首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的 探讨脂联素是否通过LKB1途径激活骨骼肌及肝脏中腺苷酸活化蛋白激酶(AMPK).方法 将28只6周龄雄性Sprague-Dawley大鼠分为普通饮食组(NC组,n=15)和高脂饮食组(HF组,n=13).喂养16 周后,取空腹静脉血测定血清游离脂肪酸(FFA)、甘油三酯(TG)、总胆固醇(TC)、空腹血糖(FPG)、空腹胰岛素(FINS)及脂联素.采用Western印迹法测定各组大鼠骨骼肌及肝脏组织中AMPKα、磷酸化的AMPKcα和LKB1蛋白的表达.将原代培养的骨骼肌细胞及肝细胞分别予以脂联素和根赤壳菌素干预,免疫荧光技术测定各组细胞中AMPKα、磷酸化AMPKα和LKB1蛋白的表达.结果 与NC组比较,HF组大鼠体重、FFA、TG、FPG、FINS均升高(均P<0.05),脂联素水平降低(P<0.05).骨骼肌及肝组织巾AMPKα磷酸化和LKB1蛋白表达水平降低(均P<0.05).原代培养大鼠骨骼肌细胞及肝细胞中脂联素显著增加AMPKα磷酸化及LKB1表达水平(均P<0.05).加入根赤壳菌素表达明显降低(均P<0.05).结论 脂联素在大鼠骨骼肌和肝脏组织可能通过LKB1途径激活AMPK.  相似文献   

3.
4.
OBJECTIVE: To investigate the putative molecular mechanisms underlying mitogen-activated protein (MAP) kinase activation by hydrogen peroxide (H(2)O(2)) in vascular smooth muscle cells (VSMC) and to evaluate whether H(2)O(2)-induced actions are altered in VSMC from spontaneously hypertensive rats (SHR). METHOD: VSMC from mesenteric arteries of Wistar-Kyoto rats (WKY) and SHR were stimulated with H(2)O(2) (2-30 min). The phosphorylation of extracellular signal-regulated kinases (ERK)1/2 and p38MAP kinase was determined by immunoblotting. The involvement of tyrosine kinase and protein kinase C (PKC) was evaluated using pharmacological inhibitors, tyrphostin (A23 and A9) and GF109203X, respectively. The role of receptor tyrosine kinases (RTK) was assessed with AG1478, AG1296 and AG1024, selective inhibitors of epidermal growth factor receptor, platelet-derived growth factor receptor and insulin-like growth factor receptor, respectively. Non-receptor tyrosine kinases (NRTK) were studied using AG490 (JAK2 inhibitor) and PP2 (Src inhibitor). RESULTS: H(2)O(2) stimulated phosphorylation of ERK1/2 and p38MAP kinase in a time-dependent manner. This increase was significantly greater in SHR versus WKY (P < 0.01). The activation of MAP kinases was unaffected by GF109203X but was decreased by tyrphostins (P < 0.01). The inhibition of NRTK attenuated H(2)O(2)-mediated phosphorylation of ERK1/2 (P < 0.001) but not of p38MAP kinase, whereas Src and JAK2 inhibition significantly decreased phosphorylation of both MAP kinases (P < 0.01). CONCLUSION: These data indicate that H(2)O(2) increases ERK1/2 and p38MAP kinase activation through tyrosine kinase-dependent, PKC-independent mechanisms. Whereas ERK1/2 is regulated by both RTK and NRTK, p38MAP kinase is regulated by NRTK. Our findings identify an important role for tyrosine kinases, but not PKC, in H(2)O(2)-induced phosphorylation of ERK1/2 and p38MAP kinase in VSMC. The upregulation of these processes may contribute to enhanced redox-dependent MAP kinase signaling in SHR VSMC.  相似文献   

