首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Degeneration of axotomized GABAergic septohippocampal neurones has been shown to be enhanced in ciliary neurotrophic factor (CNTF)-deficient mice following fimbria-fornix transection (FFT), indicating a neuroprotective function of endogenous CNTF. Paradoxically, however, the cholinergic population of septohippocampal neurones was more resistant to axotomy in these mutants. As leukaemia inhibitory factor (LIF) has been identified as a potential neuroprotective factor for the cholinergic medial septum (MS) neurones, FFT-induced responses were compared in CNTF(-/-), LIF(-/-) and CNTF/LIF double knockout mice. In CNTF(-/-) mice, FFT-induced cholinergic degeneration was confirmed to be attenuated as compared with wildtype mice. The expression of both LIF and LIF receptor beta was increased in the MS providing a possible explanation for the enhanced neuronal resistance to FFT in these animals. However, ablation of the LIF gene also produced paradoxical effects; following FFT in LIF(-/-) mice no loss of GABAergic or cholinergic MS neurones was detectable during the first postlesional week, suggesting that other efficient neuroprotective mechanisms are activated in these animals. In fact, enhanced activation of astrocytes, a source of neurotrophic proteins, was indicated by increased up-regulation of glial fibrillary acidic protein and vimentin expression. In addition, mRNA levels for neurotrophin signalling components (e.g. nerve growth factor, p75(NTR)) were differentially regulated. The positive effect on axotomized cholinergic neurones seen in CNTF(-/-) and LIF(-/-) mice as well as the increased up-regulation of astrogliose markers was abolished in CNTF/LIF double knockout animals. Our results indicate that endogenous CNTF and LIF are involved in the regulation of neuronal survival following central nervous system lesion and are integrated into a network of neurotrophic signals that mutually influence their expression and function.  相似文献   

2.
Previous research has shown that the ventral medial prefrontal cortex (vmPFC) and hippocampus (Hipp) are critical for extinction memory. Basal forebrain (BF) cholinergic input to the vmPFC and Hipp is critical for neural function in these substrates, which suggests BF cholinergic neurons may be critical for extinction memory. In order to test this hypothesis, we applied cholinergic lesions to different regions of the BF and observed the effects these lesions had on extinction memory. Complete BF cholinergic lesions induced contextual fear memory generalization, and this generalized fear was resistant to extinction. Animals with complete BF cholinergic lesions could not acquire cued fear extinction. Restricted cholinergic lesions in the medial septum and vertical diagonal bands of Broca (MS/vDBB) mimicked the effects that BF cholinergic lesions had on contextual fear memory generalization and acquisition of fear extinction. Cholinergic lesions in the horizontal diagonal band of Broca and nucleus basalis (hDBB/NBM) induced a small deficit in extinction of generalized contextual fear memory with no accompanying deficits in cued fear extinction. The results of this study reveal that MS/vDBB cholinergic neurons are critical for inhibition and extinction of generalized contextual fear memory, and via this process, may be critical for acquisition of cued fear extinction. Further studies delineating neural circuits and mechanisms through which MS/vDBB cholinergic neurons facilitate these emotional memory processes are needed. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The medial septum and diagonal band (MSDB) are important in spatial learning and memory. On the basis of the excitotoxic damage of GABAergic MSDB neurons, we have recently suggested a role for these neurons in controlling proactive interference. Our study sought to test this hypothesis in different behavioral procedures using a new GABAergic immunotoxin. GABA‐transporter‐saporin (GAT1‐SAP) was administered into the MSDB of male Sprague–Dawley rats. Following surgery, rats were trained in a reference memory water maze procedure for 5 days, followed by a working memory (delayed match to position) water maze procedure. Other rats were trained in a lever‐press avoidance procedure after intraseptal GAT1‐SAP or sham surgery. Intraseptal GAT1‐SAP extensively damaged GABAergic neurons while sparing most cholinergic MSDB neurons. Rats treated with GAT1‐SAP were not impaired in acquiring a spatial reference memory, learning the location of the escape platform as rapidly as sham rats. In contrast, GAT1‐SAP rats were slower than sham rats to learn the platform location in a delayed match to position procedure, in which the platform location was changed every day. Moreover, GAT1‐SAP rats returned to previous platform locations more often than sham rats. In the active avoidance procedure, intraseptal GAT1‐SAP impaired extinction but not acquisition of the avoidance response. Using a different neurotoxin and behavioral procedures than previous studies, the results of this study paint a similar picture that GABAergic MSDB neurons are important for controlling proactive interference. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
We studied the temporal and spatial localization of the low-affinity nerve growth factor receptor (LNGF-R) during the early postnatal period in rat brain in order to understand better the relationship between nerve growth factor (NGF)-like responsiveness and the development of specific central neuronal populations. Four different developmental patterns of LNGF-R mRNA hybridization were found in this study. First, some neurons contain high levels of LNGF-R mRNA from postnatal time points into adulthood, as exemplified by neurons of the cholinergic basal forebrain and mesencephalic trigeminal nucleus. Second, several cell groups exhibit robust hybridization during the early postnatal period but contain much reduced levels of LNGF-R mRNA in the adult brain. These include striatal neurons, Purkinje cells of the cerebellum, and several medullary nuclei. A third group of cells produces the LNGF-R transiently during development, including cranial nerve nuclei of the brainstem, the periolivary nuclei complex, the reticular formation, and the deep cerebellar nuclei. Finally, cell populations which may exist only transiently during central nervous system (CNS) development, such as subplate neurons of the cerebral cortex, appear to express the LNGF-R during only a brief period. These results show that the LNGF-R gene is differentially regulated in a cell type-specific manner during development, and suggests that diverse neuronal populations require only transient growth factor sensitivity, while others exhibit NGF-like responsitivity into maturity.  相似文献   

