首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dual-photon absorptiometry (DPA) is a well-established procedure for measuring bone mineral density (BMD). Recently, dual-energy X-ray absorptiomery (DXA) has become available, which has the ability to measure BMD both regionally and in the total body (TB). We have evaluated the in vivo and in vitro precision of a DXA instrument and compared it with a DPA instrument with similar software characteristics.The short-term precision of BMD measurements using DXA was assessed in 65 postmenopausal women who had duplicate scans performed, with repositioning between scans. Precision was 0.9% in the lumbar spine and 1.4% in the femoral neck.The midterm precision of DXA was compared with DPA by scanning 10 volunteers a mean of four times over 24 weeks, on both instruments. The precision of the bone mineral content (BMC) and area measurements was significantly better (P<0.05) with DXA than with DPA. Long-term in vitro precision was assessed by scanning an aluminium spine phantom over 42 weeks, and a cadaveric sample over 52 weeks, on both instruments. Precision was similar using the aluminium phantom, but was significantly improved (P<0.001) when using DXA for scanning the cadaveric sample.Highly significant correlations (allP<0.001) of BMD, BMC and area measurements were observed when 70 volunteers were scanned on both instruments. However, there was a systematic difference in BMD values between the instruments. The precision of TB composition measurements assessed in 16 volunteers, over a 16-week period, were TB BMD 0.65%, TB lean tissue 1.47%, and TB fat tissue 2.73%. The correlation between weight measured by electronic scales and TB mass as measured by DXA, which was assessed in 70 volunteers, was excellent (r=0.99,p<0.001).We conclude that DXA offers improvements in measuring BMD over DPA in terms of faster scanning times and improved resolution, resulting in better precision, with the additional advantage of the ability to measure TB composition with high precision.  相似文献   

2.
A Comparison of Phantoms for Cross-Calibration of Lumbar Spine DXA   总被引:1,自引:1,他引:0  
The aim of this project was to compare three phantoms used for cross-calibration of dual-energy X-ray absorptiometers with an in vivo cross-calibration. The phantoms used were the Bona Fide Phantom (BFP), the European Spine Phantom (ESP) and the GE Lunar Aluminum Spine Phantom (ASP). The cross calibration was for L2–L4 lumbar spine bone mineral density (BMD) on a GE Lunar DPX-L and Hologic QDR 2000. The in vivo cross-calibration was obtained using 72 subjects (61 female, 11 male; mean age 49 years, range 14–84 years). The phantoms were measured 10 times without repositioning on both instruments. A further, long-term cross-calibration was obtained with the BFP over a 9 month period. The true linear relationship between the two instruments was calculated used a standardized principal components method. The mean residuals were calculated between each phantom cross-calibration line and the in vivo data to obtain a measure of the goodness of fit between the phantom cross-calibration and the in vivo data. There was no significant difference between the in vitro and in vivo cross-calibrations. The long-term BFP cross-calibration gave an in vitro cross-calibration that is closest to the in vivo cross-calibration in this group of subjects. When calculating Hologic QDR BMD from results on the GE Lunar DPX-L, the ASP underestimates Hologic QDR 2000 BMD by 4% at high BMD and overestimates by 4% at low BMD. The ESP cross-calibration overestimates Hologic QDR2000 BMD by 1% at high BMD and 4% at low BMD. The BFP performs best, overestimating Hologic QDR2000 BMD by between 1.2% and 1.8%, whilst the difference between the long-term BFP cross-calibration and the in vivo data is less than 1% over the range of BMD covered. Received: 19 October 2001 / Accepted: 9 July 2002  相似文献   

