共查询到20条相似文献,搜索用时 11 毫秒
1.
Ex Vivo Costimulatory Blockade to Generate Regulatory T Cells From Patients Awaiting Kidney Transplantation 下载免费PDF全文
E. C. Guinan G. A. Cole W. H. Wylie R. H. Kelner K. J. Janec H. Yuan J. Oppatt L. L. Brennan L. A. Turka J. Markmann 《American journal of transplantation》2016,16(7):2187-2195
Short‐term outcomes of kidney transplantation have improved dramatically, but chronic rejection and regimen‐related toxicity continue to compromise overall patient outcomes. Development of regulatory T cells (Tregs) as a means to decrease alloresponsiveness and limit the need for pharmacologic immunosuppression is an active area of preclinical and clinical investigation. Nevertheless, the immunomodulatory effects of end‐stage renal disease on the efficacy of various strategies to generate and expand recipient Tregs for kidney transplantation are incompletely characterized. In this study, we show that Tregs can be successfully generated from either freshly isolated or previously cryopreserved uremic recipient (responder) and healthy donor (stimulator) peripheral blood mononuclear cells using the strategy of ex vivo costimulatory blockade with belatacept during mixed lymphocyte culture. Moreover, these Tregs maintain a CD3+CD4+CD25+CD127lo surface phenotype, high levels of intracellular FOXP3 and significant demethylation of the FOXP3 Treg‐specific demethylation region on allorestimulation with donor stimulator cells. These data support evaluation of this simple, brief Treg production strategy in clinical trials of mismatched kidney transplantation. 相似文献
2.
Benedikt Mahr Nina Pilat Nicolas Granofszky Moritz Muckenhuber Lukas W. Unger Anna M. Weijler Mario Wiletel Romy Steiner Lisa Dorner Heinz Regele Thomas Wekerle 《American journal of transplantation》2021,21(3):968-977
Eliminating cytoreductive conditioning from chimerism-based tolerance protocols would facilitate clinical translation. Here we investigated the impact of major histocompatibility complex (MHC) and minor histocompatibility antigen (MiHA) barriers on mechanisms of tolerance and rejection in this setting. Transient depletion of natural killer (NK) cells at the time of bone marrow (BM) transplantation (BMT) (20 × 106 BALB/c BM cells → C57BL/6 recipients under costimulation blockade [CB] and rapamycin) prevented BM rejection. Despite persistent levels of mixed chimerism, BMT recipients gradually rejected skin grafts from the same donor strain. Extending NK cell depletion did not improve skin graft survival. However, F1 (C57BL/6×BALB/c) donors, which do not elicit NK cell-mediated rejection, induced durable chimerism and tolerance. In contrast, if F1 donors with BALB/c background only were used (BALB/c×BALB.B), no tolerance was observed. In the absence of MiHA disparities (B10.D2 donors, MHC-mismatch only), temporal NK cell depletion established stable chimerism and tolerance. Conversely, MHC identical BM (BALB.B donors, MiHA mismatch only) readily engrafted without NK cell depletion but no skin graft tolerance ensued. Therefore, we conclude that under CB and rapamycin, MHC disparities provoke NK cell-mediated BM rejection in nonirradiated recipients whereas MiHA disparities do not prevent BM engraftment but impede skin graft tolerance in established mixed chimeras. 相似文献
3.
Kaempferol Promotes Transplant Tolerance by Sustaining CD4+FoxP3+ Regulatory T Cells in the Presence of Calcineurin Inhibitor 下载免费PDF全文
Q. Xie S. M. Xu X. W. Jin W. Li A. Zhou Z. Dai 《American journal of transplantation》2015,15(7):1782-1792
Calcineurin inhibitor cyclosporine is widely used as an immunosuppressant in clinic. However, mounting evidence has shown that cyclosporine hinders tolerance induction by dampening Tregs. Therefore, it is of paramount importance to overcome this pitfall. Kaempferol was reported to inhibit DC function. Here, we found that kaempferol delayed islet allograft rejection. Combination of kaempferol and low‐dose, but not high‐dose, of cyclosporine induced allograft tolerance in majority of recipient mice. Although kaempferol plus either dose of cyclosporine largely abrogated proliferation of graft‐infiltrating T cells and their CTL activity, both proliferation and CTL activity in mice treated with kaempferol plus low‐dose, but not high‐dose, cyclosporine reemerged rapidly upon treatment withdrawal. Kaempferol increased CD4+FoxP3+ Tregs both in transplanted mice and in vitro, likely by suppressing DC maturation and their IL‐6 expression. Reduction in Tregs by low dose of cyclosporine was reversed by kaempferol. Kaempferol‐induced Tregs exhibited both allospecific and non‐allospecific suppression. Administering IL‐6 abrogated allograft tolerance induced by kaempferol and cyclosporine via diminishing CD4+FoxP3+ Tregs. Thus, for the first time, we demonstrated that kaempferol promotes transplant tolerance in the presence of low dose of cyclosporine, which allows for sufficient Treg generation while minimizing side effects, resulting in much‐needed synergy between kaempferol and cyclosporine. 相似文献
4.
