2.
Tryptophan-rich antigens (TRAgs) are an antigen family that has been identified in human and rodent malaria parasites. TRAgs have been proposed as candidate antigens for potential vaccines. The Plasmodium vivax TRAg (PvTRAg) family includes 36 members. Each PvTRAg contains a tryptophan-rich (TR) domain in the C-terminal region. In this study, we recombinantly expressed all 36 PvTRAgs using a cell-free expression system, and, for the first time, profiled the IgG antibody responses against all PvTRAgs in the sera from 96 vivax malaria patients and 40 healthy individuals using protein microarray technology. The mean seropositive rate for all PvTRAgs was 60.3%. Among them, nine PvTRAgs were newly identified in this study and showed a seropositive rate of >50%. Five of them, PvTRAg_13, PvTRAg_15, PvTRAg_16, PvTRAg_26, and PvTRAg_29, produced higher levels of IgG antibody, even in low-endemicity countries. In addition, the results of an immunofluorescence analysis suggest that PvTRAgs are, at least in part, associated with caveola-vesicle complexes, a unique structure of P. vivax-infected erythrocytes. The mechanism of formation and the function of these abundant membrane structures are not known. Further investigation aimed at determining the functions of these proteins would lead to a better understanding of the blood-stage biology of P. vivax.  相似文献   

3.
Previously, we reported the characterization of pypAg-1, a novel protective membrane protein of Plasmodium yoelii-infected erythrocytes. Immunization studies indicated that pypAg-1 contained at least two protective epitopes. One of these determinants was associated with the N-terminal portion of pypAg-1, that also included a 220 amino acid domain unusually rich in tryptophan residues. Using sera from mice immunized against P. yoelii, we have identified a second related antigen, pypAg-3. The pypag-3 cDNA encodes a 43 kDa blood-stage protein that is also characterized by the presence of a 220 residue tryptophan-rich domain. Of particular interest, sequence comparisons revealed that 24 tryptophan residues are positionally conserved between pypAg-1 and pypAg-3. Otherwise, the two antigens share limited sequence similarity. Full-length recombinant pypAg-3 was expressed, purified and used to produce a high titer polyclonal rabbit antiserum. As with pypAg-1, immunofluorescence studies showed that pypAg-3 is expressed in the cytoplasm and associated with the membrane of P. yoelii infected erythrocytes. In addition, pypAg-1 and pypAg-3 appear to be secreted proteins, as both were detected in culture supernatants of P. yoelii-infected erythrocytes. Finally, metabolically labeled pypAg-1 and pypAg-3 secreted from parasitized cells bind to the surface of uninfected, normal mouse erythrocytes. As such, the conservation of the unusual tryptophan-rich domain between two blood-stage malarial proteins with similar biological properties suggests that it may be important for protein export and/or function.  相似文献   

4.
We studied the immune response induced in mice by recombinant Toxoplasma gondii surface antigen 1 (rSAG1) protein, alone or combined with interleukin-12 (IL-12) as an adjuvant, and the protective effect against toxoplasmosis. Immunization with rSAG1 alone induced a specific humoral type 2 immunity and did not protect the animals from infection. In contrast, immunization with rSAG1 plus IL-12 redirected humoral and cellular immunity toward a type 1 pattern and reduced the brain parasite load by 40%.  相似文献   

5.
Apical membrane antigen 1 (AMA-1) is an invasion-related Plasmodium antigen that is expressed during both intracellular and extracellular asexual stages of the parasite's life cycle, making it an ideal target for induction of humoral and cellular immune responses that can protect against malaria. We show here that when it is administered as a recombinant protein (P) in Montanide ISA720 adjuvant, followed by a recombinant human type 5 adenovirus (Ad), intense and long-lasting Plasmodium vivax AMA-1-specific antibody responses (including both IgG1 and IgG2a), as well as proliferative memory T cell responses, can be detected in immunized mice. Memory T cells displayed both central (CD44(hi) CD62L(hi)) and effector (CD44(hi) CD62L(lo)) phenotypes, with the central memory phenotype prevailing (56% of AMA-1-specific proliferating cells). Considering the main traits of the memory immune responses induced against AMA-1, this particular sequence of immunogens (P followed by Ad), but no others (Ad/Ad, Ad/P, or P/P), displayed an optimal synergistic effect. These results give further support to the need for preclinical studies of P. vivax vaccine candidate AMA-1 administered in prime/boost protocols that include recombinant proteins and adenoviral vectors.  相似文献   

