首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
EPID对鼻咽癌IMRT随机摆位误差的监测   总被引:2,自引:0,他引:2  
目的研究电子射野影像装置在鼻咽癌调强放射治疗(IMRT)过程中进行随机摆位误差监测的可行性。方法2006年3月~2007年12月随机抽取鼻咽癌IMRT患者96例,应用EPID在放疗过程中每周拍摄正侧位一次,共拍摄1016张。放疗前先采集CT定位后治疗计划系统中的数字重建射野图像片为参考图像,与治疗过程中实时采集的验证图像配准,测量随机摆位误差。结果在左右、头脚、腹背方向的摆位误差分别是(1.34±1.30)mm,(1.35±1.38)mm,(1.44±1.20)mm。结论EPID的应用可以及时发现放疗随机摆位误差,针对性提高技术员摆位的准确性,是质量控制和质量保证的有力工具。  相似文献   

2.
由于加速器源的大小、源到探测器的距离、探测器和放大器的灵敏度、加速器脉冲信号等因素影响电子射野影像系统(EPID)的影像质量,为了保证电子射野影像系统功能的正常发挥,临床应用时需要相应的质量保证与控制措施。鉴于目前国际上无统一规程,国内也无相关报道,故探讨使用Las Vegas体模和MED-TECH Iso-align\ \{TM\}等中心校准仪对iViewGT电子射野影像系统进行质量保证与控制的内容和方法。  相似文献   

3.
目的:利用MV级电子射野影像系统(EPID)对130例放疗病人摆位误差进行分析。方法:选取头颈部肿瘤放疗患者30例,胸部肿瘤放疗患者50例,盆腔肿瘤放疗患者50例,使用6MV X线通过EPID获得0°和 90°两射野的实时位置验证片,并与计划系统产生的数字化重建影像的验证片进行对照,计算并分析所测定的摆位误差。结果:3%的头颈部患者摆位误差超过3mm,20%的胸部患者摆位误差超过5mm,10%的盆腔患者摆位误差超过5mm,对这些超过误差范围的患者重新调整位置,达到治疗要求。各部位在X轴(左右方向)、Y轴(头脚方向)、Z轴(前后方向)三个方向的平均摆位误差分别为头颈部1.59mm、1.38mm、1.42mm,胸部2.40mm、2.52mm、2.01mm,盆腔2.11mm、2.35mm、1.98mm。结论:利用EPID可以有效检测放射治疗中的摆位误差,提高摆位的准确性和重复性,是放射治疗质量保证的重要手段。  相似文献   

4.
电子射野影像装置最初作为成像系统实现患者治疗时的精确摆位控制,是精确放疗的重要组成部分。电子射野影像装置按发展阶段分为荧光屏摄像机\[1 2\]、扫描矩阵电离室\[3 4\]和非晶硅平板探测器\[5 7\]。调强放疗的剂量验证必不可少,胶片作为最初验证设备因使用不便等原因已逐渐被数字矩阵设备(MapCHECK、PTW等)所代替。本研究采用非一体化非晶硅平板探测器电子射野影像装置来研究其在剂量学方面的相关特性  相似文献   

5.
李强  贾勇士  张丽萍 《肿瘤学杂志》2014,20(10):852-855
[目的]探讨电子射野影像装置(EPID)辅助下头颈肩热塑膜在喉癌调强放疗(IMRT)中的摆位误差。[方法]选取喉癌患者40例,使用头颈肩热塑膜加以固定,在放射治疗过程中每周摄取电子射野影像片(EPI)1次,正侧位片各1张。在直线加速器的电子射野影像系统下将电子射野影像片与数字重建射线影像(DRR)进行匹配,测得在X轴(左右方向)、Y轴(头脚方向)和Z轴(前后方向)的摆位误差并加以记录。[结果]选取的40例患者在各个方向上的总体摆位误差分别为X轴左右方向(0.45±0.36)mm,Y轴头脚方向(0.56±0.47)mm,Z轴前后方向(0.40±0.33)mm,各周差异相比没有统计学意义(P〉0.05)。[结论]头颈肩热塑膜应用于喉癌调强放射治疗,体位移动少,重复性及固定性好,准确度高,在EPID的辅助下可以纠正摆位误差,提高摆位精确度。  相似文献   