Complement Dependence of Murine Costimulatory Blockade‐Resistant Cellular Cardiac Allograft Rejection 下载免费PDF全文
N. Chun R. L. Fairchild Y. Li J. Liu M. Zhang W. M. Baldwin III P. S. Heeger 《American journal of transplantation》2017,17(11):2810-2819
Building on studies showing that ischemia–reperfusion‐(I/R)‐injury is complement dependent, we tested links among complement activation, transplantation‐associated I/R injury, and murine cardiac allograft rejection. We transplanted BALB/c hearts subjected to 8‐h cold ischemic storage (CIS) into cytotoxic T‐lymphocyte associated protein 4 (CTLA4)Ig‐treated wild‐type (WT) or c3?/? B6 recipients. Whereas allografts subjected to 8‐h CIS rejected in WT recipients with a median survival time (MST) of 37 days, identically treated hearts survived >60 days in c3?/? mice (p < 0.05, n = 4–6/group). Mechanistic studies showed recipient C3 deficiency prevented induction of intragraft and serum chemokines/cytokines and blunted the priming, expansion, and graft infiltration of interferon‐γ–producing, donor‐reactive T cells. MST of hearts subjected to 8‐h CIS was >60 days in mannose binding lectin (mbl1?/?mbl2?/?) recipients and 42 days in factor B (cfb?/?) recipients (n = 4–6/group, p < 0.05, mbl1?/?mbl2?/? vs. cfb?/?), implicating the MBL (not alternative) pathway. To pharmacologically target MBL‐initiated complement activation, we transplanted BALB/c hearts subjected to 8‐h CIS into CTLA4Ig‐treated WT B6 recipients with or without C1 inhibitor (C1‐INH). Remarkably, peritransplantation administration of C1‐INH prolonged graft survival (MST >60 days, p < 0.05 vs. controls, n = 6) and prevented CI‐induced increases in donor‐reactive, IFNγ‐producing spleen cells (p < 0.05). These new findings link donor I/R injury to T cell–mediated rejection through MBL‐initiated, complement activation and support testing C1‐INH administration to prevent CTLA4Ig‐resistant rejection of deceased donor allografts in human transplant patients. 相似文献
5.
Prevention of Allograft Rejection by Use of Regulatory T Cells With an MHC‐Specific Chimeric Antigen Receptor 下载免费PDF全文
F. Noyan K. Zimmermann M. Hardtke‐Wolenski A. Knoefel E. Schulde R. Geffers M. Hust J. Huehn M. Galla M. Morgan A. Jokuszies M. P. Manns E. Jaeckel 《American journal of transplantation》2017,17(4):917-930
CD4+CD25highFOXP3+ regulatory T cells (Tregs) are involved in graft‐specific tolerance after solid organ transplantation. However, adoptive transfer of polyspecific Tregs alone is insufficient to prevent graft rejection even in rodent models, indicating that graft‐specific Tregs are required. We developed a highly specific chimeric antigen receptor that recognizes the HLA molecule A*02 (referred to as A2‐CAR). Transduction into natural regulatory T cells (nTregs) changes the specificity of the nTregs without alteration of their regulatory phenotype and epigenetic stability. Activation of nTregs via the A2‐CAR induced proliferation and enhanced the suppressor function of modified nTregs. Compared with nTregs, A2‐CAR Tregs exhibited superior control of strong allospecific immune responses in vitro and in humanized mouse models. A2‐CAR Tregs completely prevented rejection of allogeneic target cells and tissues in immune reconstituted humanized mice in the absence of any immunosuppression. Therefore, these modified cells have great potential for incorporation into clinical trials of Treg‐supported weaning after allogeneic transplantation. 相似文献
6.
7.
