首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Structural and functional abnormalities of the cerebellum in schizophrenia have been reported. Most previous studies investigating resting-state functional connectivity (rsFC) have relied on a priori restrictions on seed regions or specific networks, which may bias observations. In this study, we aimed to elicit the connectivity alterations of the cerebellum in schizophrenia in a hypothesis-free approach. Ninety-five schizophrenia patients and 93 sex- and age-matched healthy controls underwent resting-state functional magnetic resonance imaging (fMRI). A voxel-wise data-driven method, resting-state functional connectivity density (rsFCD), was used to investigate cerebellar connectivity changes in schizophrenia patients. Regions with altered rsFCD were chosen as seeds to perform seed-based resting-state functional connectivity (rsFC) analyses. We found that schizophrenia patients exhibited decreased rsFCD in the right hemispheric VI; moreover, this cerebellar region showed increased rsFC with the prefrontal cortex and subcortical nuclei and decreased rsFC with the visual cortex and sensorimotor cortex. In addition, some rsFC changes were associated with positive symptoms. These findings suggest that abnormalities of the cerebellar hub and cerebellar-subcortical-cortical loop may be the underlying mechanisms of schizophrenia.  相似文献   

2.
Prior studies have demonstrated dysfunctions within the core neurocognitive networks (the executive control [ECN], default mode [DMN] and salience [SN] networks) in late-life depression (LLD). Whether inter-network dysfunctional connectivity is present in LLD, and if such disruptions are associated with core symptom dimensions is unknown. A cross-sectional resting-state functional connectivity magnetic resonance imaging investigation was conducted of LLD (n = 39) and age- and gender-equated healthy comparison (HC) (n = 29) participants. Dual regression independent component analysis approach was used to identify components that represented the ECN, DMN and SN. The intrinsic inter-network connectivity was compared between LLD and HC participants and the relationship of inter-network connectivity abnormalities with dimensional measures was examined. Relative to HC participants, LLD subjects showed decreased inter-network connectivity between the bilateral ECN and default mode subcortical (thalamus, basal ganglia and ventral striatum) networks, and the left ECN and SN insula component; and increased inter-network connections between the left ECN and posterior DMN and salience (dorsal anterior cingulate) network components. Distinct inter-network connectivity abnormalities correlated with depression and anxiety severity, and executive dysfunction in LLD participants. LLD subjects also showed pronounced intra-network connectivity differences within the ECN, whereas fewer but significant DMN and SN disruptions were also detected. Investigating the intrinsic inter-network functional connectivity could provide a mechanistic framework to better understand the neural basis that underlies core symptom dimensions in LLD. Inter-network connectivity measures have the potential to be neuroimaging biomarkers of symptom dimensions comprising LLD, and may assist in developing symptom-specific treatment algorithms.  相似文献   

3.
In addition to the role of planning and executing movement, the cerebellum greatly contributes to cognitive process. Numerous studies have reported structural and functional abnormalities in the cerebellum for HIV-infected patients, but little is known about the altered functional connectivity of particular cerebellar subregions and the cerebrum. Therefore, this study aimed to explore the resting-state functional connectivity (rsFC) changes of the cerebellum and further analyze the relationship between the rsFC changes and the neuropsychological evaluation. The experiment involved 26 HIV-infected men with asymptomatic neurocognitive impairment (ANI) and 28 healthy controls (HC). We selected bilateral hemispheric lobule VI and lobule IX as seed regions and mapped the whole-brain rsFC for each subregion. Results revealed that right lobule VI showed significant increased rsFC with the anterior cingulate cortex (ACC) in HIV-infected subjects. In addition, the correlation analysis on HIV-infected subjects illustrated the increased rsFC was negatively correlated with the attention/working memory score. Moreover, significantly increased cerebellar rsFCs were also observed in HIV-infected patients related to right inferior frontal gyrus (IFG) and right superior medial gyrus (SMG) while decreased rsFC was just found between right lobule VI and the left hippocampus (HIP). These findings suggested that, abnormalities of cerebro-cerebellar functional connectivity might be associated with cognitive dysfunction in HIV-infected men, particularly working memory impairment. It could also be the underlying mechanism of ANI, providing further evidence for early injury in the neural substrate of HIV-infected patients.  相似文献   

