首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Spinal muscular atrophy (SMA) is caused by insufficient levels of survival motor neuron (SMN) protein. Recently, we found that sodium 4-phenylbutyrate (PB), a well-tolerated FDA approved drug, enhances SMN gene expression in vitro. We provide here the first evidence that oral administration of PB (triButyrate significantly increases SMN expression in leukocytes of SMA patients. This finding provides a strong rationale to further investigate the effects of PB as also supported by preliminary clinical data.  相似文献   

3.
4.
5.
6.
7.
Spinal muscular atrophy (SMA) is a genetic disorder caused by mutations in the human survival of motor neuron 1 gene, SMN1. SMN protein is part of a large complex that is required for biogenesis of various small nuclear ribonucleoproteins (snRNPs). Here, we report that SMN interacts directly with the Cajal body signature protein, coilin, and that this interaction mediates recruitment of the SMN complex to Cajal bodies. Mutation or deletion of specific RG dipeptide residues within coilin inhibits the interaction both in vivo and in vitro. Interestingly, GST-pulldown experiments show that coilin also binds directly to SmB'. Competition studies show that coilin competes with SmB' for binding sites on SMN. Ectopic expression of SMN and coilin constructs in mouse embryonic fibroblasts lacking endogenous coilin confirms that recruitment of SMN and splicing snRNPs to Cajal bodies depends on the coilin C-terminal RG motif. A cardinal feature of SMA patient cells is a defect in the targeting of SMN to nuclear foci; our results uncover a role for coilin in this process.  相似文献   

8.

Introduction

Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder. It is caused by homozygous absence of the survival motor neuron 1 (SMN1) gene. SMN2, which modulates the severity of the disease, represents a major target for therapy. The aim of this study was to investigate whether SMN2 expression can be increased by caffeic acid, chlorogenic acid and curcumin, which are designed by modifications of the carboxylic acid class of histone deacetylase (HDAC) inhibitors.

Material and methods

Using quantitative real-time PCR, we analysed the levels of full-length SMN2 and Δ7SMN2 mRNA. We performed LDH cytotoxicity assay to analyse whether SMN2 activating concentrations of caffeic acid, chlorogenic acid and curcumin were cytotoxic to fibroblasts.

Results

We found that caffeic acid and curcumin were more efficient than chlorogenic acid and increased full-length SMN2 mRNA levels 1.5 and 1.7-fold, respectively. Δ7SMN2 mRNA levels were measured to investigate alternative splicing of exon 7. We also found that cytotoxicity was not observed at SMN2 activating concentrations.

Conclusions

Our data suggest that carboxylic acid derivatives including phenolic structure and symmetry could be a good candidate for SMA treatment.  相似文献   

9.
Spinal muscular atrophy (SMA), a frequent neurodegenerative disease, is caused by reduced levels of functional survival of motoneuron (SMN) protein. SMN is involved in multiple pathways, including RNA metabolism and splicing as well as motoneuron development and function. Here we provide evidence for a major contribution of the Rho-kinase (ROCK) pathway in SMA pathogenesis. Using an in vivo protein interaction system based on SUMOylation of proteins, we found that SMN is directly interacting with profilin2a. Profilin2a binds to a stretch of proline residues in SMN, which is heavily impaired by a novel SMN2 missense mutation (S230L) derived from a SMA patient. In different SMA models, we identified differential phosphorylation of the ROCK-downstream targets cofilin, myosin-light chain phosphatase and profilin2a. We suggest that hyper-phosphorylation of profilin2a is the molecular link between SMN and the ROCK pathway repressing neurite outgrowth in neuronal cells. Finally, we found a neuron-specific increase in the F-/G-actin ratio that further support the role of actin dynamics in SMA pathogenesis.  相似文献   

10.
The role of the SMN gene in proximal spinal muscular atrophy   总被引:8,自引:4,他引:8  
Childhood spinal muscular atrophy (SMA) is a common recessive autosomal disorder that results in degeneration of lower motor neurons. The identification of the disease gene, Survival of Motor Neuron (SMN), was a major advance in understanding the molecular basis underlying this devastating neuromuscular disease. This finding has greatly improved the genetic counselling of SMA families. Recently, biochemical studies demonstrated its involvement in the biogenesis of spliceosomal snRNPs, suggesting a critical role of SMN in RNA processing. Surprisingly, other studies showed a putative role of SMN in an anti-apoptotic pathway involving Bcl-2. The function of SMN protein is not fully understood. These observations emphasized the difficulty in elucidating the function of any novel protein. Therefore, multidisciplinary approaches are required to understand the pathogenesis of SMA.   相似文献   