N. Moore M. Moreno Gonzales K. Bonner B. Smith W. Park M. Stegall 《American journal of transplantation》2017,17(6):1663-1669
Plasma cells (PCs) are a major source of alloantibody in transplant patients and are resistant to current therapy. Because receptor–ligand interactions in stromal microenvironments play important roles in the localization, development, and survival of normal PCs, we hypothesized that interfering with CXCR4/CXCL12 interactions with plerixafor might cause PC depletion and enhance the efficacy of the proteasome inhibitor bortezomib. PCs in mouse spleen, bone marrow, and peripheral blood demonstrated CXCR4 expression. We then treated with plerixafor in doses ranging from 240 μg/kg in a single dose to a 1‐mg/kg daily dose for 10 days. CXCR4/CXCL12 blockade with plerixafor resulted in increased mobilization of PCs into the peripheral blood. Splenectomy completely abrogated this effect, suggesting that all plerixafor‐mobilized cells were from the spleen. The total number of PCs in the spleen and marrow remained constant despite treatment with plerixafor. Bortezomib caused a reduction in PCs, but adding plerixafor did not increase killing. We conclude that CXCR4/CXCL12 interactions are important for the retention of a subpopulation of PCs in the spleen, but this interaction has minimal effect on PCs in the marrow. The lack of enhancement of bortezomib‐mediated depletion suggests that factors other than CXCR4/CXCL12 interactions are responsible for drug resistance. 相似文献
8.
Hyperlipidemia Alters Regulatory T Cell Function and Promotes Resistance to Tolerance Induction Through Costimulatory Molecule Blockade 下载免费PDF全文
Recent work from our laboratory has shown that hyperlipidemia promotes accelerated rejection of vascularized cardiac allografts in mice by inducing anti‐donor Th17 reactivity and production of IL‐17. Here, we show that hyperlipidemia also affects FoxP3+ regulatory T cells (Tregs). Hyperlipidemia promotes the development of Tregs that express low levels of CD25. Hyperlipidemia also promotes a decrease in central Tregs and an increase in effector Tregs that appears to account for the increase in the frequency of CD25low Tregs. Alterations in Treg subsets also appear to lead to alterations in Treg function. The ability of FoxP3+, CD25high, CD4+ Tregs from hyperlipidemic mice to inhibit proliferation of effector T cells stimulated with anti‐CD3 and CD28 was reduced when compared with Tregs from control mice. Regulatory T cells isolated from hyperlipidemic recipients exhibit increased activation of Akt, and a reduction in Bim levels that permits the expansion of FoxP3+CD25lowCD4+ T cells. Hyperlipidemic mice were also resistant to tolerance induction using costimulatory molecule blockade consisting of anti‐CD154 and CTLA4Ig, a strategy that requires Tregs. Together, our data suggest that hyperlipidemia profoundly affects Treg subsets and function as well as the ability to induce tolerance. 相似文献
9.
B. Mahr N. Pilat S. Maschke N. Granofszky C. Schwarz L. Unger K. Hock A. M. Farkas C. Klaus H. Regele T. Wekerle 《American journal of transplantation》2017,17(12):3049-3059
Therapeutic administration of regulatory T cells (Tregs) leads to engraftment of conventional doses of allogeneic bone marrow (BM) in nonirradiated recipient mice conditioned with costimulation blockade and mammalian target of rapamycin inhibition. The mode of action responsible for this Treg effect is poorly understood but may encompass the control of costimulation blockade–resistant natural killer (NK) cells. We show that transient NK cell depletion at the time of BM transplantation led to BM engraftment and persistent chimerism without Treg transfer but failed to induce skin graft tolerance. In contrast, the permanent absence of anti–donor NK reactivity in mice grafted with F1 BM was associated with both chimerism and tolerance comparable to Treg therapy, implying that NK cell tolerization is a critical mechanism of Treg therapy. Indeed, NK cells of Treg‐treated BM recipients reshaped their receptor repertoire in the presence of donor MHC in a manner suggesting attenuated donor reactivity. These results indicate that adoptively transferred Tregs prevent BM rejection, at least in part, by suppressing NK cells and promote tolerance by regulating the appearance of NK cells expressing activating receptors to donor class I MHC. 相似文献
10.