4.
《Sleep medicine》2015,16(9):1062-1070
BackgroundThe right anterior insula (AIns) is an important node of the salience network and serves to switch between two major cognitive-related functional brain networks, ie, the central executive network (CEN) and the default mode network (DMN), both of which show functional deficits in obstructive sleep apnea (OSA) patients. However, the effect of OSA on functional connectivity of the right AIns remains uncertain.ObjectiveTo determine whether the resting-state functional connectivity (rsFC) between the right AIns and the CEN and DMN is disrupted in OSA patients, which may be associated with cognitive deficits in this disorder.MethodsTwenty-four male OSA patients and 21 matched healthy controls underwent functional MRI examinations and clinical and neuropsychologic assessments. The rsFCs between the right AIns and the CEN and DMN were compared between the two groups and were correlated with clinical and neuropsychologic assessments.ResultsCompared with healthy controls, OSA patients showed significantly weakened rsFC between the right AIns and the DMN. Moreover, the functional disconnection between the right AIns and the medial prefrontal cortex was correlated with the severity of the OSA; and the functional disconnection between the right AIns and the posterior cingulate cortex was correlated with depressive scores and working memory performance. However, there were no significant inter-group differences in the rsFC between the right AIns and the CEN.ConclusionsThese findings suggest that OSA selectively impairs the rsFC between the right AIns and the DMN, which may be a candidate substrate for cognitive impairment in OSA patients.  相似文献   

5.

Anorexia nervosa (AN) typically emerges in adolescence. The cortico-striatal system (CSTS) and the default mode network (DMN) are brain circuits with a crucial development during this period. These circuits underlie cognitive functions that are impaired in AN, such as cognitive flexibility and inhibition, among others. Little is known about their involvement in adolescent AN and how weight and symptom improvement might modulate potential alterations in these circuits. Forty-seven adolescent females (30 AN, 17 healthy control) were clinically/neuropsychologically evaluated and scanned during a 3T-MRI resting-state session on two occasions, before and after a 6-month multidisciplinary treatment of the AN patients. Baseline and baseline-to-follow-up between-group differences in CSTS and DMN resting-state connectivity were evaluated, as well as their association with clinical/neuropsychological variables. Increased connectivity between the left dorsal putamen and the left precuneus was found in AN at baseline. At follow-up, body mass index and clinical symptoms had improved in the AN group. An interaction effect was found in the connectivity between the right dorsal caudate to right mid-anterior insular cortex, with lower baseline AN connectivity that improved at follow-up; this improvement was weakly associated with changes in neuropsychological (Stroop test) performance. These results support the presence of CSTS connectivity alterations in adolescents with AN, which improve with weight and symptom improvement. In addition, at the level of caudate-insula connectivity, they might be associated with inhibitory processing performance. Alterations in CSTS pathways might be involved in AN from the early stages of the disorder.

  相似文献   

6.
Dampened behavioral inhibition and overactive behavioral approach motivation systems (i.e. BIS/BAS) are associated with cannabis use disorder (CUD), although the underlying neural mechanisms of these alterations have not yet been examined. The brain’s executive control network (ECN) plays a role in decision-making and is associated with BIS/BAS. In this study, we tested the hypothesis that altered ECN resting-state functional connectivity (rsFC) underlies dysfunctional behavioral inhibition and approach motivation in cannabis users. To that end, we collected resting-state functional magnetic resonance imaging scans in 86 cannabis using adults and 59 non-using adults to examine group differences in the relationship between ECN rsFC and BIS/BAS. Our results showed that BIS was positively correlated with left ECN rsFC in cannabis users, while it was positively correlated with right ECN rsFC in non-users. There was a trend-level moderation effect of group on the association between BIS/BAS and ECN rsFC, showing a weaker association in BIS/BAS and ECN rsFC in cannabis users compared to non-users. An exploratory mediation analysis found that the severity of CUD mediated the relationship between users’ BIS scores and left ECN rsFC. These findings suggest that cannabis use may lead to dysregulation in typical ECN functional organization related to BIS/BAS.  相似文献   