11.
Spinal muscular atrophy (SMA) is a common pediatric neuromuscular disorder caused by insufficient levels of the survival of motor neuron (SMN) protein. Studies involving SMA patients and animal models expressing the human SMN2 gene have yielded relatively little information about the earliest cellular consequences of reduced SMN protein. In this study, we have used severe- and mild-SMN2 expressing mouse models of SMA as well as material from human patients to understand the initial stages of neurodegeneration in the human disease. We show that the earliest structural defects appear distally and involve the neuromuscular synapse. Insufficient SMN protein arrests the post-natal development of the neuromuscular junction (NMJ), impairing the maturation of acetylcholine receptor (AChR) clusters into 'pretzels'. Pre-synaptic defects include poor terminal arborization and intermediate filament aggregates which may serve as a useful biomarker of the disease. These defects are reflected in functional deficits at the NMJ characterized by intermittent neurotransmission failures. We suggest that SMA might best be described as a NMJ synaptopathy and that one promising means of treating it could involve maintaining function at the NMJ.  相似文献   

12.
We report a 27‐year‐old man with an apparently new syndromic form of progressive erosive arthropathy and contractures of small and large joints associated with mild epiphyseal changes, normal vertebrae, and generalized osteopenia. The patient had a characteristic craniofacial appearance, dermatological abnormalities, and normal intelligence. The head was large with frontal bossing. The face was elongated with malar hypoplasia, thin upper lip, prominent lower jaw, high arched palate, dental malocclusion, and prominent ears with absent ear lobules. Dermatological abnormalities included malar erythema and facial telangiectasia together with multiple nevi and lentigenes all over the body. Pseudorheumatoid arthropathy, spondyloarthropathy, and Borrone dermatocardioskeletal syndrome were considered in the differential diagnosis and were excluded. Also, no similar cases have been found in POSSUM or the London Dysmorphology databases. © 2001 Wiley‐Liss, Inc.  相似文献   

13.
The survival of motor neuron (SMN) protein is mutated in patients with spinal muscular atrophy (SMA). SMN is part of a multiprotein complex required for biogenesis of the Sm class of small nuclear ribonucleoproteins (snRNPs). Following assembly of the Sm core domain, snRNPs are transported to the nucleus via importin beta. Sm snRNPs contain a nuclear localization signal (NLS) consisting of a 2,2,7-trimethylguanosine (TMG) cap and the Sm core. Snurportin1 (SPN) is the adaptor protein that recognizes both the TMG cap and importin beta. Here, we report that a mutant SPN construct lacking the importin beta binding domain (IBB), but containing an intact TMG cap-binding domain, localizes primarily to the nucleus, whereas full-length SPN localizes to the cytoplasm. The nuclear localization of the mutant SPN was not a result of passive diffusion through the nuclear pores. Importantly, we found that SPN interacts with SMN, Gemin3, Sm snRNPs and importin beta. In the presence of ribonucleases, the interactions with SMN and Sm proteins were abolished, indicating that snRNAs mediate this interplay. Cell fractionation studies showed that SPN binds preferentially to cytoplasmic SMN complexes. Notably, we found that SMN directly interacts with importin beta in a GST-pulldown assay, suggesting that the SMN complex might represent the Sm core NLS receptor predicted by previous studies. Therefore, we conclude that, following Sm protein assembly, the SMN complex persists until the final stages of cytoplasmic snRNP maturation and may provide somatic cell RNPs with an alternative NLS.  相似文献   

14.
15.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterised by degeneration and loss of the motor neurons of the anterior horn of the spinal cord. The absence of SMN1 is determinant to have SMA and parents of SMA patients are regarded as carriers of the disease. We compared the segregation ratio of the mutated allele and the wild-type allele of all the confirmed carrier parents assuming Mendelian proportions. Results of transmissions in 235 prenatal tests and in 128 unaffected siblings showed a statistically significant deviation in favour of the wild-type SMN1 allele. The number of affected foetuses and carriers were lower than that expected. No significant differences in the sex ratio or in the progenitor origin of the transmitted allele to the carriers were found. One hypothesis that has been advanced to account for the distortion observed in affected foetuses is the negative postzygote selection due to early miscarriage. However, given that the number of carriers in our series was lower than expected, prezygote events such as meiotic drive, survival of gametes or preferential fertilisation should also be considered.  相似文献   