6.
王佩国  王世江  王平 《中国肿瘤临床》2008,35(22):1310-1313
适形调强放射治疗(IMRT)是“精确定位、精确计划、精确治疗”的体现,要求在整个治疗过程做到严格的质量保证,对患者选择、定位和治疗的摆位、照射剂量的验证均提出了更高的要求,包括电子射野影像系统、兆伏级锥形束CT、超声等仪器在质量保证过程中的准确应用,并对相对剂量和绝对剂量验证中各种方法有严格的选择。  相似文献   

7.
Chen MW  Deng XW  Huang SM  Chen L  Kang DH 《癌症》2007,26(11):1272-1275
背景与目的:非晶硅平板型电子射野影像系统(amorphous silicon electronic portal imaging device,a-Si EPID)具有良好的剂量学品质,作为一种快速的二维剂量测量系统,在常规质量控制、调强照射野验证及实时患者剂量监测等方面具有广阔的应用前景.为将非晶硅平板电子射野影像用于放射治疗的剂量学检验,本研究针对其射野影像建立了修正模型,并应用于加速器照射野的常规质量保证工作.方法:对a-Si EPID常用的图像刻度模式进行剂量刻度改进以用于照射剂量测量:通过一种由若干个小野组合形成"泛野"的方式来克服传统的泛野获取方式的缺陷,从而较准确地修正a-Si EPID各像素单元之间的灵敏度差异;并建立离轴剂量的响应曲线和修正数学模型.以修正后的a-Si EPID射野影像测量照射野的剂量分布并与三维水箱中电离室扫描的结果进行比较验证.结果:经所建立的模型进行剂量刻度和修正后,高剂量区,a-Si EPID与电离室测量结果偏差<2%,在半影区,a-Si EPID测量的剂量分布曲线比电离室测量结果略为陡峭.结论:非晶硅平板型电子射野影像(a-Si EPID)系统具有良好的物理剂量学品质,可以用作照射野常规质控检验和调强放射治疗射野剂量能量分布的快速工具.  相似文献   

8.
0引言随着医学影像和放射物理的飞速发展,目前基于三维计划系统的精确放疗已成为目前临床放疗的成熟技术,患者体位的控制,其分次摆位的准确性是其中关键的环节。本文利用电子射野影像系统(electronic portal imaging device,EPID)技术寻找适形调强患者摆位误差的规律,探讨开展放疗患者摆位误差个体化测量的可行性,并进一步个体化外放靶区(PTV)。  相似文献   

9.
精确放疗已经成为放射治疗的1种常规技术。盆腹部体位固定因患者身体体重、腹式呼吸过重、餐后时间不一、膀胱充盈度、皮下脂肪、大面积皮肤牵拉等及重复摆位等造成摆位误差较多,重复性差。我们采用瓦里安电子射野影像系统对30例盆腹腔肿瘤患者治疗前正侧位验证影像与CT定位影像重建的DRR影像进行比较,分析摆位误差,进一步改进、规范摆位技术。  相似文献   

10.
鼻咽癌调强放疗中的摆位误差   总被引:7,自引:1,他引:7  
[目的]用电子射野图像器件(EPID)拍摄的射野片研究调强放疗治疗鼻咽癌过程中的摆位误差。[方法]比较8例接受调强放疗的初治鼻咽癌患者的数字重建影像(DRR)和EPID图像,得到各个骨性标志间各个方向的偏差,分别以左右、前后和头脚方向上的最大偏差代表该方向的摆位误差。[结果]3个方向的摆位误差范围是-5mm到5.5mm,平均值是(-0.87±1.3)mm,(-0.28±1.5)mm和(-0.55±1.6)mm,大于2mm的误差分别占17.3%、14.3%和17.3%,且各次治疗的摆位误差之间无显著性差异。[结论]鼻咽癌调强放疗的误差在可以接受的范围,而且各次治疗间也没有显著差异,首次治疗时拍摄射野片验证是非常重要的。  相似文献   

