首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymic regulatory T cells (tTregs) and induced regulatory T cells (iTregs) suppress murine acute graft‐versus‐host disease (GVHD). Previously, we demonstrated that the plasmacytoid dendritic cell indoleamine 2,3‐dioxygenase (IDO) fosters the in vitro development of human iTregs via tryptophan depletion and kynurenine (Kyn) metabolites. We now show that stimulation of naïve CD4+ T cells in low tryptophan (low Trp) plus Kyn supports human iTreg generation. In vitro, low Trp + Kyn iTregs and tTregs potently suppress T effector cell proliferation equivalently but are phenotypically distinct. Compared with tTregs or T effector cells, bioenergetics profiling reveals that low Trp + Kyn iTregs have increased basal glycolysis and oxidative phosphorylation and use glutaminolysis as an energy source. Low Trp + Kyn iTreg viability was reliant on interleukin (IL)‐2 in vitro. Although in vivo IL‐2 administration increased low Trp + Kyn iTreg persistence on adoptive transfer into immunodeficient mice given peripheral blood mononuclear cells to induce GVHD, IL‐2–supported iTregs did not improve recipient survival. We conclude that low Trp + Kyn create suppressive iTregs that have high metabolic needs that will need to be addressed before clinical translation.  相似文献   

2.
Tolerance induction by means of costimulation blockade has been successfully applied in solid organ transplantation; however, its efficacy in vascularized composite allotransplantation, containing a vascularized bone marrow component and thus a constant source of donor‐derived stem cells, remains poorly explored. In this study, osteomyocutaneous allografts (alloOMCs) from Balb/c (H2d) mice were transplanted into C57BL/6 (H2b) recipients. Immunosuppression consisted of 1 mg anti‐CD154 on day 0, 0.5 mg CTLA4Ig on day 2 and rapamycin (RPM; 3 mg/kg per day from days 0–7, then every other day for 3 weeks). Long‐term allograft survival, donor‐specific tolerance and donor–recipient cell trafficking were evaluated. Treatment with costimulation blockade plus RPM resulted in long‐term graft survival (>120 days) of alloOMC in 12 of 15 recipients compared with untreated controls (median survival time [MST] ≈10.2 ± 0.8 days), RPM alone (MST ≈33 ± 5.5 days) and costimulation blockade alone (MST ≈45.8 ± 7.1 days). Donor‐specific hyporesponsiveness in recipients with viable grafts was demonstrated in vitro. Evidence of donor‐specific tolerance was further assessed in vivo by secondary donor‐specific skin graft survival and third‐party graft rejection. A significant increase of Foxp3+ regulatory T cells was evident in tolerant animals. Donor cells populated peripheral blood, thymus, and both donor and recipient bone marrow. Consequently, combined anti‐CD154/CTLA4Ig costimulation blockade‐based therapy induces donor‐specific tolerance in a stringent murine alloOMC transplant model.  相似文献   

3.
Plasma cells (PCs) are a major source of alloantibody in transplant patients and are resistant to current therapy. Because receptor–ligand interactions in stromal microenvironments play important roles in the localization, development, and survival of normal PCs, we hypothesized that interfering with CXCR4/CXCL12 interactions with plerixafor might cause PC depletion and enhance the efficacy of the proteasome inhibitor bortezomib. PCs in mouse spleen, bone marrow, and peripheral blood demonstrated CXCR4 expression. We then treated with plerixafor in doses ranging from 240 μg/kg in a single dose to a 1‐mg/kg daily dose for 10 days. CXCR4/CXCL12 blockade with plerixafor resulted in increased mobilization of PCs into the peripheral blood. Splenectomy completely abrogated this effect, suggesting that all plerixafor‐mobilized cells were from the spleen. The total number of PCs in the spleen and marrow remained constant despite treatment with plerixafor. Bortezomib caused a reduction in PCs, but adding plerixafor did not increase killing. We conclude that CXCR4/CXCL12 interactions are important for the retention of a subpopulation of PCs in the spleen, but this interaction has minimal effect on PCs in the marrow. The lack of enhancement of bortezomib‐mediated depletion suggests that factors other than CXCR4/CXCL12 interactions are responsible for drug resistance.  相似文献   