3.
Bone mineral density (BMD) measurement using dual-energy X-ray absorptiometry (DXA) is considered a diagnostic parameter for osteoporosis by the World Health Organization (WHO). DXA densitometers have different scanning modes for BMD measurements, although the specific scanning modes vary based upon the manufacturer. For DXA machines manufactured by Hologic, which are used globally, a range of scanning modes exist, including but not limited to (in order of decreasing spatial resolution) Array, Fast Array, and Express Array. Only a handful of prior studies have compared the reproducibility of BMD measurements across scan modes. The present study aimed to add to this body of literature by investigating the differences in BMD measured between 3 scanning modes in Hologic DXA machines at 19 different health centers. As part of cross-calibration activities for two multi-center studies in China measuring BMD, the European spine phantom (ESP, 1.000 g/cm2) was scanned on 19 different Hologic DXA machines. To measure differences in BMD between the 3 scan modes most commonly found on the Hologic models available (i.e., Array, Fast Array, Express Array), the ESP measurement was performed 10 times for each scan mode on each Hologic DXA machine. One-sample t test was used to compare the average difference between the measured ESP results of the 3 scanning modes at each hospital and reference ESP values. Single factor analysis of variance was performed to compare the average differences between the pairs of scanning modes using the reference ESP. Statistically significant differences between the measured ESP results with reference ESP values were found with each scanning mode at 19 hospitals (all p values <0.05). Consistent with this finding, differences in average BMD between the Array mode and Fast Array mode were invariably the smallest compared to differences seen between the other two pairs of scan modes. Significant differences were observed between average ESP BMD for the Array and Express Array scan modes (0.971 ± 0.013 vs 0.935 ± 0.027, p < 0.001), and between Fast Array and Express Array scan modes (0.972 ± 0.012 vs 0.935 ± 0.027, p < 0.001). However, no significant difference in average ESP BMD was observed between the Array and Fast Array scan modes (0.971 ± 0.013 vs 0.972 ± 0.012, p = 0.997). The selection of ideal scanning mode requires a balance of scanning time, radiation exposure, and measurement accuracy. In this ex vivo study, the Fast Array scanning mode appeared to be a reasonable choice compared with Array and Express Array for BMD measurements by Hologic DXA. Future in vivo studies can help guide the clinical application of these findings.  相似文献   

4.
Measurement of bone mineral density (BMD) is used for clinical estimation of fracture risk in osteoporosis. The precision of the method is important for the evaluation of true and clinical relevant changes in BMD in patients with osteoporosis. We measured BMD of the forearm in 14 young, healthy probands (10 males, 4 females), aged 24.6 ± 1.5 years with five different instruments using dual-energy X-ray absorptiometry (DXA), single-photon absorptiometry (SPA), and peripheral quantitative computed tomography (pQCT). Precision was expressed as the percentage coefficient of variation (CV%). In addition, the standardized CV% (sCV%) and the root mean square standard deviation (rmsSD%) was calculated for long-term precision. CV% ranged from 1.04 (SPA, distal BMD) to 2.75% (pQCT, trabecular BMD) for short-term precision and from 1.49 (DXA, QDR 1000, 1/3-distal BMD) to 4.33% (SPA, ultradistal) for long-term precision, respectively. The results for the rmsSD% were higher but correlated well with the CV%. A change that exceeds 2 √2 CV% has been considered as being significant. On this basis, 24.0 ± 5.1% (mean ± SEM) of the participants in our study would be expected to have a significant change in BMD without any correlation to the time-delay between the two measurements. Measurements of BMD were done at two locations with all five instruments: ultradistal and middistal BMD using DXA and SPA and total and trabecular BMD using pQCT, respectively. Coefficients of correlation for ``between-instrumental' correlation were greater than 0.5 for almost all instruments. Distal and ultradistal BMD measured by SPA and trabecular and total BMD measured by pQCT correlated better with ultradistal BMD measured by DXA. Correspondingly, ``within-instrumental' correlation was better for pQCT and SPA than for DXA. The coefficients of correlation between the different DXA methods were greater than 0.95 when corresponding locations were compared. We conclude that the clinical value of monitoring bone loss by measurement of forearm BMD is compromised by the low precision which was seen for DXA methods as well as for SPA and even pQCT in young healthy controls. Received: 26 February 1997 / Accepted: 14 November 1997  相似文献   

5.
As part of a multicenter study, we examined the intersite reproducibility of bone mineral content (BMC) and areal density (BMD) among three fan-beam dual-energy X-ray absorptiometry (DXA) instruments from one manufacturer, all using the same software version. Spine, femur, and body-composition phantoms were each scanned nine times at each center. Over a 3-wk period, the same 10 adults were scanned once at each of the three centers. For the spine and femur phantoms, the precision errors were 0.3-0.7%. For the body-composition phantom, the precision errors were 0.8-2.8%. The intersite coefficients of variation for the human measurements varied from 1.1 to 6.8%, depending on the bone site. We conclude that even when using the same fan-beam DXA model and software, an intersite cross-comparison using only phantoms may be inadequate. Comparisons based solely on the use of a spine phantom are insufficient to ensure compatibility of human bone mineral data at other bone sites or for the whole body.  相似文献   