Rapamycin and CTLA4Ig Synergize to Induce Stable Mixed Chimerism Without the Need for CD40 Blockade 下载免费PDF全文
C. Schwarz K. Hock R. Oberhuber E. Schwaiger M. Gattringer H. Ramsey U. Baranyi B. Zelger G. Brandacher F. Wrba T. Wekerle 《American journal of transplantation》2015,15(6):1568-1579
The mixed chimerism approach achieves donor‐specific tolerance in organ transplantation, but clinical use is inhibited by the toxicities of current bone marrow (BM) transplantation (BMT) protocols. Blocking the CD40:CD154 pathway with anti‐CD154 monoclonal antibodies (mAbs) is exceptionally potent in inducing mixed chimerism, but these mAbs are clinically not available. Defining the roles of donor and recipient CD40 in a murine allogeneic BMT model, we show that CD4 or CD8 activation through an intact direct or CD4 T cell activation through the indirect pathway is sufficient to trigger BM rejection despite CTLA4Ig treatment. In the absence of CD4 T cells, CD8 T cell activation via the direct pathway, in contrast, leads to a state of split tolerance. Interruption of the CD40 signals in both the direct and indirect pathway of allorecognition or lack of recipient CD154 is required for the induction of chimerism and tolerance. We developed a novel BMT protocol that induces mixed chimerism and donor‐specific tolerance to fully mismatched cardiac allografts relying on CD28 costimulation blockade and mTOR inhibition without targeting the CD40 pathway. Notably, MHC‐mismatched/minor antigen‐matched skin grafts survive indefinitely whereas fully mismatched grafts are rejected, suggesting that non‐MHC antigens cause graft rejection and split tolerance. 相似文献
11.
12.
Selective CD28 Blockade Results in Superior Inhibition of Donor‐Specific T Follicular Helper Cell and Antibody Responses Relative to CTLA4‐Ig 下载免费PDF全文
I. R. Badell G. M. La Muraglia II D. Liu M. E. Wagener G. Ding M. L. Ford 《American journal of transplantation》2018,18(1):89-101
Donor‐specific antibodies (DSAs) are a barrier to improved long‐term outcomes after kidney transplantation. Costimulation blockade with CTLA4‐Ig has shown promise as a potential therapeutic strategy to control DSAs. T follicular helper (Tfh) cells, a subset of CD4+ T cells required for optimal antibody production, are reliant on the CD28 costimulatory pathway. We have previously shown that selective CD28 blockade leads to superior allograft survival through improved control of CD8+ T cells relative to CTLA4‐Ig, but the impact of CD28‐specific blockade on CD4+ Tfh cells is unknown. Thus, we identified and characterized donor‐reactive Tfh cells in a murine skin transplant model and then used this model to evaluate the impact of selective CD28 blockade with an anti‐CD28 domain antibody (dAb) on the donor‐specific Tfh cell–mediated immune response. We observed that the anti‐CD28 dAb led to superior inhibition of donor‐reactive CXCR5+PD‐1high Tfh cells, CD95+GL7+ germinal center B cells and DSA formation compared with CTLA4‐Ig. Interestingly, donor‐reactive Tfh cells differentially upregulated CTLA4 expression, suggesting an important role for CTLA4 in mediating the superior inhibition observed with the anti‐CD28 dAb. Therefore, selective CD28 blockade as a novel approach to control Tfh cell responses and prevent DSA after kidney transplantation warrants further study. 相似文献
13.
In Vivo Mobilization and Functional Characterization of Nonhuman Primate Monocytic Myeloid‐Derived Suppressor Cells 下载免费PDF全文
A. F. Zahorchak M. B. Ezzelarab L. Lu H. R. Turnquist A. W. Thomson 《American journal of transplantation》2016,16(2):661-671
14.
15.
Tracking of TCR‐Transgenic T Cells Reveals That Multiple Mechanisms Maintain Cardiac Transplant Tolerance in Mice 下载免费PDF全文
M. L. Miller M. D. Daniels T. Wang Y. Wang J. Xu D. Yin M.‐L. Alegre 《American journal of transplantation》2016,16(10):2854-2864
Solid organ transplantation tolerance can be achieved following select transient immunosuppressive regimens that result in long‐lasting restraint of alloimmunity without affecting responses to other antigens. Transplantation tolerance has been observed in animal models following costimulation or coreceptor blockade therapies, and in a subset of patients through induction protocols that include donor bone marrow transplantation, or following withdrawal of immunosuppression. Previous data from our lab and others have shown that proinflammatory interventions that successfully prevent the induction of transplantation tolerance in mice often fail to break tolerance once it has been stably established. This suggests that established tolerance acquires resilience to proinflammatory insults, and prompted us to investigate the mechanisms that maintain a stable state of robust tolerance. Our results demonstrate that only a triple intervention of depleting CD25+ regulatory T cells (Tregs), blocking programmed death ligand‐1 (PD‐L1) signals, and transferring low numbers of alloreactive T cells was sufficient to break established tolerance. We infer from these observations that Tregs and PD‐1/PD‐L1 signals cooperate to preserve a low alloreactive T cell frequency to maintain tolerance. Thus, therapeutic protocols designed to induce multiple parallel mechanisms of peripheral tolerance may be necessary to achieve robust transplantation tolerance capable of maintaining one allograft for life in the clinic. 相似文献
16.