4.
Increasing evidence from small animal models shows that myeloid‐derived suppressor cells (MDSCs) can play a crucial role in inhibiting allograft rejection and promoting transplant tolerance. We identified CD3?CD20?HLA‐DR?CD14+CD33+CD11b+ cells in peripheral blood of healthy rhesus macaques. These putative monocytic MDSCs constituted 2.1% ± 1.7% of lin?HLA‐DR? peripheral blood mononuclear cells. Administration of granulocyte‐macrophage colony‐stimulating factor (CSF) and granulocyte CSF increased their incidence to 5.3% ± 3.4%. The total number of MDSCs that could be flow sorted from a single whole rhesus leukapheresis product was 38 ± 13 × 106 (n = 10 monkeys). Freshly isolated or cryopreserved MDSCs from mobilized monkeys incorporated in cultures of anti‐CD3– and anti‐CD28–stimulated autologous T cells markedly suppressed CD4+ and CD8+ T cell proliferation and cytokine secretion (interferon γ, IL‐17A). Moreover, these MDSCs enhanced CD4+CD25hiFoxp3+ regulatory T cell (Treg) expansion while inhibiting proliferation of activated memory T cells and increasing Treg relative to effector and terminally differentiated memory T cells. Inhibition of arginase‐1, but not inducible nitric oxide synthase activity, partially reversed the inhibitory effect of the MDSCs on CD8+ T cell proliferation. Consequently, functional MDSCs can be isolated from nonhuman primates for prospective use as therapeutic cellular vaccines in transplantation.
  相似文献   

5.
6.
7.
Therapeutic administration of regulatory T cells (Tregs) leads to engraftment of conventional doses of allogeneic bone marrow (BM) in nonirradiated recipient mice conditioned with costimulation blockade and mammalian target of rapamycin inhibition. The mode of action responsible for this Treg effect is poorly understood but may encompass the control of costimulation blockade–resistant natural killer (NK) cells. We show that transient NK cell depletion at the time of BM transplantation led to BM engraftment and persistent chimerism without Treg transfer but failed to induce skin graft tolerance. In contrast, the permanent absence of anti–donor NK reactivity in mice grafted with F1 BM was associated with both chimerism and tolerance comparable to Treg therapy, implying that NK cell tolerization is a critical mechanism of Treg therapy. Indeed, NK cells of Treg‐treated BM recipients reshaped their receptor repertoire in the presence of donor MHC in a manner suggesting attenuated donor reactivity. These results indicate that adoptively transferred Tregs prevent BM rejection, at least in part, by suppressing NK cells and promote tolerance by regulating the appearance of NK cells expressing activating receptors to donor class I MHC.  相似文献   

8.
Dizygotic monochorionic twin pregnancies can result in blood chimerism due to in utero twin‐to‐twin exchange of stem cells. In this case, we examined the proportion of allogeneic red blood cells by flow cytometry and the proportion of allogeneic nucleated cells by digital polymerase chain reaction at 7 months and again at 5 years. We found an increase in the proportion of allogeneic cells from 63% to 89% in one twin, and a similar increase in autologous cells in the other twin from 57% to 84%. A paradigm for stem cell therapy could be modeled on this case: induction of tolerance and chimerism by antenatal transfusion of donor stem cells. The procedure would hold the promise of transplantation and tolerance induction without myeloablative conditioning for inheritable benign hematological diseases such as sickle cell disease and thalassemia.  相似文献   

9.
10.
Proinflammatory, cytotoxic CD4+CD28null T cells can be substantially expanded in patients with end‐stage renal disease. These cells have been associated with the risk for rejection, but their alloreactive potential is unknown. CD4+CD28null T cells were stimulated with HLA‐mismatched antigen presenting cells in the absence/presence of exogenous cytokines. Alloreactive potential was evaluated based on proliferation, degranulation, cytotoxicity, and cytokine production. Further, their suppressive capacity was assessed by measuring inhibition of proliferating alloreactive CD28+ T cells. CD4+CD28null T cells contained alloreactive (CD137+) T cells but did not proliferate in response to allogeneic stimulation, unless interleukin (IL)‐15 was added. However, they could proliferate on stimulation with cytomegalovirus antigen without exogenous cytokines. IL‐15 increased the frequency of proliferating alloreactive CD4+CD28null T cells to 30.5% without inducing CD28 expression (P < .05). After allogeneic stimulation together with IL‐15 and IL‐21, frequency of degranulating CD107a+CD4+CD28null T cells increased significantly from 0.6% to 5.8% (P < .001). Granzyme B and perforin positivity remained similar, but production of interferon‐γ and tumor necrosis factor‐α increased by the combination of IL‐15 and IL‐21 (P < .001 and P < .05, respectively). Finally, CD4+CD28null T cells did not show significant suppression. Thus, CD4+CD28null T cells represent a population with absent alloreactivity unless IL‐15 is present.  相似文献   