6.
Dual-energy X-ray absorptiometry (DXA) is used for osteoporosis diagnosis, fracture prediction and to monitor changes in bone mineral density (BMD). Change in DXA instrumentation requires formal cross-calibration and procedures have been described by the International Society for Clinical Densitometry. Whether procedures used for BMD cross-calibration are sufficient to ensure lumbar spine trabecular bone score (TBS) cross-calibration is currently uncertain. The Manitoba Bone Density Program underwent a program-wide upgrade in DXA instrumentation from GE Prodigy to iDXA in 2012, and a representative a sample of 108 clinic patients were scanned on both instruments. Lumbar spine TBS (L1-L4) measurements were retrospectively derived in 2013. TBS calibration phantoms were not available at our site when this was performed. We found excellent agreement for lumbar spine BMD, without deviation from the line of perfect agreement, and low random error (standard error of the estimate [SEE] 2.54% of the mean). In contrast, spine TBS (L1-L4) showed significant deviation from the line of identity: TBS(iDXA) = 0.730 x TBS(Prodigy) + 0.372 (p<0.001 for slope and intercept); SEE 5.12% of the mean with negative bias (r=-0.550). Results were worse for scans acquired in thick versus standard mode, but similar when the population was stratified as BMI < or > 35 kg/m2. In summary, it cannot be assumed that just because BMD cross-calibration is good that this applies to TBS. This supports the need for using TBS phantom calibration to accommodate between-scanner differences as part of the manufacturer's TBS software installation.  相似文献   

7.
The purpose of this study was to develop cross calibrations when replacing three dual-energy X-ray absorptiometers (GE Lunar DPXL [Madison, WI], DPXL, GE Lunar Expert [Madison, WI], Expert, Hologic QDR2000 [Waltham, MA]) with two new GE Lunar Prodigy instruments. Subjects previously scanned on the Expert or QDR2000 were transferred to Prodigy 1 and those previously scanned on the DPXL to Prodigy 2. A cohort of subjects was recalled for each old instrument, and approximately 20 subjects had lumbar spine and hip scans on each old instrument and the appropriate new instrument. An in vitro calibration was carried out using a Bona Fide Phantom (Bio-Imaging Technologies, Inc., Newtown, PA). Calibrations were fitted using a standardized principal components method. A Bland and Altman plot was used to calculate the mean difference and limits of agreement between instruments. Standardized bone mineral density (BMD) was also used to calibrate the Hologic to Prodigy 1. There was good agreement between instruments from the same manufacturer. As expected, BMD measured on the Prodigy was about 15% higher than the Hologic. Using standardized BMD to cross calibrate gave a mean difference of 3% at the lumbar spine. The limits of agreement following calibration are clinically significant, so it is not possible to apply a calibration to an individual subject for trending purposes, as the error is similar to the expected annual change in BMD, but can be used for cross calibration in clinical trials. The in vivo calibration gave better agreement than using standardized BMD. The phantom calibration was close to the in vivo calibrations at the spine, but not in some hip regions. When introducing a new instrument, a new baseline BMD has to be obtained for each subject.  相似文献   

8.
The lack of standardization in bone mineral density (BMD) measurements is known. Several studies have been carried out to cross-calibrate the axial dual X-ray absorptiometry (DXA) devices. Recently, a number of peripheral DXA (pDXA) densitometers have been introduced. In this study we evaluated the agreement between two heel DXA devices on BMD and T-scores. A total of 99 females aged 21–78 years (ca. 16 per decade) had their non-dominant heel BMD measured using the PIXI (Lunar Inc.) and the Apollo (Norland Medical) pDXA scanners. The mean BMD values were 0.492 and 0.607 g/cm2 and the mean T-scores using manufacturers’ specified reference data were −0.07 and −0.25 for the PIXI and Apollo, respectively. Both the BMD and T-score intermachine relationships were highly correlated but showed significant nonidentity slopes and non-zero offsets. The diagnostic comparison on T-scores resulted in 86% agreement between the instruments (weighted kappa score of 0.550). Normalizing the reference peaks and SDs using this study’s young adult population BMD results removed the systematic T-score disagreement. We found that PIXI and Apollo are highly correlated. Differences in BMD values are mainly due to different region of interest (ROI) definitions and additional T-score disagreement reflects the difference in normative databases. Received: 9 July 2001 / Accepted: 12 March 2002  相似文献   