5.
6.
Yang M  Yang Y  Zhang S  Kahn AM 《Hypertension》2003,42(4):569-573
Insulin resistance is associated with vascular disease. Physiological concentrations of insulin inhibit cultured vascular smooth muscle cell (VSMC) contraction and migration by increasing nitric oxide (NO)-stimulated cGMP accumulation. The failure to do so in insulin-resistant states may aggravate vascular disease. We sought to determine the mechanism of insulin's increase in cGMP accumulation. Isobutylmethylxanthine, an inhibitor of phosphodiesterase activity, inhibited the decline in cGMP levels measured by immunoassay in cGMP-loaded cultured rat aortic VSMCs, but 1 nmol insulin did not. Thus, insulin's increase in cGMP accumulation is due to stimulated production, not inhibited hydrolysis and/or efflux. Insulin, which increases the NADH/NAD+ ratio in these cells, stimulated superoxide anion (O2-) accumulation measured by lucigenin luminescence to 256+/-25% (P<0.05) by a process that was blocked by the NADH oxidase inhibitor diphenyliodonium (DPI) and enhanced by the superoxide dismutase inhibitor diethyldithiocarbonate (DETCA). Insulin also stimulated hydrogen peroxide (H2O2) accumulation measured by horseradish peroxidase/luminol luminescence to 221+/-22% (P<0.05) by a DETCA-sensitive mechanism. H2O2 (100 micromol/L) in the absence of insulin increased NO-stimulated cGMP accumulation to 151+/-11% (P<0.05). Insulin alone increased NO-stimulated cGMP accumulation to 183+/-17% (P<0.05), and this was blocked by either DPI or DETCA. We conclude that insulin increases NADH oxidase-derived O2- production in cultured rat VSMCs. This did not cause the expected scavenging of NO resulting in the reduction of NO-stimulated guanylate cyclase activity, but enough O2- was metabolized to H2O2 to increase overall NO-stimulated cGMP production.  相似文献   

7.
8.
Nitric oxide (NO) exerts both antiatherogenic and proatherogenic effects, but the cellular and molecular mechanisms that contribute to modulation of atherosclerosis by NO are not understood completely. The cGMP-dependent protein kinase I (cGKI) is a potential mediator of NO signaling in vascular smooth muscle cells (SMCs). Postnatal ablation of cGKI selectively in the SMCs of mice reduced atherosclerotic lesion area, demonstrating that smooth muscle cGKI promotes atherogenesis. Cell-fate mapping indicated that cGKI is involved in the development of SMC-derived plaque cells. Activation of endogenous cGKI in primary aortic SMCs resulted in cells with increased levels of proliferation; increased levels of vascular cell adhesion molecule-1, peroxisome proliferator-activated receptor gamma, and phosphatidylinositol 3-kinase/Akt signaling; and decreased plasminogen activator inhibitor 1 mRNA, which all are potentially proatherogenic properties. Taken together, these results highlight the pathophysiologic significance of vascular SMCs in atherogenesis and identify a key role for cGKI in the development of atherogenic SMCs in vitro and in vivo. We suggest that activation of smooth muscle cGKI contributes to the proatherogenic effect of NO and that inhibition of cGKI might be a therapeutic option for treating atherosclerosis in humans.  相似文献   

9.
OBJECTIVE: The present study was designed to determine the effects of insulin on cytosolic angiotensin II production and proliferation in cultured rat vascular smooth muscle cells. DESIGN AND METHODS: Vascular smooth muscle cells were incubated with insulin for 48 h. Cytosolic angiotensin I and II were determined by radioimmunoassays of purified cell homogenates. Angiotensin II was also detected by immunohistochemistry of intact cells. Cell proliferation was determined by pulse labeling with radiolabeled thymidine. Angiotensinogen mRNA expression was determined by slot-blot analysis. RESULTS: Insulin significantly increased cytosolic angiotensin II concentration in vascular smooth muscle cells. Lisinopril, omapatrilat and irbesartan inhibited this increase of angiotensin II, but had no effect on angiotensin I levels. Immunohistochemical staining confirmed the presence of angiotensin II in control and insulin-treated vascular smooth muscle cells. Insulin increased cell proliferation, and addition of lisinopril, omapatrilat or irbesartan inhibited this effect. Insulin also increased expression of angiotensinogen mRNA in cultured vascular smooth muscle cells, but PD98059, a mitogen-activated protein kinase inhibitor, prevented the rise in angiotensinogen expression. CONCLUSION: These results support the concept that insulin stimulates angiotensin II production in cultured vascular smooth muscle cells through a mitogen-activated, protein kinase-dependent pathway that might be a factor in the progression of atherosclerosis. Agents that block the renin-angiotensin system have direct protective effects, reducing vascular angiotensin II and growth of vascular smooth muscle cells and are thus of cardiovascular benefit.  相似文献   