11.
Mixed chimerism is a promising approach to inducing allograft and xenograft tolerance. Mixed allogeneic and xenogeneic chimerism in mouse models induced specific tolerance and global hyporesponsiveness, respectively, of host mouse natural killer (NK) cells. In this study, we investigated whether pig/human mixed chimerism could tolerize human NK cells in a humanized mouse model. Our results showed no impact of induced human NK cell reconstitution on porcine chimerism. NK cells from most pig/human mixed chimeric mice showed either specifically decreased cytotoxicity to pig cells or global hyporesponsiveness in an in vitro cytotoxicity assay. Mixed xenogeneic chimerism did not hamper the maturation of human NK cells but was associated with an alteration in NK cell subset distribution and interferon gamma (IFN‐γ) production in the bone marrow. In summary, we demonstrate that mixed xenogeneic chimerism induces human NK cell hyporesponsiveness to pig cells. Our results support the use of this approach to inducing xenogeneic tolerance in the clinical setting. However, additional approaches are required to improve the efficacy of tolerance induction while ensuring adequate NK cell functions.  相似文献   

12.
Graft‐versus‐host disease (GVHD) is a major complication of allogenic bone marrow transplantation and involves the infiltration of donor CD4+ and/or CD8+ T cells into various organs of the recipient. The pathological role of human CD4+ and CD8+ T cells in GVHD remains controversial. In this study, we established two novel xenogeneic (xeno)‐GVHD models. Human CD4+ or CD8+ T cells were purified from peripheral blood and were transplanted into immunodeficient NOD/Shi‐scid IL2rgnull (NOG) mice. Human CD8+ T cells did not induce major GVHD symptoms in conventional NOG mice. However, CD8+ T cells immediately proliferated and induced severe GVHD when transferred into NOG mice together with at least 0.5 × 106 CD4+ T cells or into NOG human interleukin (IL)‐2 transgenic mice. Human CD4+ T cell–transplanted NOG mice developed skin inflammations including alopecia, epidermal hyperplasia, and neutrophilia. Pathogenic T helper (Th)17 cells accumulated in the skin of CD4+ T cell–transplanted NOG mice. Further, an anti‐human IL‐17 antibody (secukinumab) significantly suppressed these skin pathologies. These results indicate that pathogenic human Th17 cells induce cutaneous GVHD via IL‐17–dependent pathways. This study provides fundamental insights into the pathogenesis of xeno‐GVHD, and these humanized mouse models may be useful as preclinical tools for the prevention of GVHD.  相似文献   

13.
14.
Recently, the immune‐regulating potential of invariant natural killer T (iNKT) cells has attracted considerable attention. We previously reported that a combination treatment with a liposomal ligand for iNKT cells and an anti‐CD154 antibody in a sublethally irradiated murine bone marrow transplant (BMT) model resulted in the establishment of mixed hematopoietic chimerism through in vivo expansion of regulatory T cells (Tregs). Herein, we show the lack of alloreactivity of CD8+T cells in chimeras and an early expansion of donor‐derived dendritic cells (DCs) in the recipient thymi accompanied by a sequential reduction in the donor‐reactive Vβ‐T cell receptor repertoire, suggesting a contribution of clonal deletion in this model. Since thymic expansion of donor DCs and the reduction in the donor‐reactive T cell repertoire were precluded with Treg depletion, we presumed that Tregs should preform before the establishment of clonal deletion. In contrast, the mice thymectomized before BMT failed to increase the number of Tregs and to establish CD8+T cell tolerance, suggesting the presence of mutual dependence between the thymic donor–DCs and Tregs. These results provide new insights into the regulatory mechanisms that actively promote clonal deletion.  相似文献   

