首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Previously, gold nanoshells were shown to be able to effectively convert photon energy to heat, leading to hyperthermia and suppression of tumor growths in mice. Herein, we show that in addition to the nanomaterial-mediated photothermal effects (NmPTT), gold nanoshells (including, nanocages, nanorod-in-shell and nanoparticle-in-shell) not only are able to absorb NIR light, but can also emit fluorescence, sensitize formation of singlet oxygen and exert nanomaterial-mediated photodynamic therapeutic (NmPDT) complete destruction of solid tumors in mice. The modes of NmPDT and NmPTT can be controlled and switched from one to the other by changing the excitation wavelength. In the in vitro experiments, gold nanocages and nanorod-in-shell show larger percentage of cellular deaths originating from NmPDT along with the minor fraction of NmPTT effects. In contrast, nanoparticle-in-shell exhibits larger fraction of NmPTT-induced cellular deaths together with minor fraction of NmPDT-induced apoptosis. Fluorescence emission spectra and DPBF quenching studies confirm the generation of singlet O2 upon NIR photoirradiation. Both NmPDT and NmPTT effects were confirmed by measurements of reactive oxygen species (ROS) and subsequent sodium azide quenching, heat shock protein expression (HSP 70), singlet oxygen sensor green (SOSG) sensing, changes in mitochondria membrane potential and apoptosis in the cellular experiments. In vivo experiments further demonstrate that upon irradiation at 980 nm under ultra-low doses (∼150 mW/cm2), gold nanocages mostly exert NmPDT effect to effectively suppress the B16F0 melanoma tumor growth. The combination of NmPDT and NmPTT effects on destruction of solid tumors is far better than pure NmPTT effect by 808 nm irradiation and also doxorubicin. Overall, our study demonstrates that gold nanoshells can serve as excellent multi-functional theranostic agents (fluorescence imaging + NmPDT + NmPTT) upon single photon NIR light excitation under ultra-low laser doses.  相似文献   

2.
We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer.  相似文献   

3.
Here, we developed one-step green reduction and PEGylation of nanosized graphene oxide (NGO) to obtain NrGO/PEG as a photothermally controllable drug delivery system. NrGO/PEG was synthesized by bathing methoxypolyethylene glycol amine (mPEG-NH2) and NGO at 90 °C for 24 h. The NrGO/PEG kept water stability for at least two months, and had ∼14-fold increment in near-infrared (NIR) absorbance and ∼2-fold increment in resveratrol (RV) loading over the unreduced NGO/PEG via ππ and hydrophobic interactions. Exposure of 4T1 cells to NrGO/PEG for 2 h showed 53.6% uptake ratio, and localization of NrGO/PEG in lysosomes instead of mitochondria. NIR irradiation (808 nm laser at 0.6 W/cm2) for 3 min potently enhanced RV release from NrGO/PEG-RV and the cytotoxicity of NrGO/PEG-RV against 4T1 cells, including decrease of cell viability, loss of mitochondrial membrane potential (ΔΨm) and cell apoptosis. Finally, NIR irradiation dramatically enhanced the efficacy of NrGO/PEG-RV in suppressing tumor growth in animal tumor models, further proving the remarkable synergistic action between photothermal effect of NrGO/PEG and RV loaded on NrGO/PEG.  相似文献   

