首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assay technologies that measure the activation of heterotrimeric (alphabetagamma) G proteins by G-protein-coupled receptors (GPCRs) are well established within the pharmaceutical industry, either for pharmacological characterization or for the identification of natural or surrogate receptor ligands. Despite recent evidence indicating that GPCR-linked signalling events might not be mediated exclusively by G proteins, G-protein activation remains a common benchmark for assessing GPCR family members. Thus, assay systems that translate ligand-mediated modulation of GPCRs into G-protein-dependent intracellular responses still represent key components of both basic research and the drug discovery process. In this article, the current knowledge and recent progress of integrating Galpha subunits into assay systems for GPCR drug discovery will be reviewed. Emphasis is given to novel promiscuous and chimeric Galpha proteins. Because of their ability to interact with a wide range of GPCRs, such novel G proteins are likely to be incorporated rapidly into drug discovery programmes.  相似文献   

2.
Signal transduction is the means by which cells respond to variations in their environment. G-protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors, accounting for >1% of the human genome. GPCRs respond to a wide variety of extracellular signals, including peptides, ions, amino acids, hormones, growth factors, light and odorant molecules. The receptors couple with heterotrimeric G proteins to transduce their signal across the membrane and into the cell. This coupling promotes the exchange of GDP for GTP on the Galpha subunit, leading to effector activation by both Galpha-GTP and Gbetagamma. Functional selectivity, whereby conformational changes in GPCRs induced by agonist binding lead to unique conformations that can differentially modulate the G protein coupling process, was first proposed over a decade ago. The implications are far reaching in pharmacology, as it means that a GPCR could have a different pharmacological profile depending on which G protein is activated and that the same GPCR could have different roles depending on the activating molecule as well as the G proteins present in the local environment.  相似文献   

3.
G protein-coupled receptor (GPCR)-Galpha fusion proteins were first characterized more than 10 years ago as a strategy for studying receptor-G protein signaling. A large number of studies have used this approach to characterize receptor coupling to members of the Gs, Gi, and Gq families of Galpha subunits, but this strategy has not been widely used to study Galpha12 and Galpha13. As described in the article by Zhang et al. in this issue of Molecular Pharmacology (p. 1433) characterization of the signaling properties of thromboxane A2 receptor (TPalpha) -Galpha12 and -Galpha13 fusion constructs demonstrates the applicability of this strategy to members of this unique family of Galpha subunits, and how this strategy can be used to resolve otherwise difficult problems of receptor pharmacology associated with these proteins. The general strategy of making receptor-Galpha fusion constructs has wide applicability to a number of research problems, but there are perhaps also "hidden messages" in how different receptor-Galpha subunit fusion pairs behave.  相似文献   

4.
G protein-coupled receptors (GPCRs) are important therapeutic targets for drug discovery. The identification and characterization of new ligands ideally requires the use of high throughput assays that are applicable to all GPCR subtypes. To circumvent the problem of different GPCRs coupling to distinct intracellular second messenger pathways, we describe a new method that uses the chimeric Galpha protein 16z25 to facilitate this process. Stably expressed in Chinese hamster ovary cells, 16z25 allows G(i/o)- and G(s)-coupled receptors to mobilize intracellular Ca(2+) upon agonist stimulation. We have generated nine cell lines each stably expressing 16z25 and a GPCR. All cell lines respond to appropriate agonist stimulation in fluorometric imaging plate reader (FLIPR) assays with robust and potent Ca(2+) mobilization. Several of these lines have been pharmacologically characterized using agonists and antagonists. We also demonstrate that the coexpression of GPCR and 16z25 does not interfere with the receptors' ability to activate endogenous signaling pathways. The ability of 16z25 to functionally mediate the agonist stimulation of a broad spectrum of GPCRs indicates that the use of cell lines stably coexpressing this chimera and GPCRs will simplify the drug screening process and aid in the deorphanization of new receptors.  相似文献   