7.
Cirrhotic patients without overt hepatic encephalopathy (HE) have associated with widespread neuro-psychological impairment. Liver transplantation can restore metabolic abnormalities but the mechanisms are unclear. We investigate brain functional networks after transplantation using resting-state funtional magnetic resonance imaging (MRI). Twenty-six cirrhotic patients without overt HE completed neuro-psychological assessment before and 6 to 12 months after transplantation, and compared with 35 healthy controls. Five major functional brain networks, default mode (DMN), dorsal attention (DAN), executive control (ECN), salience (SN), and primary networks (PN), were assessed. Nodal efficiency and strength in different functional networks were weighed and their interaction metrics displayed. Granger causal analysis between pretransplantation and posttransplantation was performed. Before transplantation, the intrafunctional connectivity was decreased in DMN, DAN, ECN, and SN. After transplantation, cognitive functions improved with increased functional connectivity. The interaction metrics among large-scale networks in patients became similar to healthy controls. The increase in PN affected the decrease in SN, while the increase in DAN forced a decrease in DMN. There was a bidirectional balance between DMN and SN. Dynamic disruptions and reconstruction in intrinsic large-scale networks are associated with parallel patterns of cognitive information processing deficits and recovery. Remapping of SN, DMN, and DAN is essential for restoring cognition after transplantation.  相似文献   

8.
Evaluating associations between the five-factor personality domains and resting-state functional connectivity networks (e.g. default mode network, DMN) highlights distributed neurobiological systems linked to behaviorally relevant phenotypes. Establishing these associations can highlight a potential underlying role for these neural pathways in related clinical illness and treatment response. Here, we examined associations between within- and between-network resting-state functional connectivity with functional magnetic resonance imaging and the five-factor personality domains: Openness to experience (Openness), Extraversion, Neuroticism, Agreeableness and Conscientiousness. We included data from 470 resting-state scan sessions and personality assessments in 295 healthy participants. Within- and between-network functional connectivity from 32 a priori defined regions was computed across seven resting-state networks. The association between functional connectivity and personality traits was assessed using generalized least squares. Within-network DMN functional connectivity was significantly negatively associated with trait Openness (regression coefficient = −0.0010; [95% confidence interval] = [−0.0017, −0.0003]; PFWER = 0.033), seemingly driven by association with the Fantasy subfacet. Trait Extraversion was significantly negatively associated with functional connectivity between the visual and dorsal attention networks and positively associated with functional connectivity between the frontoparietal and language networks. Our findings provide evidence that resting-state DMN is associated with trait Openness and gives insight into personality neuroscience.  相似文献   

9.
《Clinical neurophysiology》2021,132(9):2191-2198
ObjectiveTo explore whether abnormal thalamic resting-state functional connectivity (rsFC) contributes to altered sensorimotor integration and hand dexterity impairment in multiple sclerosis (MS).MethodsTo evaluate sensorimotor integration, we recorded kinematic features of index finger abductions during somatosensory temporal discrimination threshold (STDT) testing in 36 patients with relapsing-remitting MS and 39 healthy controls (HC). Participants underwent a multimodal 3T structural and functional MRI protocol.ResultsPatients had lower index finger abduction velocity during STDT testing compared to HC. Thalamic rsFC with the precentral and postcentral gyri, supplementary motor area (SMA), insula, and basal ganglia was higher in patients than HC. Intrathalamic rsFC and thalamic rsFC with caudate and insula bilaterally was lower in patients than HC. Finger movement velocity positively correlated with intrathalamic rsFC and negatively correlated with thalamic rsFC with the precentral and postcentral gyri, SMA, and putamen.ConclusionsAbnormal thalamic rsFC is a possible substrate for altered sensorimotor integration in MS, with high intrathalamic rsFC facilitating finger movements and increased thalamic rsFC with the basal ganglia and sensorimotor cortex contributing to motor performance deterioration.SignificanceThe combined study of thalamic functional connectivity and upper limb sensorimotor integration may be useful in identifying patients who can benefit from early rehabilitation to prevent upper limb motor impairment.  相似文献   