9.
Introduction: Bone mineral density (BMD) analysis by Dual-Energy x-ray Absorptiometry (DXA) can have some false negatives due to overlapping structures in the projections. Spectral Detector CT (SDCT) can overcome these limitations by providing volumetric information. We investigated its performance for BMD assessment and compared it to DXA and phantomless volumetric bone mineral density (PLvBMD), the latter known to systematically underestimate BMD. DXA is the current standard for BMD assessment, while PLvBMD is an established alternative for opportunistic BMD analysis using CT. Similarly to PLvBMD, spectral data could allow BMD screening opportunistically, without additional phantom calibration. Methodology: Ten concentrations of dipotassium phosphate (K2HPO4) ranging from 0 to 600 mg/ml, in an acrylic phantom were scanned using SDCT in four different, clinically-relevant scan conditions. Images were processed to estimate the K2HPO4 concentrations. A model representing a human lumbar spine (European Spine Phantom) was scanned and used for calibration via linear regression analysis. After calibration, our method was retrospectively applied to abdominal SDCT scans of 20 patients for BMD assessment, who also had PLvBMD and DXA. Performance of PLvBMD, DXA and our SDCT method were compared by sensitivity, specificity, negative predictive value and positive predictive value for decreased BMD. Results: There was excellent correlation (R2 >0.99, p < 0.01) between true and measured K2HPO4 concentrations for all scan conditions. Overall mean measurement error ranged from ?11.5 ± 4.7 mg/ml (?2.8 ± 6.0%) to ?12.3 ± 6.3 mg/ml (?4.8 ± 3.0%) depending on scan conditions. Using DXA as a reference standard, sensitivity/specificity for detecting decreased BMD in the scanned patients were 100%/73% using SDCT, 100%/40% using PLvBMD provided T-scores, and 90–100%/40–53% using PLvBMD hydroxyapatite density classifications, respectively. Conclusions: Our results show excellent sensitivity and high specificity of SDCT for detecting decreased BMD, demonstrating clinical feasibility. Further validation in prospective clinical trials will be required.  相似文献   

10.
Dual-energy absorptiometry (DXA) is widely used for bone mineral density measurements. Different types of devices are available. Differences between devices from either the same manufacturer or different manufacturers can lead to difficulties in clinical practice when patients are followed on different machines. We calculated the accuracy and precision of 62 DXA devices from two manufacturers (51 Hologic, 11 Lunar) using a European Spine Phantom (ESP, semi-anthropomorphic). The ESP was measured 5 times on each device without repositioning. Accuracy was assessed by comparing bone mineral density (BMD, g/cm2) values measured on each device with the actual value of the phantom. Precision was assessed by the coefficient of variation (CVsd), using the root mean square average. The limits of agreement were estimated from the differences between each replicate measurement of BMD and the estimated true value for a particular manufacturer, according to Bland and Altman. The results confirm the difference between devices from different manufacturers (18.5%). Mean CVsd values were 0.57% and 0.64% for Hologic and Lunar respectively. The limits of agreement among devices from the same manufacturer were 0.026 g/cm2 and 0.025 g/cm2 for Hologic and Lunar respectively. Differences in extreme results between devices from the same manufacturer were on average 5.4% and 3.6% for Hologic and Lunar respectively. Results of different devices from the same manufacturer are highly comparable, although unpredictable differences exist that may be clinically relevant. Received: 12 June 1998 / Accepted: 20 November 1998  相似文献   