11.
BACKGROUND AND PURPOSE: To analyse the results of routine EPID measurements for individualised patient dosimetry. MATERIALS AND METHODS: Calibrated camera-based EPIDs were used to measure the central field dose, which was compared with a dose prediction at the EPID level. For transit dosimetry, dose data were calculated using patient transmission and scatter, and compared with measured values. Furthermore, measured transit dose data were back-projected to an in vivo dose value at 5 cm depth in water (D(5)) and directly compared with D(5) from the treatment planning system. Dose differences per treatment session were calculated by weighting dose values with the number of monitor units per beam. Reported errors were categorised and analysed for approximately 37,500 images from 2511 patients during a period of 24 months. RESULTS: Pre-treatment measurements showed a mean dose difference per treatment session of 0.0+/-1.7% (1 SD). Transfer errors were detected and corrected prior to the first treatment session. An accelerator output variation of about 4% was found between two weekly QC measurements. Patient dosimetry showed mean transit and D(5) dose differences of -0.7+/-5.2% (1 SD) and -0.3+/-5.6% (1 SD) per treatment session, respectively. Dose differences could be related to set-up errors, organ motion, erroneous density corrections and changes in patient anatomy. CONCLUSIONS: EPIDs can be used routinely to accurately verify treatment parameter transfer and machine output. By applying transit and in vivo dosimetry, more insight can be obtained with respect to the different error sources influencing dose delivery to a patient.  相似文献   

12.
关于电子荧光类射野影像系统作为出射剂量仪使用的研究   总被引:1,自引:1,他引:1  
目的研究利用射野影像系统进行出射剂量测量的可能性。以便能进一步把该类系统发展为剂量仪系统。材料与方法使用荧光型电子射野影像系统,探头由金属板—荧光屏和Plumbicon照像机组成。通过与电离室及射野证实片所测结果的比较,建立一套与像素位置对应的灰度校正矩阵。并在多种射野面积和体模厚度下验证,所用射线为6MV-X线。结果通过对该系统的各种性能测试,如灰度的稳定性、探头的均匀性、剂量响应曲线、灰度的射野依赖性及对体模厚度的依赖性,发现短期稳定性好于1%,有较明显的灰度饱和性,但需作灰度饱和校正。作为相对剂量仪使用时,只要建立一个探头非均匀性校正矩阵,就能与证实片的剂量结果保持一致,误差小于±5%。结论研究证明,电子射野影像系统完全可以成为一套剂量仪系统。在对靶区的位置进行实时监测的同时,还能通过对影像灰度的计算,得出出射野的剂量分布  相似文献   

13.
The transit in vivo dosimetry performed by the Electronic Portal Imaging Device (EPID), avoids the problem of solid-state detector positioning on the patient. Moreover, the dosimetric characterization of the recent Elekta aSi EPIDs in terms of signal stability and linearity enables these detectors adaptable for the transit in vivo dosimetry with 6, 10 and 15 MV photon beams. However, the implementation of the EPID transit dosimetry requires several measurements. Recently, the present authors have developed an in vivo dosimetry method for the 3D CRT based on correlation functions defined by the ratios between the transit signal, s(t) (w,L), by the EPID and the phantom mid-plane dose, D(m)(w,L), at the Source to Axis Distance (SAD) as a function of the phantom thickness, w, and the square field dimensions, L. When the phantom mid-plane was positioned at distance d from the SAD, the ratios st(w,L)/s't(d,w,L), were used to take into account the variation of the scattered photon contributions on the EPID as a function of, d and L. The aim of this paper was the implementation of a procedure that uses generalized correlation functions obtained by nine Elekta Precise linac beams. The procedure can be used by other Elekta Precise linacs equipped with the same aSi EPIDs assuring the stabilities of the beam output factors and the EPID signals. The calibration procedure of the aSi EPID here reported avoids measurements in solid water equivalent phantoms needed to implement the in vivo dosimetry method in the radiotherapy center. A tolerance level ranging between ±5% and ±6% (depending on the type of tumor) was estimated for the comparison between the reconstructed isocenter dose, D(iso) and the computed dose D(iso,TPS) by the treatment planning system (TPS).  相似文献   

14.
在体剂量学方法是目前最直接、最有效的质量保证手段之一。EPID因具有优良的剂量学特性而被用于在体剂量验证。近年来,国内外有很多关于EPID的在体剂量学方法研究。此文目的是对基于EPID的在体剂量学方法研究进行综述,了解其研究现状,为后续运用研究和扩展提供参考。  相似文献   

15.
To test the accuracy and reproducibility of the tangential breast treatment set-up used in The Netherlands Cancer Institute, a portal imaging study was performed in 12 patients treated for early stage breast cancer. With an on-line electronic portal imaging device (EPID) images were obtained of each patient in several fractions and compared with simulator films and with each other. In five patients, multiple images (on the average 7) per fraction were obtained to evaluate set-up variations due to respiratory movement. The central lung distance (CLD) and other set-up parameters varied within one fraction about 1 mm (1 SD). The average variation of these parameters between various fractions was about 2 mm (1 SD). The differences between simulator and treatment set-up over all patients and all fractions was on the average 2-3 mm for the central beam edge to skin distance and the central lung distance. It can be concluded that the tangential breast treatment set-up is very stable and reproducible and that respiration does not have a significant influence on treatment volume. The EPID appears to be an adequate tool for studies of treatment set-up accuracy like this.  相似文献   