10.
The human dorsolateral prefrontal cortex (DLPFC; approximately corresponding to Brodmann areas 9 and 46) has demonstrable roles in diverse executive functions such as working memory, cognitive flexibility, planning, inhibition, and abstract reasoning. However, it remains unclear whether this is the result of one functionally homogeneous region or whether there are functional subdivisions within the DLPFC. Here, we divided the DLPFC into seven areas along rostral-caudal and dorsal-ventral axes anatomically and explored their respective patterns of structural and functional connectivity. In vivo probabilistic tractography (11 females and 13 males) and resting-state functional magnetic resonance imaging (fMRI; 57 females and 21 males) were employed to map out the patterns of connectivity from each DLPFC subregion. Structural connectivity demonstrated graded intraregional connectivity within the DLPFC. The patterns of structural connectivity between the DLPFC subregions and other cortical areas revealed that the dorsal-rostral subregions connections were restricted to other frontal and limbic areas, whereas the ventral-caudal region was widely connected to frontal, parietal, and limbic cortex. Functional connectivity analyses demonstrated that subregions of DLPFC were strongly interconnected to each other. The dorsal subregions were associated with the default mode network (DMN), while middle dorsal-rostral subregions were linked with the multiple demand network (MDN). The ventral-caudal subregion showed increased functional coupling with both DMN and MDN. Our results suggest that the connectivity of the DLPFC may be subdivided along a dorsorostral-ventrocaudal axis with differing (albeit graded) patterns of connectivity reflecting the integrative executive function of the DLPFC.SIGNIFICANCE STATEMENT Research has shown that the dorsolateral prefrontal cortex (DLPFC) plays a role in various executive functions. By dividing the DLPFC into seven areas along rostral-caudal and dorsal-ventral axes anatomically, we explored their patterns of structural and functional connectivity. The patterns of connectivity within DLPFC subregions demonstrated graded intraregional connectivity. There were distinctive patterns of connectivity with other cortical areas in dorsal-rostral and ventral-caudal DLPFC subregions. Divisions across DLPFC subregions seem to align with their structural and functional connectivity. Our results suggest that DLPFC may be subdivided by the diagonal axis of the dorsal-ventral axis and rostral-caudal axis, supporting the framework of a functional organization along the anterior-posterior axis in the lateral PFC.  相似文献   

11.
BackgroundProblem solving therapy (PST) and “Engage,” a reward-exposure” based therapy, are important treatment options for late-life depression, given modest efficacy of antidepressants in this disorder. Abnormal function of the reward and default mode networks has been observed during depressive episodes. This study examined whether resting state functional connectivity (rsFC) of reward and DMN circuitries is associated with treatment outcomes.MethodsThirty-two older adults with major depression (mean age = 72.7) were randomized to 9-weeks of either PST or “Engage.” We assessed rsFC at baseline and week 6. We placed seeds in three a priori regions of interest: subgenual anterior cingulate cortex (sgACC), dorsal anterior cingulate cortex (dACC), and nucleus accumbens (NAcc). Outcome measures included the Hamilton Depression Rating Scale (HAMD) and the Behavioral Activation for Depression Scale (BADS).ResultsIn both PST and “Engage,” higher rsFC between the sgACC and middle temporal gyrus at baseline was associated with greater improvement in depression severity (HAMD). Preliminary findings suggested that in “Engage” treated participants, lower rsFC between the dACC and dorsomedial prefrontal cortex at baseline was associated with HAMD improvement. Finally, in Engage only, increased rsFC from baseline to week 6 between NAcc and Superior Parietal Cortex was associated with increased BADS scores.ConclusionThe results suggest that patients who present with higher rsFC between the sgACC and a structure within the DMN may benefit from behavioral psychotherapies for late life depression. “Engage” may lead to increased rsFC within the reward system reflecting a reconditioning of the reward systems by reward exposure  相似文献   