11.
This study was designed to determine age- and gender-based normative values for spinal bone mineral density (BMD) in a Chinese population. In addition, we compared our data with those of other countries and populations. Four hundred and forty-three healthy Chinese subjects, aged 10–79 years (189 males, mean age 46.9 years; 254 females, mean age 45.7 years) were recruited for BMD assessment. BMD was measured by quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA), including postero-anterior DXA (PA-DXA), lateral DXA (L-DXA) and midlateral DXA (mL-DXA). For both genders, BMD values peaked in the 10–19 year age group when measured by QCT, and in the 30–39 year age group when measured by PA-DXA. BMD values decreased with age after reaching peak bone density in males and females for all measurements, except for PA-DXA in males. Male BMD values by DXA tended to increase beginning with the 60–69 age group through the 70–79 age group whether by PA-DXA, or L-DXA and mL-DXA. However, male QCT data showed stable BMD values among these two older groups. Comparative results showed female QCT data were higher in the 20–39 age group and lower after the 40–49 age group compared with American females. The peak BMD value by PA-DXA in Chinese females was reached in the same age group as American and European females and was similar in magnitude (p > 0.05). However, the peak BMD value for Chinese females was reached earlier and was significantly higher than that observed in Japanese females (p < 0.001). We conclude that the age group in which the peak BMD values are reached is different depending on the technique used, as is the calculated age-related rate of bone loss. It can be speculated that such differences reflect different timing for bone maturation in cancellous and cortical bone. Received: 21 February 1998 / Accepted: 28 May 1998  相似文献   

12.
Quantitative ultrasound (QUS) has been proposed as a tool which can measure both the quantitative and qualitative aspects of bone tissue and can predict the future risk of osteoporotic fractures. However, the usefulness of QUS in long-term monitoring has yet to be defined. We studied a group of early postmenopausal women over a 4-year period. Thirty subjects were allocated to hormone replacement therapy and 30 selected as controls matched for age, years past the menopause (YPM) and bone mineral density (BMD) at the anteroposterior spine (AP spine). The mean age of the subjects was 52.4 years (SD 3.9 years), mean YPM 4.0 years (SD 3.2) and all subjects had a BMD T-score above −2.5 SD (number of standard units related to the young normal mean population). BMD was measured at baseline and annually by dual-energy X-ray absorptiometry (DXA) at the AP spine and total hip, and QUS carried out at the calcaneus, measuring broadband ultrasound attenuation (BUA), speed of sound (SOS) and Stiffness. Mean percentage changes from baseline were assessed at 2 and 4 years. The overall treatment effect (defined as the difference in percentage change between the two groups) was: AP spine BMD, 11.4%; total hip BMD, 7.4%; BUA, 6.4%; SOS, 1.1%; and Stiffness, 10.4% (p<0.01). To compare the long-term precision of the two techniques we calculated the Standardized Precision, which for QUS was approximately 2–3 times that of DXA, for a given rate of change. The ability of each site to monitor response to treatment was assessed by calculating the Treatment Response Index (Treatment Effect/Standardized Precision), which was: AP spine BMD, 10.4; total hip BMD, 3.9; BUA, 3.1; SOS, 0.3; and Stiffness, 4.2. This was then normalized for AP spine BMD (to compare the role of QUS against the current standard, AP Spine BMD), which was: total hip BMD, 0.38; BUA, 0.30; Stiffness, 0.40 (p<0.01); and SOS, 0.03 (NS). In summary, QUS parameters in the early menopause showed a similar rate of decline as AP spine BMD and total hip BMD measured by DXA. Hormone replacement therapy results in bone gain at the AP spine and total hip, and prevents loss in BUA and SOS measured by QUS at the calcaneus. QUS has a potential role in long-term monitoring, although presently the time period to follow individual subjects remains 2–3 times that for DXA, for a given rate of change. Anteroposterior spine remains the current optimal DXA monitoring site due to its greater rate of change and better long-term precision. Received: 20 January 1999 / Accepted: 14 June 1999  相似文献   