16.
PURPOSE: To investigate the feasibility of replacing pretreatment verification with in vivo electronic portal imaging device (EPID) dosimetry for prostate intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: Dose distributions were reconstructed from EPID images, inside a phantom (pretreatment) or the patient (five fractions in vivo) for 75 IMRT prostate plans. Planned and EPID dose values were compared at the isocenter and in two dimensions using the gamma index (3%/3 mm). The number of measured in vivo fractions required to achieve similar levels of agreement with the plan as pretreatment verification was determined. The time required to perform both methods was compared. RESULTS: Planned and EPID isocenter dose values agreed, on average, within +/-1% (1 SD) of the total plan for both pretreatment and in vivo verification. For two-dimensional field-by-field verification, an alert was raised for 10 pretreatment checks with clear but clinically irrelevant discrepancies. Multiple in vivo fractions were combined by assessing gamma images consisting of median, minimum and low (intermediate) pixel values of one to five fractions. The "low" gamma values of three fractions rendered similar results as pretreatment verification. Additional time for verification was approximately 2.5 h per plan for pretreatment verification, and 15 min +/- 10 min/fraction using in vivo dosimetry. CONCLUSIONS: In vivo EPID dosimetry is a viable alternative to pretreatment verification for prostate IMRT. For our patients, combining information from three fractions in vivo is the best way to distinguish systematic errors from non-clinically relevant discrepancies, save hours of quality assurance time per patient plan, and enable verification of the actual patient treatment.  相似文献   

17.
背景与目的:随着放疗技术和设备的不断发展,鼻咽癌放射治疗已经进入了精确放疗时代,摆位误差成为影响放疗效果的非常重要的因素。本研究在千伏级锥形束CT(cone beam computed tomography,CBCT)与兆伏级电子射野影像系统(electronic portal imaging device,EPID)2种影像模式引导下治疗鼻咽癌,在头枕+头颈肩面膜、真空气垫+头颈肩面膜固定2种方式下的摆位误差分析比较。方法:随机选取40例鼻咽癌患者分成2组(头枕+头颈肩面膜组,真空气垫+头颈肩面膜固定组),每组组内再分成CBCT扫描组和EPID验证组。将CBCT扫描图像与计划CT图像进行自动骨性配准、将EPID拍摄的正侧位片采用突出性骨性标志进行手动配准,分别得出x、y、z共3个线性方向上的摆位误差值,对获得的2组数据进行组内组间两两比较,采用t检验比较数据差异有无统计学意义。结果:头枕+头颈肩面膜组摆位后行CBCT扫描,在x、y、z方向上进行配准所得的平均误差分别为:x方向(0.67±2.01)mm、y方向(0.51±1.71)mm、z方向(0.57±2.04)mm;拍摄EPID验证片配准所得误差均值:x方向(0.69±2.19)mm、y方向(0.54±2.03)mm、z方向(0.61±2.11)mm。真空气垫+头颈肩面膜固定组摆位后行CBCT扫描,在x、y、z方向上进行配准所得的平均误差分别为:x方向(0.42±1.81)mm、y方向(0.33±1.55)mm、z方向(0.50±1.75)mm;拍摄EPID验证片配准误差均值:x方向(0.44±1.87)mm、y方向(0.43±1.70)mm、z方向(0.54±1.77)mm。采用头枕+头颈肩面膜组、真空气垫+头颈肩面膜固定组的误差数据差异均有统计学意义(P<0.05)。结论:2种不同的影像模式(CBCT与EPID)进行摆位误差的比对未见明显统计学差异,2种固定方式下头颈部真空气垫+头颈肩面膜固定的患者体位重复性更好。  相似文献   