12.
IntroductionResting-state functional connectivity magnetic resonance imaging (rsfcMRI) of rapid eye movement (REM) sleep behavior disorder (RBD) may provide an early biomarker of α-synucleinopathy. However, few rsfcMRI studies have examined cognitive networks. To elucidate brain network changes in RBD, we performed rsfcMRI in patients with polysomnography-confirmed RBD and healthy controls (HCs), with a sufficiently large sample size in each group.MethodsWe analyzed rsfcMRI data from 50 RBD patients and 70 age-matched HCs. Although RBD patients showed no motor signs, some exhibited autonomic and cognitive problems. Several resting-state functional networks were extracted by group independent component analysis from HCs, including the executive-control (ECN), default-mode (DMN), basal ganglia (BGN), and sensory-motor (SMN) networks. Functional connectivity (FC) was compared between groups using dual regression analysis. In the RBD group, correlation analysis was performed between FC and clinical/cognitive scales.ResultsPatients with RBD showed reduced striatal-prefrontal FC in ECN, consistent with executive dysfunctions. No abnormalities were found in DMN. In the motor networks, we identified reduced midbrain-pallidum FC in BGN and reduced motor and somatosensory cortex FC in SMN.ConclusionWe found abnormal ECN and normal DMN as a possible hallmark of cognitive dysfunctions in early α-synucleinopathies. We replicated abnormalities in BGN and SMN corresponding to subclinical movement disorder of RBD. RsfcMRI may provide an early biomarker of both cognitive and motor network dysfunctions of α-synucleinopathies.  相似文献   

13.
Wu X  Li R  Fleisher AS  Reiman EM  Guan X  Zhang Y  Chen K  Yao L 《Human brain mapping》2011,32(11):1868-1881
A number of functional magnetic resonance imaging (fMRI) studies reported the existence of default mode network (DMN) and its disruption due to the presence of a disease such as Alzheimer's disease (AD). In this investigation, first, we used the independent component analysis (ICA) technique to confirm the DMN difference between patients with AD and normal control (NC) reported in previous studies. Consistent with the previous studies, the decreased resting-state functional connectivity of DMN in AD was identified in posterior cingulated cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal cortex (IPC), inferior temporal cortex (ITC), and hippocampus (HC). Moreover, we introduced Bayesian network (BN) to study the effective connectivity of DMN and the difference between AD and NC. When compared the DMN effective connectivity in AD with the one in NC using a nonparametric random permutation test, we found that connections from left HC to left IPC, left ITC to right HC, right HC to left IPC, to MPFC and to PCC were all lost. In addition, in AD group, the connection directions between right HC and left HC, between left HC and left ITC, and between right IPC and right ITC were opposite to those in NC group. The connections of right HC to other regions, except left HC, within the BN were all statistically in-distinguishable from 0, suggesting an increased right hippocampal pathological and functional burden in AD. The altered effective connectivity in patients with AD may reveal more characteristics of the disease and may serve as a potential biomarker.  相似文献   

14.
Multiple large‐scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self‐referential thinking have been linked to the default‐mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive‐control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial‐prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual‐regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal‐parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. Hum Brain Mapp 36:2743–2755, 2015. © 2015 Wiley Periodicals, Inc .  相似文献   