13.
The aim of this cross-sectional study was to investigate whether two types of physical exercise affect the growing skeleton differently. We used calcaneal quantitative ultrasound measurements (QUS) and dual-energy X-ray absorptiometry (DXA) for measurement of bone mineral density (BMD), and to test how QUS values reflect the axial DXA values in these various study groups. A total of 184 peripubertal Caucasian girls aged 11–17 years (65 gymnasts, 63 runners, and 56 nonathletic controls) were studied. Weight, height, stage of puberty, years of training, and the amount of leisure-time physical activity were recorded. Broadband ultrasound attenuation (BUA) and sound of speed (SOS) through the calcaneus were measured. The BMD of the femoral neck and the lumbar spine were measured by DXA. The differences in mean values of bone measurements among each exercise group were more evident in pubertal than prepubertal girls. The mean BUA and SOS values of the pubertal gymnasts were 13.7% (77.8 dB/MHz versus 68.4 dB/MHz, P < 0.05) and 2.2% (1607.7 m/s versus 1572.4 m/s, P < 0.001) higher than of the controls, respectively. The mean BMD of the femoral neck in the pubertal gymnasts and runners was 20% (0.989 g/cm2 versus 0.824 g/cm2, P < 0.001) and 9.0% (0.901 g/cm2 versus 0.824 g/cm2, P < 0.05) higher than in the controls, respectively. The amount of physical activity correlated weakly but statistically significantly with all measured BMD and ultrasonographic values in the pubertal group (r = 0.19–0.35). The correlation between ultrasonographic parameters and BMD were weak, but significant among pubertal runners (r = 0.47–0.55) and controls (r = 0.39–0.42), whereas the DXA values of the femoral neck and the ultrasonographic parameters of the calcaneus did not correlate among highly physically active gymnasts. By stepwise regression analysis, physical activity accounted for much more of the variation in the DXA values than the ultrasonographic values. We conclude that the beneficial influence of exercise on bone status as measured by ultrasound and DXA was evident in these peripubertal girls. In highly active gymnasts the increase of the calcaneal ultrasonographic values did not reflect statistically significantly the BMD values of the femoral neck. Received: 28 June 1999 / Accepted: 2 November 1999  相似文献   

14.
Bone densitometry using dual energy X-ray absorptiometry (DXA) is the ‘gold standard’ for osteoporosis diagnosis. However, mass screening for osteoporosis has not been recommended, and no consensus has been reached regarding specific targeted screening programs. Recently, the Simple Calculated Osteoporosis Risk Estimation (SCORE) was developed to identify postmenopausal women likely to have low BMD (≤−2.0 SD of the young adult normal), who may be selected for DXA testing. This instrument uses a case-selective approach to screen for osteoporosis by summing a score based on: age, race, rheumatoid arthritis, history of nontraumatic fracture over 45 years of age, estrogen use, and weight. In our study, SCORE was validated using 398 postmenopausal women at least 45 years of age residing within 50 km of Toronto, Ontario, Canada (one of 9 centers of the Canadian Multicentre Osteoporosis Study, a national population-based study). At the recommended threshold of 6, SCORE had a sensitivity of 90%, specificity of 32% and a positive predictive value of 64%. From receiver operating characteristic (ROC) analysis, no threshold identified SCORE as a useful instrument in our population; area under the ROC curve was 0.71. Specificity of the SCORE is poor; at the recommended threshold of 6, 68% of those with normal bone mineral density (BMD) would be selected for bone densitometry. Development and validation of SCORE by Lydick and colleagues may have been confounded by the nature of the study sample; sampling from specialty clinics; and by the choice of outcome, combining data from different DXA machines, and using only data from the femoral neck to identify low BMD. A simple and effective approach to select patients for bone densitometry has yet to be established. Received: 5 October 1998 / Accepted: 30 December 1998  相似文献   

15.
We have measured bone mineral density (BMD) using dual X-ray absorptiometry (DXA) of the spine and hip, spinal quantitative computed tomography (QCTspi), and peripheral radial quantitative computed tomography (pQCTrad) in 334 spine and 51 hip fracture patients. The standardized hip and spine BMD for each patient was calculated and compared with the combined reference ranges published previously, each densitometer having been cross-calibrated with the prototype European Spine Phantom (ESPp) or the European Forearm Phantom (EFP). Male and female fracture cases had similar BMD values after adjusting for body size, where appropriate. This suggests that the relationship between bone density (mass per unit volume) and fracture risk is similar between men and women. However, compared with age-matched controls, mean decreases in BMD ranged from 0.78 SD units (women with hip fracture, DXAspi) to 2.57 SD units (men with spine fractures, QCTspi). The proportion of spine and hip fracture patients falling below the cutoff for osteoporosis (T-score <−2.5 SD) proposed by the World Health Organization (WHO) study group varied according to different BMD measurement procedures (range 18–94%). This finding suggests that the WHO definition requires different thresholds when used with non-DXA BMD measurement techniques. Receiver operator characteristic (ROC) analysis was used to compare measurement techniques for their ability to discriminate between cases and controls. Among DXA sites, the proximal femur was preferred when evaluating generalized bone loss, particularly in elderly people. An additional spinal BMD measurement may add clinical value if spine fracture risk assessment has a high priority. Both axial and peripheral QCT techniques performed comparably to DXA in spinal osteoporosis, so investigators and clinicians may use any of the three technologies with similar degrees of confidence for the diagnosis of generalized or site-specific bone loss providing straightforward clinical guidelines are followed. Received: 21 May 1997 / Accepted: 24 June 1998  相似文献   