10.
The effects of insulin on the vasculature are significant because insulin resistance is associated with hypertension. To increase the understanding of the effects of insulin on the vasculature, we analyzed changes in potassium ion transport in cultured vascular smooth muscle cells (VSMCs). Using the potential-sensitive fluorescence dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC4(3)], we found that insulin induced membrane hyperpolarization after 2 min in A10 cells. Insulin-induced hyperpolarization was suppressed by glibenclamide, an ATP-sensitive potassium (K(ATP)) channel blocker. Using a cell-attached patch clamp experiment, the K(ATP) channel was activated by insulin in both A10 cells and isolated VSMCs from rat aortas, indicating that insulin causes membrane hyperpolarization via K(ATP) channel activation. These effects were not dependent on intracellular ATP concentration, but wortmannin, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, significantly suppressed insulin-induced K(ATP) channel activation. In addition, insulin enhanced phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1 and protein kinase B (Akt) after 2 min. These data suggest that K(ATP) channel activation by insulin is mediated by PI3-K. Furthermore, using a nitric oxide synthase (NOS) inhibitor, we found that NOS might play an important role downstream of PI3-K in insulin-induced K(ATP) channel activation. This study may contribute to our understanding of mechanisms of insulin resistance-associated hypertension.  相似文献   

11.
12.
The aim of the present study was to examine the effects of calcitonin gene-related peptide (CGRP) on the K+ channels of vascular smooth muscle cells. Cultured smooth muscle cells from a porcine coronary artery were studied using the patch-clamp technique. Extracellular application of 100 nM CGRP activated two types of K+ channels the Ca2+-activated K+ channel (KCa channel) and the ATP-sensitive K+ channel (KATP channel) in cell-attached patch configurations. In cells pretreated with Rp-cAMPS, a membrane-permeable inhibitor of cAMP-dependent protein kinase (PKA), extracellular application of 100 nM CGRP could not activate the KCa or KATP channel, indicating that the activation of the K+ channels by CGRP occurs in connection with PKA. In the cell-attached patch configurations, extracellular application of 1 mM dibutyryl cAMP, a membrane permeable cAMP, activated KCa and KATP channels. In inside-out patch configurations, application of PKA to the cytosolic side activated both the KCa and KATP channels. These results indicate that CGRP modulates the K+ channels of vascular smooth muscle cells via adenylate cyclase, i.e., cAMP-PKA pathway, and contributes to control of vascular tone.  相似文献   

13.
Vascular diseases, such as atherosclerosis and restenosis following angioplasty or transplantation, are due to abnormal vascular smooth muscle growth and gene expression. The smooth muscle cells (SMC) in response to injury lose their contractile function, become highly proliferative and synthesize and secrete extracellular matrix proteins. Similar changes in the phenotypic properties of vascular SMC occur during in vitro culture. In this report, we examined whether restoration of the expression of the major receptor protein for nitric oxide (NO) signaling in smooth muscle, the guanosine 3':5' cyclic monophosphate (cGMP)-dependent protein kinase (PKG), reestablished contractile function to cultured rat aortic SMC. Contractile function was monitored using the silicone polymer wrinkle assay used previously to determine contractility in cultured mesangial cells. Noncontractile rat aortic smooth muscle cells transfected with the cDNA encoding the type I isoform of PKG, but not those transfected with empty vector, formed discreet wrinkles on the substratum in response to serum indicative of contraction. Treatment of the PKG-expressing SMC with sodium nitroprusside (SNP), an NO donor, and with cGMP analogs, or with the adenylyl cyclase activator, forskolin, and with adenosine 3':5' cyclic monophosphate (cAMP) analogs reduced wrinkling. The expression of a major PKG substrate protein involved in smooth muscle relaxation, heat shock-related protein-20 (HSP20), was also reestablished in PKG-expressing SMC. Treatment of the PKG-expressing SMC with nitroprusside resulted in phosphorylation of HSP20. Collectively, these results indicate that PKG expression is important to establish contractility to SMC in culture.  相似文献   