6.
Erythrocyte invasion by malaria parasites requires specific receptor-ligand interactions. Plasmodium vivax and Plasmodium knowlesi are completely dependent on binding the Duffy blood group antigen to invade human erythrocytes. P. knowlesi invades rhesus erythrocytes by multiple pathways using the Duffy antigen as well as alternative receptors. Plasmodium falciparum binds sialic acid residues on glycophorin A as well as other sialic acid-independent receptors to invade human erythrocytes. Parasite proteins that mediate these interactions belong to a family of erythrocyte binding proteins, which includes the P. vivax Duffy binding protein, 175 kDa P. falciparum erythrocyte binding antigen (EBA-175), P. knowlesi alpha protein, which binds human and rhesus Duffy antigens, and P. knowlesi beta and gamma proteins, which bind Duffy-independent receptors on rhesus erythrocytes. The receptor-binding domains of these proteins lie in conserved, N-terminal, cysteine-rich regions that are referred to as region II. Here, we have examined the feasibility of inhibiting erythrocyte invasion with antibodies directed against receptor-binding domains of erythrocyte binding proteins. Region II of P. knowelsi alpha protein (Pk(alpha)RII), which binds the Duffy antigen, was expressed as a secreted protein in insect cells and purified from culture supernatants. Rabbit antibodies raised against recombinant Pk(alpha)RII were tested for inhibition of erythrocyte binding and invasion. Antibodies raised against Pk(alpha)RII inhibit P. knowlesi invasion of both human and rhesus erythrocytes. These data provide support for the development of recombinant vaccines based on the homologous binding domains of P. vivax Duffy binding protein and P. falciparum EBA-175.  相似文献   

7.
Clearance of Hepatitis C Virus (HCV) infection is an uncommon phenomenon. To understand the mechanism of viral persistence despite active cellular and humoral responses, we examined the in vitro cytokine response of PBMC from an HCV sero-positive, asymptomatic individual to recombinant intact antigen and sixty-nine overlapping peptides of the HCV non-structural (NS) 3 protein. Whereas, intact antigen induced strong proliferation and significant levels of gammaIFN and IL-10, little or no IL-2 was produced. Only 7% of peptides induced IL-2, which also coincided with their ability to stimulate proliferation. In contrast, 38% of the peptides induced gammaIFN while 35% induced IL-10. All IL-2 stimulating peptides also induced significant levels of gammaIFN and among these, a peptide corresponding to residues 358-375 was the strongest. In addition, 16% of the peptides induced both gammaIFN and IL-10. Exogenous recombinant IL-10 inhibited proliferation and IL-2 induction in response to peptide 358-375. Furthermore, neutralization of IL-10 with an anti-IL-10 antibody resulted in enhanced IL-2 production in response to recombinant NS3 protein. We suggest that IL-10 inducing epitopes within HCV NS3 may thus down-regulate IL-2 dependent T-cell responses.  相似文献   

8.
Plasmodium vivax is the major cause of malaria outside sub-Saharan Africa and inflicts debilitating morbidity and consequent economic impacts in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of a novel chimeric recombinant protein, VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Very few adjuvant formulations are currently available for human use. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study rhesus monkeys were immunized intramuscularly three times with VMP001 in combination with a stable emulsion (SE) or a synthetic Toll-like receptor 4 (TLR4) agonist (glucopyranosyl lipid A [GLA]) in SE (GLA-SE). Sera and peripheral blood mononuclear cells (PBMCs) were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of monkeys generated high titers of anti-P. vivax IgG antibodies, as detected by enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. In addition, all groups generated a cellular immune response characterized by antigen-specific CD4(+) T cells secreting predominantly interleukin-2 (IL-2) and lesser amounts of tumor necrosis factor (TNF). We conclude that the combination of VMP001 and GLA-SE is safe and immunogenic in monkeys and may serve as a potential second-generation vaccine candidate against P. vivax malaria.  相似文献   