15.
Frontal corticostriatal circuits (FCSC) are involved in self-regulation of cognition, emotion, and motor function. While these circuits are implicated in attention-deficit/hyperactivity disorder (ADHD), the literature establishing FCSC associations with ADHD is inconsistent. This may be due to study variability in considerations of how fMRI motion regression was handled between groups, or study specific differences in age, sex, or the striatal subregions under investigation. Given the importance of these domains in ADHD it is crucial to consider the complex interactions of age, sex, striatal subregions and FCSC in ADHD presentation and diagnosis. In this large-scale study of 362 8–12 year-old children with ADHD (n = 165) and typically developing (TD; n = 197) children, we investigate associations between FCSC with ADHD diagnosis and symptoms, sex, and go/no-go (GNG) task performance. Results include: (1) increased striatal connectivity with age across striatal subregions with most of the frontal cortex, (2) increased frontal-limbic striatum connectivity among boys with ADHD only, mostly in default mode network (DMN) regions not associated with age, and (3) increased frontal-motor striatum connectivity to regions of the DMN were associated with greater parent-rated inattention problems, particularly among the ADHD group. Although diagnostic group differences were no longer significant when strictly controlling for head motion, with motion possibly reflecting the phenotypic variance of ADHD itself, the spatial distribution of all symptom, age, sex, and other ADHD group effects were nearly identical to the initial results. These results demonstrate differential associations of FCSC between striatal subregions with the DMN and FPN in relation to age, ADHD, sex, and inhibitory control.  相似文献   

16.

Background

Brain frontostriatal circuits have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, effects of methylphenidate on circuit-level functional connectivity are as yet unclear. The aim of the present study was to comprehensively investigate the functional connectivity of major striatal subregions in children with ADHD, including subanalyses directed at mapping cognitive and treatment response characteristics.

Methods

Using a comprehensive seeding strategy, we examined resting-state functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen in children and adolescents with ADHD and in age- and sex-matched healthy controls.

Results

We enrolled 83 patients with ADHD and 22 controls in our study. Patients showed significantly reduced dorsal caudate functional connectivity with the superior and middle prefrontal cortices as well as reduced dorsal putamen connectivity with the parahippocampal cortex. These connectivity measures were correlated in opposite directions in patients and controls with attentional performance, as assessed using the Continuous Performance Test. Patients showing a good response to methylphenidate had significantly reduced ventral caudate/nucleus accumbens connectivity with the inferior frontal cortices compared with poor responders.

Limitations

Possible confounding effects of age-related functional connectivity change were not excluded owing to the wide age range of participants.

Conclusion

We observed a region-specific effect of methylphenidate on resting-state functional connectivity, suggesting the pretreatment level of ventral frontostriatal functional connectivity as a possible methylphenidate response biomarker of ADHD.  相似文献   

17.
Major depressive disorder (MDD) is a common disorder with a high prevalence and significant social and economic impacts. Nevertheless, the treatment of MDD is far from satisfactory. Acupuncture treatment has emerged as a promising method for treating MDD. However, the neural mechanism by which acupuncture reduces depressive symptoms is not fully understood. Studies have shown that the corticostriatal reward circuitry is associated with the pathophysiology of MDD; thus, we investigated the corticostriatal resting-state functional connectivity (rsFC) before and after real and sham acupuncture treatments combined with the antidepressant fluoxetine. Forty-six female major depressive patients were assigned to either verum acupuncture plus fluoxetine (n = 22) or sham acupuncture plus fluoxetine (n = 24) treatment for 8 weeks, and resting state functional magnetic resonance imaging (fMRI) data were collected before the first and after the last treatment sessions. The results showed that compared with sham acupuncture, the verum acupuncture group showed: (1) significantly increased rsFC between inferior ventral striatum and medial prefrontal cortex, ventral rostral putamen and amygdala/parahippocampus, as well as dorsal caudate and middle temporal gyrus; (2) significantly decreased rsFC between right ventral rostral putamen and right dorsolateral prefrontal cortex, and right dorsal caudate and bilateral cerebellar tonsil. The increased rsFC between the inferior ventral striatum and medial prefrontal cortex, ventral rostral putamen and amygdala/parahippocampus were significantly positively associated with decreased clinical scores (Montgomery–Åsberg Depression Rating Scale and Self-Rating Depression Scale scores) at the end of the eight-week treatment. Our findings suggest that acupuncture may achieve treatment effects by modulating the corticostriatal reward/motivation circuitry in MDD patients.  相似文献   