16.
Detailed Analyses of Periarticular Osteoporosis in Rheumatoid Arthritis   总被引:5,自引:0,他引:5  
Periarticular osteopenia is the earliest radiographic sign of rheumatoid arthritis (RA). Recent studies using dual-energy X-ray absorptiometry (DXA) have indicated that the loss of periarticular BMD can be quantified by whole-hand bone mineral density (BMD) measurements. The aim of this study was to analyze periarticular BMD in more detail by DXA and quantitative ultrasound (QUS). In a cross-sectional study 23 women aged 30–76 years with early RA, mean disease duration 26 ± 19 months, and 18 men aged 42–69 years, mean disease duration 24 ± 25 months, were examined. All patients received antirheumatic therapy. The reference population consisted of 103 age-matched controls (68 females, 35 males) and young healthy controls. BMD measurements were performed using a DXA Expert XL densitometer (Lunar). BMD of the whole-hand and two subregions was determined: two subchondral regions of interest (S.CH.) were set within the trabecular bone, distal to the proximal interphalangeal joints of digits II and III excluding the dense subchondral bone of the metacarpophalangeal (MCP) joint and two metacarpal regions of interest (MCP) were set including the entire MCP joint of these fingers. QUS measurements at the proximal phalanges of digits II–V were performed using a DBM Sonic (Igea); amplitude-dependent speed of sound (Ad-SoS) was determined. In comparison with whole-hand BMD measurements, bone loss was pronounced in patients with a disease duration of 18–72 months at the subchondral regions of interest in both genders compared with age-matched controls (women: mean BMD loss S.CH. −23%, p<0.001, whole-hand −16%, p<0.001; men: mean BMD loss S.CH. −19%, p<0.05, whole-hand −12%, p<0.05). The bone changes were also shown by QUS (women: Ad-SOS values of 1950 ± 90 m/s in RA vs 2137 ± 35 m/s in young healthy controls (p<0.005); men AD-SOS 1956 ± 87 m/s in RA vs 2146 ± 41 m/s in young healthy controls (p<0.05)). These results show that BMD and Ad-SOS values are significantly lowered in patients with early RA and indicate that periarticular osteoporosis in early RA might possibly be better detected using detailed hand scan analyses. Received: 2 February 1999 / Accepted: 25 October 1999  相似文献   

17.
Introduction Measuring bone mineral density (BMD) is a widely accepted strategy for identifying subjects with an increased risk of fracture. However, because of limited availability of BMD technology in some communities and cost considerations, it has been proposed that BMD measurements be targeted to subjects with risk factors for osteoporosis. Recently, many risk assessment indices have been developed to identify women who are more likely to have low BMD and thus undergo BMD testing. The objective of this study was to compare the performance of four risk indices for osteoporosis in white women in Morocco. Methods We analysed in an epidemiological cross-sectional study the records for 986 postmenopausal white Moroccan women seen at an out-patient rheumatology centre. Four osteoporosis risk index scores were compared to bone density T-scores. The ability of each risk index to identify women with low BMD (T-score<−2.0) or osteoporosis (T<−2.5) was evaluated. Results Using an Osteoporosis Self-Assessment Tool (OST) score<2 to recommend DXA referral, we found that sensitivity ranged from 61% at the lumbar spine to 85% at the total hip to detect BMD T-scores of −2.5, and specificity ranged from 62% at the lumbar spine to 67% at the total hip. The negative predictive value was high at all skeletal sites (79–98%), demonstrating the usefulness of the OST to identify patients who have normal BMD and should not receive DXA testing. All risk indices performed similarly and showed better results in identifying women with osteoporosis or low BMD based on hip measurement. Conclusions This is the first study that validated several risk osteoporosis indexes in Moroccan women. The performance of these risk indices among women in Morocco was similar to that reported earlier for other samples in Asian countries, the US, and Belgium. The OST and other risk indices are effective and efficient tools to help target high-risk women for DXA measurement.  相似文献   