9.
A 35-kilodalton (kDa) recombinant antigen (35-kDa antigen) produced by Escherichia coli JM107 carrying DNA from Mycobacterium tuberculosis was purified and immunologically examined by in vivo and in vitro methods. A monoclonal antibody (2B2) was produced against the 35-kDa antigen. The protein was purified from the insoluble fraction of the recombinant E. coli strain by either affinity chromatography with the 2B2 monoclonal antibody or preparative isoelectric focusing. In enzyme-linked immunosorbent assay and Western blot (immunoblot) analyses, antibody to 2B2 reacted with whole-cell sonic extracts of M. tuberculosis and other slowly growing mycobacteria but not with two rapid growers, M. chelonae and M. fortuitum. An injection series totaling less than 1 mg of purified protein without adjuvant elicited a humoral response in guinea pigs. In one guinea pig, 10 micrograms of purified protein injected intradermally elicited both a humoral and a cell-mediated response. Results of these studies suggest that the 35-kDa antigen is a membrane-associated protein that stimulates both humoral and cell-mediated immune responses and should be evaluated as a vaccine candidate.  相似文献   

10.
Plasmodium vivax Duffy binding protein (DBP) is a conserved functionally important protein. P. vivax DBP is an asexual blood-stage malaria vaccine candidate because adhesion of P. vivax DBP to its erythrocyte receptor is essential for the parasite to continue development in human blood. We developed a soluble recombinant protein of P. vivax DBP (rDBP) and examined serologic activity to it in residents of a region of high endemicity. This soluble rDBP product contained the cysteine-rich ligand domain and most of the contiguous proline-rich hydrophilic region. rDBP was expressed as a glutathione S-transferase (GST) fusion protein and was isolated from GST by thrombin treatment of the purified fusion protein bound on glutathione agarose beads. P. vivax rDBP was immunogenic in rabbits and induced antibodies that reacted with P. vivax and Plasmodium knowlesi merozoites. Human sera from adult residents of a region of Papua New Guinea where malaria is highly endemic or P. vivax-infected North American residents reacted with rDBP in an immunoblot and an enzyme-linked immunosorbent assay. The reactivity to reduced, denatured P. vivax rDBP and the cross-reactivity with P. knowlesi indicated the presence of immunogenic conserved linear B-cell epitopes. A more extensive serologic survey of Papua New Guinea residents showed that antibody response to P. vivax DBP is common and increases with age, suggesting a possible boosting of the antibody response in some by repeated exposure to P. vivax. A positive humoral response to P. vivax DBP correlated with a significantly higher response to P. vivax MSP-1(19). The natural immunogenicity of this DBP should strengthen its usefulness as a vaccine.  相似文献   

11.
Cytophilic antibodies (Abs) play a critical role in protection against Plasmodium falciparum blood stages, yet little is known about the parameters regulating production of these Abs. We used an in vitro culture system to study the subclass distribution of antigen (Ag)-specific immunoglobulin G (IgG) produced by peripheral blood mononuclear cells (PBMCs) from individuals exposed to P. falciparum or unexposed individuals. PBMCs, cultivated with or without cytokines and exogenous CD40/CD40L signals, were stimulated with a crude parasite extract, recombinant vaccine candidates derived from conserved Ags (19-kDa C terminus of merozoite surface protein 1 [MSP1(19)], R23, and PfEB200), or recombinant Ags derived from the polymorphic Ags MSP1 block 2 and MSP2. No P. falciparum-specific Ab production was detected in PBMCs from unexposed individuals. PBMCs from donors exposed frequently to P. falciparum infections produced multiple IgG subclasses when they were stimulated with the parasite extract but usually only one IgG subclass when they were stimulated with a recombinant Ag. Optimal Ab production required addition of interleukin-2 (IL-2) and IL-10 for all antigenic preparations. The IgG subclass distribution was both donor and Ag dependent and was only minimally influenced by the exogenous cytokine environment. In vitro IgG production and subclass distribution correlated with plasma Abs to some Ags (MSP1(19), R23, and MSP2) but not others (PfEB200 and the three MSP1 block 2-derived Ags). Data presented here suggest that intrinsic properties of the protein Ag itself play a major role in determining the subclass of the Ab response, which has important implications for rational design of vaccine delivery.  相似文献   