14.
Hattori Y  Suzuki K  Hattori S  Kasai K 《Hypertension》2006,47(6):1183-1188
AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in regulation of energy homeostasis and metabolic stress. Metformin has been shown to activate AMPK. We hypothesized that metformin may prevent nuclear factor kappaB (NF-kappaB) activation in endothelial cells exposed to inflammatory cytokines. Metformin was observed to activate AMPK, as well as its downstream target, phosphoacetyl coenzyme A carboxylase, in human umbilical vein endothelial cells (HUVECs). Metformin also dose-dependently inhibited tumor necrosis factor (TNF)-alpha-induced NF-kappaB activation and TNF-alpha-induced IkappaB kinase activity. Furthermore, metformin attenuated the TNF-alpha-induced gene expression of various proinflammatory and cell adhesion molecules, such as vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1, in HUVECs. A pharmacological activator of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR), dose-dependently inhibited TNF-alpha- and interleukin-1beta-induced NF-kappaB reporter gene expression. AICAR also suppressed the TNF-alpha- and interleukin-1beta-induced gene expression of vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 in HUVECs. The small interfering RNA for AMPKalpha1 attenuated metformin or AICAR-induced inhibition of NF-kappaB activation by TNF-alpha, suggesting a possible role of AMPK in the regulation of cell inflammation. In light of these findings, we suggest that metformin attenuates the cytokine-induced expression of proinflammatory and adhesion molecule genes by inhibiting NF-kappaB activation via AMPK activation. Thus, it might be useful to target AMPK signaling in future efforts to prevent atherogenic and inflammatory vascular disease.  相似文献   

15.
16.
The nongenomic effects of aldosterone have been implicated in the pathogenesis of various cardiovascular diseases. Aldosterone-induced nongenomic effects are attributable in part to the activation of extracellular signal-regulated kinase 1/2 (ERK1/2), a classical mitogen-activated protein (MAP) kinase. Big MAP kinase 1 (BMK1), a newly identified MAP kinase, has been shown to be involved in cell proliferation, differentiation, and survival. We examined whether aldosterone stimulates BMK1-mediated proliferation of cultured rat aortic smooth muscle cells (RASMCs). Mineralocorticoid receptor (MR) expression and localization were evaluated by Western blotting analysis and fluorolabeling methods. ERK1/2 and BMK1 activities were measured by Western blotting analysis with the respective phosphospecific antibodies. Cell proliferation was determined by Alamar Blue colorimetric assay. Aldosterone (0.1 to 100 nmol/L) dose-dependently activated BMK1 in RASMCs, with a peak at 30 minutes. To clarify whether aldosterone-induced BMK1 activation is an MR-mediated phenomenon, we examined the effect of eplerenone, a selective MR antagonist, on aldosterone-induced BMK1 activation. Eplerenone (0.1 to 10 micromol/L) dose-dependently inhibited aldosterone-induced BMK1 activation in RASMCs. Aldosterone also stimulated RASMC proliferation, which was inhibited by eplerenone. Aldosterone-mediated phenomena were concluded to be attributable to a nongenomic effect because cycloheximide failed to inhibit aldosterone-induced BMK1 activation. Transfection of dominant-negative MAP kinase/ERK kinase 5 (MEK5), which is an upstream regulator of BMK1, partially inhibited aldosterone-induced RASMC proliferation, which was almost completely inhibited by MEK inhibitor PD98059. In addition to the classical steroid activity, rapid nongenomic effects induced by aldosterone may represent an alternative etiology for vascular diseases such as hypertension.  相似文献   