5.
At least half of the basal forebrain neurons which project to the cortex are GABAergic. Whilst hypotheses about the attentional functions mediated by the cholinergic component of this corticopetal projection system have been substantiated in recent years, knowledge about the functional contributions of its GABAergic branch has remained extremely scarce. The possibility that basal forebrain GABAergic neurons that project to the cortex are selectively contacted by corticofugal projections suggests that the functions of the GABAergic branch can be conceptualized in terms of mediating executive aspects of cognitive performance, including the switching between multiple input sources and response rules. Such speculations gain preliminary support from the effects of excitotoxic lesions that preferentially, but not selectively, target the noncholinergic component of the basal forebrain corticopetal system, on performance in tasks involving demands on cognitive flexibility. Progress in understanding the cognitive functions of the basal forebrain system depends on evidence regarding its main noncholinergic components, and the generation of such evidence is contingent on the development of methods to manipulate and monitor selectively the activity of the GABAergic corticopetal projections.  相似文献   

6.
Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males.  相似文献   

7.
In mammals, including humans, the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus contain neural stem cells, which continue to proliferate even in adulthood and give rise to new neurons. Neurogenesis in these areas is enhanced by brain insults. Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and differentiation during the development of the nervous system. In the adult intact brain, BDNF administration in the lateral ventricle or ventricular zone stimulates neurogenesis in several forebrain areas. Here we show that intrahippocampal transduction of recombinant adeno-associated virus carrying the BDNF gene giving rise to levels of BDNF protein sufficient to induce a functional response inhibits the formation of new dentate granule cells triggered by global forebrain ischemia in rats. Our data indicate that long-term delivery of a neurotrophic factor, which is considered as a novel neuroprotective strategy for human brain diseases, may attenuate intrinsic neuroregenerative responses.  相似文献   