18.
Summary The association between bone mineral density (BMD) and outdoor air pollution has not previously been explored. In this study including 590 elderly men, total body BMD was inversely associated with indicators of air pollution. Further studies to address any relation between air pollution and BMD and bone fracture are warranted. Introduction The relation between air pollution and bone mineral density (BMD) is unknown. Based on higher fracture rates and more osteoporosis in urban compared to rural populations, this exploratory study aimed at investigating the association between indicators of air pollution and BMD. Methods In an osteoporosis sub-study of the population-based Oslo Health Study (2000–2001) BMD of total body and total hip (mg/cm2) was measured by DXA in 590 men 75–76 years old. Exposure to air pollution (particulate matter (PM10 and PM2.5) and nitrogen dioxide (NO2)) at each participant’s home address was estimated from 1992 to 2001. Results Air pollution was inversely associated with total body BMD, whereas no significant association was found for total hip BMD. The adjusted odds ratio (OR) [95% confidence interval] for low total body BMD (Z-score ≤−1) was per standard deviation increase 1.33 [1.05–1.70] for PM2.5, 1.28 [1.00–1.63] for PM10, and 1.24 [0.97–1.59] for NO2. Stratified by smoking status the adjusted OR for PM2.5 was 1.73 [1.02–2.95] in current smokers, 1.40 [1.03–1.90] in former smokers and 0.83 [0.43–1.58] in non-smokers. Conclusions There was a weak but statistically significant inverse association between indicators of air pollution and total body BMD. Further investigations are warranted.  相似文献   

19.
In several conditions, including cystic fibrosis (CF) and corticosteroid-induced osteoporosis, bone mineral density (BMD) measurements provide a modest prediction of fracture risk. We investigated in adult CF patients whether quantitative ultrasound (QUS) parameters were able to discriminate between patients with and without prevalent vertebral fractures. One hundred seventy-two adults with CF, 91 men and 81 women, often on chronic oral or inhaled corticosteroid therapy, were studied. BMD at the lumbar spine, proximal femur, and total body were measured by dual-energy X-ray absorptiometry (DXA). QUS parameters were assessed by Achilles Express at the calcaneus and by the DBM Sonic 1200 at the phalanges. All bone measurements by DXA and QUS were significantly correlated with each other, with the exception of phalangeal amplitude-dependent speed of sound versus spine BMD. The mean T-score values in CF patients with and without prevalent vertebral fractures were similar for all DXA measurements and for stiffness index. A significant difference between the two groups was observed only for phalangeal ultrasound bone profile index (UBPI) values (relative risk = 1.25, 95% confidence interval 1.05–1.49 for each decrease in T score), and this difference was maintained after adjusting the values for age, body weight, forced expiratory volume in 1 second, gender, and corticosteroid use. In conclusion, only a phalangeal QUS parameter (UBPI), in contrast with calcaneus QUS or DXA measurements, was able to discriminate CF patients with from those without vertebral fractures, possibly as a result of qualitative alterations of bone tissue independent of BMD.  相似文献   

20.
Radiographic absorptiometry (RA) of the phalanges is a convenient and reliable technique for measuring bone mineral density (BMD). It needs only a radiograph of the hand, which can be sent for evaluation to a central facility, whereas other techniques require specialized equipment. We assessed the relationship between RA measurements and the presence of vertebral deformities in a population-based cohort of postmenopausal women, and to compare the results with simultaneously obtained BMD of the hip by dual-energy X-ray absorptiometry (DXA). A total of 389 women aged 55–84 (mean age 67.2 years, SD 8.7) were randomly selected from a large general practice. RA, DXA of the hip, and vertebral deformities in the lateral spine X-rays by vertebral morphometry were assessed. Thirty-eight women (9.8%) had severe (grade II) vertebral deformities, and their BMD at the phalanges and femoral neck was significantly lower than that of women without severe vertebral deformities. Odds ratios for the presence of severe vertebral deformities of 1.5 (95% CI: 1.1–2.1) for RA and 1.3 (95% CI: 0.9–1.9) for DXA, together with similar receiver operating characteristics curves, were found using age-adjusted logistic regression. Phalangeal BMD is related to vertebral deformities at least as closely as BMD of the femoral neck BMD. RA may therefore help to evaluate fracture risk, especially if no DXA equipment is available. Received: 21 July 1998 / Accepted: 1 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号