18.
Altered functional connectivity has been associated with acute and chronic nicotine use. Connectivity alterations, specifically in the right and left executive control networks (RECN/LECN) and the default mode network (DMN), may contribute to the addiction cycle. The objective of this study was to determine if executive control network (ECN) and DMN connectivity is different between non‐smokers and smokers and whether reductions in connectivity are related to chronic cigarette use. The RECN, LECN, and DMN were identified in resting state functional magnetic resonance imaging data in 650 subjects. Analyses tested for group differences in network connectivity strength, controlling for age and alcohol use. There was a significant group effect on LECN and DMN connectivity strength with smokers (n = 452) having lower network strengths than non‐smokers (n = 198). Smokers had lower connectivity than non‐smokers associated with key network hubs: the dorsolateral prefrontal cortex, and parietal nodes within ECNs. Further, ECN connectivity strength was negatively associated with pack years of cigarette use. Our data suggest that chronic nicotine use negatively impacts functional connectivity within control networks that may contribute to the difficulty smokers have in quitting. Hum Brain Mapp 36:872–882, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Trait self-control (TSC), defined as the capacity to alter predominant response to promote desirable long-term goals, has been found to facilitate emotional well-being (EWB). However, the neural correlates underlying this association remain unclear. The present study estimated resting-state brain activity and connectivity with amplitude of low‐frequency fluctuations (ALFFs) and resting-state functional connectivity (rsFC) among late adolescents. Whole‐brain correlation analysis showed that higher TSC was associated with increased ALFFs in regions within the executive control network (inferior frontal gyrus, IFG) and the salience network (anterior insula, AI) and decreased ALFF in regions (e.g. medial frontal gyrus, MFG; posterior cingulate, PC) within the default-mode network (DMN). TSC was also linked with the integration (e.g. increased IFG-PC connectivity) and segregation (e.g. decreased AI-MFG connectivity) among brain networks. Mediation analysis indicated that TSC totally mediated the links from the IFG and the precuneus, FC of the AI and regions of the DMN (e.g. bilateral PC and MFG), to EWB. Additionally, ALFF in the IFG and the MFG could predict negative affect in the pandemic through TSC. These findings suggest that TSC is involved in several regions and functional organizations within and between brain networks and mediated the association between neural correlates and emotional wellness in adolescence.  相似文献   

20.
The alterations of functional connectivity brain networks in major depressive disorder (MDD) have been subject of a large number of studies. Using different methodologies and focusing on diverse aspects of the disease, research shows heterogeneous results lacking integration. Disrupted network connectivity has been found in core MDD networks like the default mode network (DMN), the central executive network (CEN), and the salience network, but also in cerebellar and thalamic circuitries. Here we review literature published on resting state brain network function in MDD focusing on methodology, and clinical characteristics including symptomatology and antidepressant treatment related findings. There are relatively few investigations concerning the qualitative aspects of symptomatology of MDD, whereas most studies associate quantitative aspects with distinct resting state functional connectivity alterations. Such depression severity associated alterations are found in the DMN, frontal, cerebellar and thalamic brain regions as well as the insula and the subgenual anterior cingulate cortex. Similarly, different therapeutical options in MDD and their effects on brain function showed patchy results. Herein, pharmaceutical treatments reveal functional connectivity alterations throughout multiple brain regions notably the DMN, fronto-limbic, and parieto-temporal regions. Psychotherapeutical interventions show significant functional connectivity alterations in fronto-limbic networks, whereas electroconvulsive therapy and repetitive transcranial magnetic stimulation result in alterations of the subgenual anterior cingulate cortex, the DMN, the CEN and the dorsal lateral prefrontal cortex. While it appears clear that functional connectivity alterations are associated with the pathophysiology and treatment of MDD, future research should also generate a common strategy for data acquisition and analysis, as a least common denominator, to set the basis for comparability across studies and implementation of functional connectivity as a scientifically and clinically useful biomarker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号