8.
The medial septal diagonal band complex (MS/DB), made up of cholinergic and GABAergic neurons, plays an important role in the generation of the hippocampal theta rhythm. A GABAergic neuron type in the MS/DB that has fast spiking properties was shown previously to contain parvalbumin immunoreactivity and to form axosomatic connections with unidentified somata. The aim in the current study was to determine the neurochemical identities of these target neurons. In slices and in perfused-fixed brain, staining for parvalbumin immunoreactivity first of all revealed the presence of two types of parvalbumin-positive somata in the MS/DB: medially located neurons with parvalbumin-positive basket-like terminals on them, and more laterally located neurons with fewer parvalbumin-positive contacts on them. In MS/DB slices, the terminals of fast spiking neurons filled with biocytin correspondingly made either numerous contacts that surrounded the parvalbumin-positive cell body in basket-like formation, or 1-5 contacts on a localized patch of the soma. These contacts were shown by electron microscopy to form synaptic junctions. No terminals of biocytin-filled fast spiking neurons were observed on cholinergic neurons, and dual staining in perfused-fixed brain did not reveal the presence of parvalbumin-containing terminals on cholinergic somata. Our results suggest therefore that there are two subtypes of parvalbumin-containing neuron in the MS/DB, and that these are interconnected via axosomatic synapses. The contrasting topographical organization of the two types of parvalbumin-containing neuron suggests that they may receive different types of afferent input, but this will require substantiation in future studies. We propose that generation of rhythmic activity in the MS/DB is controlled by contrasting contributions from two types of parvalbumin-positive neuron, and that the role of the cholinergic neuron is modulatory.  相似文献   

9.
10.
11.
Summary. This study was to examine the effects of treadmill exercise on the expression of brain-derived neurotrophic factor (BDNF) in rat hippocampus. After 1-wk treadmill familiarization, animals in exercise groups received a 4-wk exercise training or an acute exercise. They were sacrificed 2 h or 2 d after exercise and their hippocampal BDNF mRNA and protein levels were determined. We demonstrated that 1) hippocampal BDNF mRNA and protein levels were both elevated in response to exercise training at 2 h after the last run but not after 2 d; 2) an acute moderate exercise (1 or 3 d) increased BDNF protein levels; 3) acute severe exercise increased BDNF protein and mRNA levels in animals under a familiarization regimen, while suppressed the BDNF mRNA level in rats without treadmill familiarization, paralleling the stress effect of immobilization/water exposure. We conclude that compulsive treadmill exercise with pre-familiarization acutely upregulates rat hippocampal BDNF gene expression.  相似文献   

12.
BACKGROUND: It has beenshown that ginsenoside, the effective component of ginseng, can enhance expression of choline acetyl transferase, as well as brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB), in cholinergic neurons of the basal forebrain. OBJECTIVE: To qualitatively and quantitatively verify the influence of ginsenoside on expression of BDNF and its receptor, TrkB, in the medial septum of aged rats, and to provide a molecular basis for clinical application. DESIGN~ TIME AND SETTING: A contrast study, which was performed in the Department of Anatomy, China Medical University, and the Department of Anatomy, Shenyang Medical College between December 2005 and May 2007. MATERIALS: Thirty-five, healthy, female, Sprague Dawley rats were selected for this study. Ginsenoside (81% purity) was provided by Jilin Ji'an Wantai Chinese Medicine Factory; anti-BDNF antibody, anti-TrkB antibody, and their kits were provided by Wuhan Boster Company. METHODS: A total of 35 rats were divided into three groups: young (four months old), aging (26 months old), and ginsenoside. Rats in the ginsenoside group were administered ginsenoside (25 mg/kg/d) between 17 months and 26 months. MAIN OUTCOME MEASURES: Immunohistochemistry and in situ hybridization were used to measure expression of BDNF and TrkB in the medial septum of aged rats, and the detected results were expressed as gray values. RESULTS: (1) Qualitative detection: using microscopy, degenerative neurons were visible in the medial septum in the aging group. However, neuronal morphology in the ginsenoside group was similar to neurons in the young group. (2) Quantitative detection: the mean gray value of BDNF-positive and TrkB-positive products in the aging group were significantly higher than in the young group (t = 3.346, 4.169, P 〈 0.01); however, the mean gray value in the ginsenoside group was significantly lower than in the aging group (t = 2.432, 2.651, P 〈 0.01). CONCLUS  相似文献   