Characterization of Human CD8+TCR− Facilitating Cells In Vitro and In Vivo in a NOD/SCID/IL2rγnull Mouse Model 下载免费PDF全文
Y. Huang M. J. Elliott E. S. Yolcu T. O. Miller J. Ratajczak L. D. Bozulic Y. Wen H. Xu M. Z. Ratajczak S. T. Ildstad 《American journal of transplantation》2016,16(2):440-453
17.
Continuous Acquisition of MHC:Peptide Complexes by Recipient Cells Contributes to the Generation of Anti‐Graft CD8+ T Cell Immunity 下载免费PDF全文
Understanding the evolution of the direct and indirect pathways of allorecognition following tissue transplantation is essential in the design of tolerance‐promoting protocols. On the basis that donor bone marrow–derived antigen‐presenting cells are eliminated within days of transplantation, it has been argued that the indirect response represents the major threat to long‐term transplant survival, and is consequently the key target for regulation. However, the detection of MHC transfer between cells, and particularly the capture of MHC:peptide complexes by dendritic cells (DCs), led us to propose a third, semidirect, pathway of MHC allorecognition. Persistence of this pathway would lead to sustained activation of direct‐pathway T cells, arguably persisting for the life of the transplant. In this study, we focused on the contribution of acquired MHC‐class I on recipient DCs during the life span of a skin graft. We observed that MHC‐class I acquisition by recipient DCs occurs for at least 1 month following transplantation and may be the main source of alloantigen that drives CD8+ cytotoxic T cell responses. In addition, acquired MHC‐class I:peptide complexes stimulate T cell responses in vivo, further emphasizing the need to regulate both pathways to induce indefinite survival of the graft. 相似文献
18.
Kanishka Mohib Aravind Cherukuri Yu Zhou Qing Ding Simon C. Watkins David M. Rothstein 《American journal of transplantation》2020,20(1):52-63
IL‐10+ regulatory B cells (Bregs) inhibit immune responses in various settings. While Bregs appear to inhibit inflammatory cytokine expression by CD4+ T cells and innate immune cells, their reported impact on CD8+ T cells is contradictory. Moreover, it remains unclear which effects of Bregs are direct versus indirect. Finally, the subanatomical localization of Breg suppressive function and the nature of their intercellular interactions remain unknown. Using novel tamoxifen‐inducible B cell–specific IL‐10 knockout mice, we found that Bregs inhibit CD8+ T cell proliferation and inhibit inflammatory cytokine expression by both CD4+ and CD8+ T cells. Sort‐purified Bregs from IL‐10‐reporter mice were adoptively transferred into wild‐type hosts and examined by live‐cell imaging. Bregs localized to the T:B border, specifically entered the T cell zone, and made more frequent and longer contacts with both CD4+ and CD8+ T cells than did non‐Bregs. These Breg:T cell interactions were antigen‐specific and reduced subsequent T:DC contacts. Thus, Bregs inhibit T cells through direct cognate interactions that subsequently reduce DC:T cell interactions. 相似文献
19.
M. K. Nelsen K. S. Beard R. J. Plenter R. M. Kedl E. T. Clambey R. G. Gill 《American journal of transplantation》2017,17(7):1742-1753
Several approaches successfully achieve allograft tolerance in preclinical models but are challenging to translate into clinical practice. Many clinically relevant factors can attenuate allograft tolerance induction, including intrinsic genetic resistance, peritransplant infection, inflammation, and preexisting antidonor immunity. The prevailing view for immune memory as a tolerance barrier is that the host harbors memory cells that spontaneously cross‐react to donor MHC antigens. Such preexisting “heterologous” memory cells have direct reactivity to donor cells and resist most tolerance regimens. In this study, we developed a model system to determine if an alternative form of immune memory could also block tolerance. We posited that host memory T cells could potentially respond to donor‐derived non‐MHC antigens, such as latent viral antigens or autoantigens, to which the host is immune. Results show that immunity to a model nonself antigen, ovalbumin (OVA), can dramatically disrupt tolerance despite undetectable initial reactivity to donor MHC antigens. Importantly, this blockade of tolerance was CD8+ T cell–dependent and required linked antigen presentation of alloantigens with the test OVA antigen. As such, this pathway represents an unapparent, or “incognito,” form of immunity that is sufficient to prevent tolerance and that can be an unforeseen additional immune barrier to clinical transplant tolerance. 相似文献