12.
Type 1 immune responses play an important role in the resolution of diseases with infectious or oncogenic etiologies. Vaccines for production animals frequently target humoral immune responses and are often ineffective in protecting against disease. In order to shift the immune response more toward cellular immunity (i.e., type 1 response), we tested the ability of a mycobacterial protein, early secretory antigenic target (ESAT-6), to enhance interferon-gamma (IFN-gamma) secretion during the recall response with a second antigen. The Mycoplasma hyopneumoniae membrane protein P71 was used as a test antigen in murine vaccination studies. The ESAT-6 open reading frame (ORF) was fused to DNA encoding P71 to produce a recombinant protein that was used to immunize BALB/c mice. Control mice immunized with P71 alone demonstrated a splenic response characterized by release of interleukin-10 (IL-10) and a balanced antigen-specific IgG1/IgG2a antibody response. The presence of ESAT-6 as a fusion partner with P71 during immunization, however, resulted in an enhanced P71-specific IFN-gamma response, decreased release of IL-10, and significantly greater (p < 0.05) IgG2a antibody levels in comparison to immunizing with P71 alone. These results demonstrate that ESAT-6 can modify the profile of an immunologic response to an accompanying immunogen.  相似文献   

13.
Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. The occurrence of clinical protection in P. vivax malaria in Brazil was first reported among residents of the riverine community of Portuchuelo, in Rond?nia, western Amazon. We thus analyzed immune sera from this same human population to determine if naturally acquired humoral immune responses against the merozoite surface protein 1 of P. vivax, PvMSP1, could be associated with reduced risk of infection and/or clinical protection. Our results demonstrated that this association could be established with anti-PvMSP1 antibodies predominantly of the immunoglobulin G3 subclass directed against the N terminus but not against the C terminus, in spite of the latter being more immunogenic and capable of natural boosting. This is the first report of a prospective study of P. vivax malaria demonstrating an association of reduced risk of infection and clinical protection with antibodies against an antigen of this parasite.  相似文献   

14.
15.
Erythrocyte invasion by Plasmodium vivax is completely dependent on binding to the Duffy blood group antigen by the parasite Duffy binding protein (DBP). The receptor-binding domain of this protein lies within a cysteine-rich region referred to as region II (DBPII). To examine whether antibody responses to DBP correlate with age-acquired immunity to P. vivax, antibodies to recombinant DBP (rDBP) were measured in 551 individuals residing in a village endemic for P. vivax in Papua New Guinea, and linear epitopes mapped in the critical binding region of DBPII. Antibody levels to rDBP(II) increased with age. Four dominant linear epitopes were identified, and the number of linear epitopes recognized by semi-immune individuals increased with age, suggesting greater recognition with repeated infection. Some individuals had antibodies to rDBP(II) but not to the linear epitopes, indicating the presence of conformational epitopes. This occurred in younger individuals or subjects acutely infected for the first time with P. vivax, indicating that repeated infection is required for recognition of linear epitopes. All four dominant B-cell epitopes contained polymorphic residues, three of which showed variant-specific serologic responses in over 10% of subjects examined. In conclusion, these results demonstrate age-dependent and variant-specific antibody responses to DBPII and implicate this molecule in partial acquired immunity to P. vivax in populations in endemic areas.  相似文献   