13.
When intracisternally injected to rat brain, aluminum induced apoptosis as assessed by DNA fragmentation and activation of caspase-3 and caspase-12. Co-administration of glial cell line-derived neurotrophic factor (GDNF) effectively prevented aluminum-induced cell death through reduced apoptosis whereas brain-derived neurotrophic factor (BDNF) accelerated aluminum-induced apoptosis, suggesting that the extent of aluminum neurotoxicity in vivo may depend on the biological activity of the neurotrophic factors.  相似文献   

14.
BACKGROUND: It has been shown that ginsenoside, the effective component of ginseng, can enhance expression of choline acetyl transferase, as well as brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB), in cholinergic neurons of the basal forebrain. OBJECTIVE: To qualitatively and quantitatively verify the influence of ginsenoside on expression of BDNF and its receptor, TrkB, in the medial septum of aged rats, and to provide a molecular basis for clinical application. DESIGN, T...  相似文献   

15.
Ascending visceral regulation of cortical affective information processing   总被引:2,自引:0,他引:2  
Over a century ago, William James proposed that strong emotions represent the perceptual consequences of somato-visceral feedback. Although the strong form of this conception is no longer viable, considerable evidence has accumulated indicating a range of visceral influences on higher neurobehavioural processes. This literature has only recently begun to consolidate, because earlier reports generally remained at the demonstration level, and pathways and mechanisms for such influences were uncertain. Recently, specific effects of visceral feedback have become apparent on cortical activity, cerebral auditory-evoked responses, anxiety, memory and behavioural aspects of immunological sickness. Moreover, considerable progress has been made recently in determining the specific neural pathways and systems underlying these actions, especially the role of noradrenergic projections from the nucleus of the tractus solitarius and the locus coeruleus to the amygdala in memory processes, and to the basal forebrain in the processing of anxiety-related information. The present paper highlights selected recent findings in this area, and outlines relevant structures and pathways involved in the ascending visceral influence on higher neurobehavioural processes.  相似文献   

16.
17.
The supramammillary nucleus, collecting information about the physiological state of the animal, innervates medial septal neurons that are involved in the generation of hippocampal theta activity. Here we demonstrate that septal neurons located in an area bordering the medial and lateral septal nucleus project back to the supramammillary nucleus, and most of these cells contain calretinin, calbindin or both. GABA-immunoreactive boutons of these neurons (60%) form symmetrical synapses, whereas the remaining GABA-negative terminals form asymmetrical synapses (40%) with their supramammillary targets.We hypothesize that the septosupramammillary feedback, because of the specific location of its parent cells, carries information about the activity of theta generator cells in the medial septum and supramammillary nucleus, as well as about the resulting theta activity in the hippocampus.  相似文献   

18.
Cholinergic activation regulates cognitive function, particularly long‐term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue‐conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
INTRODUCTION: Brain-derived neurotrophic factor (BDNF) has been involved in the pathogenesis of bipolar mood disorder and in the mechanism of mood-normalizing action of lithium. The aim of this study was to find a possible association between lithium prophylactic effect in bipolar patients and two polymorphisms of BDNF gene. METHODS: Eighty-eight patients (35 males, 53 females) with bipolar illness were studied. Duration of lithium prophylaxis ranged between 5-27 years (mean 15 years). Three categories of prophylactic lithium response were delineated: excellent responders (ER), partial responders (PR) and non-responders (NR). All patients were genotyped for two polymorphisms of BDNF gene: Val66Met and -270C/T. RESULTS: The Val/Met genotype of Val66Met polymorphism occurred more frequently (p = 0.037) and there was a trend for a higher incidence of Met allele (p = 0.076), in ER than in NR. A trend for C/T genotype and T allele of -270C/T polymorphism was observed to occur more frequently in ER than in NR (p = 0.057 and p = 0.065, respectively). CONCLUSION: The data obtained suggest that polymorphism of BDNF gene may be connected with a quality of lithium prophylaxis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号