17.
Penn MS  Patel CV  Cui MZ  DiCorleto PE  Chisolm GM 《Circulation》1999,99(13):1753-1759
BACKGROUND: Tissue factor, which is required for the initiation of the extrinsic coagulation cascade, is known to be upregulated in cells within atherosclerotic lesions, including smooth muscle cells. Tissue factor expression on the smooth muscle cell surface could be of pathological significance as a contributor to plaque growth, thrombus formation, and the acute coronary syndrome after plaque rupture. METHODS AND RESULTS: In this study, we show that LDL increased tissue factor mRNA and cell surface protein in smooth muscle cells without a marked increase in surface tissue factor activity. Hydrogen peroxide activated tissue factor on the cell surface but did not increase tissue factor mRNA or cell surface protein. Sequentially added LDL and hydrogen peroxide increased mRNA, cell surface protein, and activity; surface activity was greater than that observed with hydrogen peroxide alone. The action of hydrogen peroxide did not involve a regulatory mechanism associated with the cytoplasmic tail of tissue factor because a truncated tissue factor lacking the cytoplasmic tail was activated by hydrogen peroxide. CONCLUSIONS: These results suggest a novel 2-step pathway for increased tissue factor activity on smooth muscle cell surfaces in which lipoproteins regulate synthesis of a latent tissue factor and oxidants activate the protein complex.  相似文献   

18.
The cGMP-dependent protein kinase type I (cGKI) is a major mediator of NO/cGMP-induced vasorelaxation. Smooth muscle expresses two isoforms of cGKI, cGKIalpha and cGKIbeta, but the specific role of each isoform in vascular smooth muscle cells (VSMCs) is poorly understood. We have used a genetic deletion/rescue strategy to analyze the functional significance of cGKI isoforms in the regulation of the cytosolic Ca(2+) concentration by NO/cGMP in VSMCs. Cultured mouse aortic VSMCs endogenously expressed both cGKIalpha and cGKIbeta. The NO donor diethylamine NONOate (DEA-NO) and the membrane-permeable cGMP analogue 8-bromo-cGMP inhibited noradrenaline-induced Ca(2+) transients in wild-type VSMCs but not in VSMCs genetically deficient for both cGKIalpha and cGKIbeta. The defective Ca(2+) regulation in cGKI-knockout cells could be rescued by transfection of a fusion construct consisting of cGKIalpha and enhanced green fluorescent protein (EGFP) but not by a cGKIbeta-EGFP construct. Fluorescence imaging indicated that the cGKIalpha-EGFP fusion protein was concentrated in the perinuclear/endoplasmic reticulum region of live VSMCs, whereas the cGKIbeta-EGFP protein was more homogeneously distributed in the cytoplasm. These results suggest that one component of NO/cGMP-induced smooth muscle relaxation is the activation of the cGKIalpha isoform, which decreases the noradrenaline-stimulated cytosolic Ca(2+) level.  相似文献   

19.
The subcellular distribution of protein kinase C was directly imaged in single living smooth muscle cells using a new fluorescent protein kinase C probe. The probe localized prominently to perinuclear organelles and, to a lesser extent, to the cytosol and surface membrane. The perinuclear signal did not detectably change over the time observed. The ratio between the surface membrane intensity and that in the cytosol (R) was measured in parallel with cell shortening. In 1 mM extracellular Ca2+, the time to peak R and time to peak shortening were not significantly different. In Ca(2+)-free solution, no significant increase in the surface membrane/cytosol fluorescence ratio was observed with time, and shortening was inhibited. These results provide a new method for monitoring protein kinase C localization in living cells and directly demonstrate that protein kinase C moves in a Ca(2+)-dependent fashion from the cytosol to the surface membrane simultaneously with contraction.  相似文献   

20.
Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号