16.
The Plasmodium vivax merozoite surface protein 1 (MSP-1) 42-kDa fragment (PvMSP-1 p42) is a promising vaccine candidate antigen against the blood stage of the malarial parasite. We have developed a process for the production of this vaccine target, keeping in mind its use in human volunteers. A novel strain, Origami(DE3), of Escherichia coli with mutations in the glutathione and thioredoxin reductase genes yielded 60% more soluble PvMSP-1 p42 than the conventional E. coli BL21(DE3) strain. Recombinant PvMSP-1 p42 was purified to > or = 99% purity with a rapid two-step protocol designed for easy scaling up. The final product had a low endotoxin content and was stable in its lyophilized form. PvMSP-1 p42 was found to have the predicted primary and tertiary structures and consisted of a single conformer containing one free cysteine, as predicted. The product was recognized by conformational monoclonal antibodies against P. vivax MSP-1. Immunogenicity studies of PvMSP-1 p42 were carried out with two strains of mice and the adjuvants Montanide ISA51 and Montanide ISA720. Both formulations were found to induce high levels of immunoglobulin G1 (IgG1), IgG2b, and IgG2a antibodies along with low levels of IgG3. Lymphocytes from animals in all the PvMSP-1 p42-immunized groups showed proliferative responses upon stimulation with PvMSP-1 p42; the cytokines interleukin 2 (IL-2), gamma interferon, IL-4, and IL-10 were detected in the culture supernatants. These results indicate that PvMSP-1 p42 in combination with both of the adjuvants elicited cellular and humoral responses in mice.  相似文献   

17.
18.
Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate. The binding domain of PvDBP lies in a cysteine-rich portion of the molecule called region II (PvDBPII). PvDBPII contains three distinct subdomains based upon intramolecular disulfide bonding patterns. Subdomain 2 (SD2) is highly polymorphic and is thought to contain many key residues for binding to Fy, while SD1 and SD3 are comparatively conserved and their role in Fy binding is not well understood. To examine the relative contributions of the different subdomains to binding to Fy and their abilities to elicit strain-transcending binding-inhibitory antibodies, we evaluated recombinant proteins from SD1+2, SD2, SD3, and SD3+, which includes 24 residues of SD2. All of the recombinant subdomains, except for SD2, bound variably to human erythrocytes, with constructs containing SD3 showing the best binding. Antisera raised in laboratory animals against SD3, SD3+, and SD2+3 inhibited the binding of full-length PvDBPII, which is strain transcending, whereas antisera generated to SD1+2 and SD2 failed to generate blocking antibodies. All of the murine monoclonal antibodies generated to full-length PvDBPII that had significant binding-inhibitory activity recognized only SD3. Thus, SD3 binds Fy and elicits blocking antibodies, indicating that it contains residues critical to Fy binding that could be the basis of a strain-transcending candidate vaccine against P. vivax.  相似文献   

19.
The design of an effective vaccine against Plasmodium falciparum, the most deadly malaria parasite of humans, requires a careful definition of the epitopes and the immune responses involved in protection. Liver-stage antigen 1 (LSA-1) is specifically expressed during the hepatic stage of P. falciparum and elicits cellular and humoral immune responses in naturally exposed individuals. We report here that interleukin-10 (IL-10) production in response to LSA-1 predicts resistance to P. falciparum after eradication therapy. Resistance was not related to gamma interferon or tumor necrosis factor alpha production. This is the first report that human IL-10 responses are associated with resistance after eradication therapy, and our findings support the inclusion of LSA-1 in a vaccine against malaria.  相似文献   

20.
为探讨重组弓形虫棒状体蛋白5诱导的免疫应答及其免疫保护效应,本研究克隆表达了弓形虫棒状体蛋白5,并分析其诱导的细胞免疫、体液免疫应答和抗弓形虫感染的保护作用。采用PCR方法从刚地弓形虫cDNA中扩增出ROP5基因片段,将该基因片段克隆至pET-28a原核表达载体表达,用重组ROP5蛋白免疫BALB/c小鼠,ELISA检测免疫后小鼠抗体和细胞因子的变化。以强毒型RH株弓形虫攻击感染免疫小鼠,统计小鼠不同时间存活率,评价重组蛋白产生的免疫保护性。结果表明ROP5重组蛋白疫苗免疫BALB/c小鼠诱导机体产生高水平的IgG、IgG1、IgG2a抗体和IFN—y、IL-2及IL-10细胞因子。与PBS及佐剂对照组相比,重组蛋白免疫组小鼠的存活时间明显延长。本实验证实了ROP5重组蛋白免疫BALB/c小鼠能够诱导其产生高水平的体液免疫和细胞免疫应答,以及一定的抗弓形虫感染保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号