4.
Developing a simple and cost-effective strategy to diagnose and treat cancer with single and minimal dosage through noninvasive strategies are highly challenging. To make the theranostic strategy effective, single light induced photothermal and photodynamic reagent with dual modal imaging capability is highly desired. Herein, a simple non-covalent approach was adopted to immobilize hydrophobic silicon napthalocyanine bis (trihexylsilyloxide) (SiNc4) photosensitizer onto water dispersible magnetic and fluorescent graphene (MFG) via π–π stacking to yield MFG–SiNc4 functioned as a theranostic nanocarrier. Taking the advantage of broad near infra-red absorption (600–1200 nm) by graphene, photosensitizer of any wavelength within this range will facilitate the single light induced phototherapy. Phosphorescence spectra, singlet oxygen sensor green (SOSG) experiments, and 1,3-diphenyl isobenzofuran quenching studies confirm the generation of singlet 1O2 upon photoirradiation. Confocal microscopic images reveal successful internalization of MFG–SiNc4 in HeLa cells; whereas T2-weighted magnetic resonance images of MFG reveal a significant concentration dependent darkening effect. In vitro photodynamic/photothermal therapeutic studies on HeLa cells have demonstrated that the killing efficacy of MFG–SiNc4 using a single light source is ∼97.9%, presumably owing to the combined effects of generating reactive oxygen species, local heating, and induction of apoptosis. The developed MFG–SiNc4 may thus be utilized as a potential theranostic nanocarrier for dual modal imaging and phototherapy of cancer cells with single light source for time and cost effective treatments with a minimal therapy dose.  相似文献   

5.
Breast tumors contain a small population of tumor initiating stem-like cells, termed breast cancer stem cells (BCSCs). These cells, which are refractory to chemotherapy and radiotherapy, are thought to persist following treatment and drive tumor recurrence. We examined whether BCSCs are similarly resistant to hyperthermic therapy, and whether nanoparticles could be used to overcome this resistance. Using a model of triple-negative breast cancer stem cells, we show that BCSCs are markedly resistant to traditional hyperthermia and become enriched in the surviving cell population following treatment. In contrast, BCSCs are sensitive to nanotube-mediated thermal treatment and lose their long-term proliferative capacity after nanotube-mediated thermal therapy. Moreover, use of this therapy in vivo promotes complete tumor regression and long-term survival of mice bearing cancer stem cell-driven breast tumors. Mechanistically, nanotube thermal therapy promotes rapid membrane permeabilization and necrosis of BCSCs. These data suggest that nanotube-mediated thermal treatment can simultaneously eliminate both the differentiated cells that constitute the bulk of a tumor and the BCSCs that drive tumor growth and recurrence.  相似文献   

6.
Methylene blue-loaded gold nanorod@SiO2 (MB-GNR@SiO2) core@shell nanoparticles are synthesized for use in cancer imaging and photothermal/photodynamic dual therapy. For the preparation of GNR@SiO2 nanoparticles, we found that the silica coating rate of hexadecylcetyltrimethylammonium bromide (CTAB)-capped GNRs is much slower than that of PEGylated GNRs due to the densely coated CTAB bilayer. Encapsulated MB molecules have both monomer and dimer forms that result in an increase in the photosensitizing effect through different photochemical pathways. As a consequence of the excellent plasmonic properties of GNRs at near-infrared (NIR) light, the embedded MB molecules showed NIR light-induced SERS performance with a Raman enhancement factor of 3.0 × 1010, which is enough for the detection of a single cancer cell. Moreover, the MB-GNR@SiO2 nanoparticles exhibit a synergistic effect of photodynamic and photothermal therapies of cancer under single-wavelength NIR laser irradiation.  相似文献   

7.
Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment.  相似文献   

8.
Reduced graphene oxide (rGO), a carbon-based nanomaterial, has enormous potential in biomedical research, including in vivo cancer therapeutics. Concerns over the toxicity remain outstanding and must be investigated before clinical application. The effect of rGO exposure on animal behaviors, such as learning and memory abilities, has not been clarified. Herein, we explored the short- and long-term effects of orally administered rGO on mouse behaviors, including general locomotor activity level, balance and neuromuscular coordination, exploratory and anxiety behaviors, and learning and memory abilities using open-field, rotarod, and Morris water maze tests. Compared with mice administered buffer-dispersed mouse chow or buffer alone, mice receiving a high dose of small or large rGO nanosheets showed little change in exploratory, anxiety-like, or learning and memory behaviors, although general locomotor activity, balance, and neuromuscular coordination were initially affected, which the mechanisms (e.g. the influence of rGO exposure on the activity of superoxide dismutase in mouse serum) were discussed. The results presented in this work look to provide a deep understanding of the in vivo toxicity of rGO to animals, especially its effect on learning and memory and other behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号