16.
Spinal muscular atrophy (SMA) is caused by mutation of the Survival Motor Neurons 1 (SMN1) gene and is characterized by degeneration of spinal motor neurons. The severity of SMA is primarily influenced by the copy number of the SMN2 gene. Additional modifier genes that lie outside the SMA locus exist and one gene that could modify SMA is the Zinc Finger Protein (ZPR1) gene. To test the significance of ZPR1 downregulation in SMA, we examined the effect of reduced ZPR1 expression in mice with mild and severe SMA. We report that the reduced ZPR1 expression causes increase in the loss of motor neurons, hypermyelination in phrenic nerves, increase in respiratory distress and disease severity and reduces the lifespan of SMA mice. The deficiency of SMN-containing sub-nuclear bodies correlates with the severity of SMA. ZPR1 is required for the accumulation of SMN in sub-nuclear bodies. Further, we report that ZPR1 overexpression increases levels of SMN and promotes accumulation of SMN in sub-nuclear bodies in SMA patient fibroblasts. ZPR1 stimulates neurite growth and rescues axonal growth defects in SMN-deficient spinal cord neurons from SMA mice. These data suggest that the severity of disease correlates negatively with ZPR1 levels and ZPR1 may be a protective modifier of SMA.  相似文献   

17.
Deletion of the murine survival of motor neuron gene (SMN) exon 7, the most frequent mutation found in spinal muscular atrophy (SMA) patients, directed to neurons but not to skeletal muscle, enabled generation of a mouse model of SMA providing evidence that motor neurons are the primary target of the gene defect. Moreover, the mutated SMN protein (SMNDeltaC15) is dramatically reduced in the motor neuron nuclei and causes a lack of gems associated with large aggregates of coilin, a coiled-body-specific protein. These results identify the lack of the nuclear targeting of SMN as the biochemical defect in SMA.  相似文献   

18.
Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletions, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, most of the mRNA produced from SMN2 pre-mRNA is exon 7-skipped (∼80%), resulting in a highly unstable and almost undetectable protein (SMNΔ7). We show that this splicing defect creates a potent degradation signal (degron; SMNΔ7-DEG) at SMNΔ7''s C-terminal 15 amino acids. The S270A mutation inactivates SMNΔ7-DEG, generating a stable SMNΔ7 that rescues viability of SMN-deleted cells. These findings explain a key aspect of the SMA disease mechanism, and suggest new treatment approaches based on interference with SMNΔ7-DEG activity.  相似文献   

19.
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder characterized by degeneration of motor neurons of the spinal cord and muscular atrophy. SMA is caused by alterations to the survival of motor neuron (SMN) gene, the function of which has hitherto been unclear. Here, we present immunoblot analyses showing that normal SMN protein expression undergoes a marked decay in the postnatal period compared with fetal development. Morphological and immunohistochemical analyses of the SMN protein in human fetal tissues showed a general distribution in the cytoplasm, except in muscle cells, where SMN protein was immunolocalized to large cytoplasmic dot-like structures and was tightly associated with membrane-free heavy sedimenting complexes. These cytoplasmic structures were similar in size to gem. The SMN protein was markedly deficient in tissues derived from type I SMA fetuses, including skeletal muscles and, as previously shown, spinal cord. While our data do not help decide whether SMA results from impaired SMN expression in spinal cord, skeletal muscle or both, they suggest a requirement for SMN protein during embryo-fetal development.   相似文献   

20.
目的 对1例脊肌萎缩症(spinal muscular atrophy,SMA)患者及其家系成员的SMN基因行突变分析.方法 采用多重连接依赖性探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术、逆转录聚合酶链反应及T克隆-测序技术对患者SMN基因进行拷贝数分析和点突变的鉴定,应用MLPA和针对点突变区域的SMN基因第5外显子PCR-直接测序法对患者父母SMN基因进行拷贝数分析和点突变的证实,同时用200名正常人外周血进行相关位点对照研究.结果 患者具有1个拷贝的SMNl基因和1个拷贝的SMN2基因,在这个SMNl基因第230位密码子上存在1个未见报道的错义突变S230L(TCA→TTA);父亲具有两个SMN1和两个SMN2拷贝,其中1个SMNl基因存在S230L突变;母亲具有1个SMN1拷贝,而SMN2基因是纯合缺失的.200名对照中未发现该位点突变.结论 在1个SMA家系中发现了1个新的SMNI基因点突变,即S230L,并准确分析了此家系各成员的SMN基因型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号