15.
Calcineurin inhibitor cyclosporine is widely used as an immunosuppressant in clinic. However, mounting evidence has shown that cyclosporine hinders tolerance induction by dampening Tregs. Therefore, it is of paramount importance to overcome this pitfall. Kaempferol was reported to inhibit DC function. Here, we found that kaempferol delayed islet allograft rejection. Combination of kaempferol and low‐dose, but not high‐dose, of cyclosporine induced allograft tolerance in majority of recipient mice. Although kaempferol plus either dose of cyclosporine largely abrogated proliferation of graft‐infiltrating T cells and their CTL activity, both proliferation and CTL activity in mice treated with kaempferol plus low‐dose, but not high‐dose, cyclosporine reemerged rapidly upon treatment withdrawal. Kaempferol increased CD4+FoxP3+ Tregs both in transplanted mice and in vitro, likely by suppressing DC maturation and their IL‐6 expression. Reduction in Tregs by low dose of cyclosporine was reversed by kaempferol. Kaempferol‐induced Tregs exhibited both allospecific and non‐allospecific suppression. Administering IL‐6 abrogated allograft tolerance induced by kaempferol and cyclosporine via diminishing CD4+FoxP3+ Tregs. Thus, for the first time, we demonstrated that kaempferol promotes transplant tolerance in the presence of low dose of cyclosporine, which allows for sufficient Treg generation while minimizing side effects, resulting in much‐needed synergy between kaempferol and cyclosporine.  相似文献   

16.
17.
Currently there is no effective approach for monitoring early β‐cell loss during islet graft rejection following human islet transplantation (HIT). Due to ethical and technical constraints, it is difficult to directly study biomarkers of islet destruction in humans. Here, we established a humanized mouse model with induced human β‐cell death using adoptive lymphocyte transfer (ALT). Human islet grafts of ALT‐treated mice had perigraft lymphocyte infiltration, fewer insulin+ β cells, and increased β‐cell apoptosis. Islet‐specific miR‐375 was used to validate our model, and expression of miR‐375 was significantly decreased in the grafts and increased in the circulation of ALT‐treated mice before hyperglycemia. A NanoString expression assay was further used to profile 800 human miRNAs in the human islet grafts, and the results were validated using quantitative real‐time polymerase chain reaction. We found that miR‐4454 and miR‐199a‐5p were decreased in the human islet grafts following ALT and increased in the circulation prior to hyperglycemia. These data demonstrate that our in vivo model of induced human β‐cell destruction is a robust method for identifying and characterizing circulating biomarkers, and suggest that miR‐4454 and miR‐199a‐5p can serve as novel biomarkers associated with early human β‐cell loss following HIT.  相似文献   

18.
Tolerance of allografts achieved in mice via stable mixed hematopoietic chimerism relies essentially on continuous elimination of developing alloreactive T cells in the thymus (central deletion). Conversely, while only transient mixed chimerism is observed in nonhuman primates and patients, it is sufficient to ensure tolerance of kidney allografts. In this setting, it is likely that tolerance depends on peripheral regulatory mechanisms rather than thymic deletion. This implies that, in primates, upsetting the balance between inflammatory and regulatory alloimmunity could abolish tolerance and trigger the rejection of previously accepted renal allografts. In this study, six monkeys that were treated with a mixed chimerism protocol and had accepted a kidney allograft for periods of 1–10 years after withdrawal of immunosuppression received subcutaneous injections of IL‐2 cytokine (0.6–3 × 106 IU/m2). This resulted in rapid rejection of previously tolerated renal transplants and was associated with an expansion and reactivation of alloreactive pro‐inflammatory memory T cells in the host's lymphoid organs and in the graft. This phenomenon was prevented by anti‐CD8 antibody treatment. Finally, this process was reversible in that cessation of IL‐2 administration aborted the rejection process and restored normal kidney graft function.  相似文献   

19.
Mixed hematopoietic chimerism induction as a way to foster tolerance to donor organs in recipients who have been sensitized to donor antigens is challenging. Donor‐specific antibodies (DSA) are a dominant barrier toward successful donor bone marrow engraftment. Although desensitization methods are routinely used in recipients with allosensitization for allogeneic bone marrow transplantation, engraftment is frequently unsuccessful. To overcome the barrier of prior sensitization we tested enzymatic desensitization of donor‐specific IgG using imlifidase and endoglycosidase of Streptococcus pyogenes (EndoS), which both partially block the function of DSA in mice, as a novel approach to improve murine bone marrow engraftment in primed hosts. We found that EndoS was capable of inhibiting antibody‐mediated killing of donor cells in vivo. Furthermore, the effect of EndoS depended on the titer of DSA and the genetic background of the recipients. In combination with imlifidase, EndoS improved the survival of donor bone marrow cells. Together with cyclophosphamide, bortezomib, T cell depletion, and nonlethal irradiation, imlifidase in combination with EndoS allowed allogeneic bone marrow engraftment in sensitized recipients. We conclude that enzymatic inactivation of DSA, using the combination of imlifidase and EndoS, can be used for inducing donor hematopoietic chimerism in allosensitized recipient mice in combination with other desensitization strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号