18.
PURPOSE: Geometrical accuracy in patient positioning can vary substantially during external radiotherapy. This study estimated the set-up accuracy during pelvic irradiation for gynecological malignancies for determination of safety margins (planning target volume, PTV). METHODS AND MATERIALS: Based on electronic portal imaging devices (EPID), 25 patients undergoing 4-field pelvic irradiation for gynecological malignancies were analyzed with regard to set-up accuracy during the treatment course. Regularly performed EPID images were used in order to systematically assess the systematic and random component of set-up displacements. Anatomical matching of verification and simulation images was followed by measuring corresponding distances between the central axis and anatomical features. Data analysis of set-up errors referred to the x-, y-,and z-axes. Additionally, cumulative frequencies were evaluated. RESULTS: A total of 50 simulation films and 313 verification images were analyzed. For the anterior-posterior (AP) beam direction mean deviations along the x- and z-axes were 1.5 mm and -1.9 mm, respectively. Moreover, random errors of 4.8 mm (x-axis) and 3.0 mm (z-axis) were determined. Concerning the latero-lateral treatment fields, the systematic errors along the two axes were calculated to 2.9 mm (y-axis) and -2.0 mm (z-axis) and random errors of 3.8 mm and 3.5 mm were found, respectively. The cumulative frequency of misalignments < or =5 mm showed values of 75% (AP fields) and 72% (latero-lateral fields). With regard to cumulative frequencies < or =10 mm quantification revealed values of 97% for both beam directions. CONCLUSION: During external pelvic irradiation therapy for gynecological malignancies, EPID images on a regular basis revealed acceptable set-up inaccuracies. Safety margins (PTV) of 1 cm appear to be sufficient, accounting for more than 95% of all deviations.  相似文献   

19.
[目的]分析采用个体化加长真空垫+热塑网状头颈肩膜体位固定技术实施调强放疗的鼻咽癌患者放疗期间摆位误差的大小及其体重的变化趋势。[方法]鼻咽癌患者23例,整个疗程1-6个周次中每周拍摄正侧位EPID图像一次并测量患者体重。将EPID图像与计划CT所生成的DRR图像进行配准,利用获得的配准差值分析摆位误差的大小及其在不同周次间的差异,同时分析患者体重的变化对摆位误差的影响。[结果]不分周次的情况下,头脚、腹背、左右三个方向的摆位误差分别为0.165±0.121em、0.064±0.122cm、0.038+0.135em。按不同周次进行划分,头脚、腹背、左右各个方向在6个不同周次的摆位误差无明显差别(P均〉0.05)。Bivariate相关分析结果显示头脚、腹背、左右三个方向上的偏移幅度与体重变化均无关(r=0.147,P=0.152;r=O.102,P=O.321;r=O.114,P=O.267)。[结论]采用个体化加长真空垫+热塑网状头颈肩膜体位固定技术实施调强放疗的鼻咽癌患者在整个疗程中的摆位具有较好的准确性与重复性,患者体重的变化对摆位误差无明显影响。  相似文献   

20.
AimTo compare the accuracy of radiotherapy set-up using an electronic portal imaging device (EPID) versus megavoltage cone beam computed tomography (MV-CBCT) in paediatric patients.Materials and methodsIn total, 204 pairs of EPID and MV-CBCT were carried out for 72 patients in the first 3 treatment days and weekly thereafter.ResultsFor the whole group, the mean systematic EPID set-up errors were 1.8 (±1.7), 1.6 (±1.3), 1.4 (±1.5) mm and 2.3 (±1.7), 1.6 (±1.3), 2.4 (±1.6) mm for MV-CBCT in the longitudinal, lateral and vertical directions, respectively, whereas the mean EPID random errors were 2.0 (±1.7), 1.4 (±1.5), 1.2 (±1.6) and 1.9 (±1.5), 1.5 (±1.3), 2.1 (±1.7) mm for MV-CBCT in the longitudinal, lateral and vertical directions, respectively. For systematic errors of head and neck patients, there was a statistically significant difference in the lateral and vertical directions (P = 0.027, 0.003), whereas in the non-head and neck patients there was a statistically significant difference in the lateral direction only (P = 0.031). In head and neck patients, the mean random errors were significantly different in the vertical and lateral directions, whereas in non-head and neck patients, they were significantly different in the vertical direction only. The larger values alternate between the two modalities. The systematic and random errors (detected by EPID and MV-CBCT) were significantly correlated in almost all direction in all tumour sites.ConclusionsThe comparison between set-up error in EPID and MV-CBCT was not in favour of any of the two modalities. However, the two modalities were strongly correlated but fairly agreed and the differences between the shifts reported were small and hardly influenced the recommended planning target volume margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号