5.
G protein-coupled receptors (GPCRs) are seven transmembrane proteins that form the largest single family of integral membrane receptors. GPCRs transduce information provided by extracellular stimuli into intracellular second messengers via their coupling to heterotrimeric G proteins and the subsequent regulation of a diverse variety of effector systems. Agonist activation of GPCRs also initiates processes that are involved in the feedback desensitization of GPCR responsiveness, the internalization of GPCRs, and the coupling of GPCRs to heterotrimeric G protein-independent signal transduction pathways. GPCR desensitization occurs as a consequence of G protein uncoupling in response to phosphorylation by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). GRK-mediated receptor phosphorylation promotes the binding of beta-arrestins, which not only uncouple receptors from heterotrimeric G proteins but also target many GPCRs for internalization in clathrin-coated vesicles. beta-Arrestin-dependent endocytosis of GPCRs involves the direct interaction of the carboxyl-terminal tail domain of beta-arrestins with both beta-adaptin and clathrin. The focus of this review is the current and evolving understanding of the contribution of GRKs, beta-arrestins, and endocytosis to GPCR-specific patterns of desensitization and resensitization. In addition to their role as GPCR-specific endocytic adaptor proteins, beta-arrestins also serve as molecular scaffolds that foster the formation of alternative, heterotrimeric G protein-independent signal transduction complexes. Similar to what is observed for GPCR desensitization and resensitization, beta-arrestin-dependent GPCR internalization is involved in the intracellular compartmentalization of these protein complexes.  相似文献   

6.
The uncoupling of G-protein-coupled receptors (GPCRs) from their cognate heterotrimeric G proteins provides an essential physiological 'feedback' mechanism that protects against both acute and chronic overstimulation of receptors. The primary mechanism by which GPCR activity is regulated is the feedback phosphorylation of activated GPCRs by kinases that are dependent on second messengers, GPCR kinases (GRKs) and arrestins. It has recently become apparent, however, that GRK2-mediated regulation of GPCR responsiveness also involves a phosphorylation-independent component that requires both heterotrimeric G-protein alpha-subunit interactions and GPCR binding. Moreover, in addition to GRK2, a growing number of GPCR-interacting proteins might contribute to the phosphorylation-independent G-protein uncoupling of GPCRs. Here, new information about the mechanisms underlying this phosphorylation-independent regulation of receptor and G-protein coupling is reviewed.  相似文献   

7.
G protein-coupled receptors transmit extracellular signals into the cells by activating heterotrimeric G proteins, a process that is often followed by receptor desensitization. Monitoring such a process in real time and in living cells will help better understand how G protein activation occurs. Energy transfer-based approaches [fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET)] were recently shown to be powerful methods to monitor the G protein-coupled receptors (GPCRs)-G protein association in living cells. Here, we used a BRET technique to monitor the coupling between the protease-activated receptor 1 (PAR1) and Galpha(i1) protein. A specific constitutive BRET signal can be measured between nonactivated PAR1 and the Galpha(i1) protein expressed at a physiological level. This signal is insensitive to pertussis toxin (PTX) and probably reflects the preassembly of these two proteins. The BRET signal rapidly increases upon receptor activation in a PTX-sensitive manner. The BRET signal then returns to the basal level after few minutes. The desensitization of the BRET signal is concomitant with beta-arrestin-1 recruitment to the receptor, consistent with the known rapid desensitization of PARs. The agonist-induced BRET increase was dependent on the insertion site of fluorophores in proteins. Taken together, our results show that BRET between GPCRs and Galpha proteins can be used to monitor the receptor activation in real time and in living cells. Our data also revealed that PAR1 can be part of a preassembled complex with Galpha(i1) protein, resulting either from a direct interaction between these partners or from their colocalization in specific microdomains, and that receptor activation probably results in rearrangements within such complexes.  相似文献   

8.
G protein-coupled receptors (GPCRs) are transmembrane molecules that, on interaction with G proteins upon ligand binding, can associate with a large variety of transmembrane or soluble proteins, termed 'GPCR-interacting proteins' (GIPs). Some special transmembrane GIPs are themselves GPCRs that form homo- or heterodimers, while other transmembrane GIPs are ionic channels, ionotropic receptors and single transmembrane proteins that control GPCR pharmacology and trafficking. Most soluble GIPs interact with the C-termini of GPCRs and often physically link GPCRs to large protein networks, called 'receptosomes', that include ionic channels, protein kinases, small G proteins, cytoskeletal proteins and adhesion molecules. Here, we review the nature and functions of some of these networks, such as the glutamate and serotonin receptosomes, and focus on the fine-tuning of GPCR signaling by GIPs. Finally, we discuss the possibilities for developing new therapeutic drugs capable of modulating GPCR signaling by disrupting or reinforcing specific GPCR-GIP interactions.  相似文献   

9.
The standard model of signal transduction from G-protein-coupled receptors (GPCRs) involves guanine nucleotide cycling by a heterotrimeric G-protein assembly composed of Galpha, Gbeta, and Ggamma subunits. The WD-repeat beta-propeller protein Gbeta and the alpha-helical, isoprenylated polypeptide Ggamma are considered obligate dimerization partners; moreover, conventional Gbetagamma heterodimers are considered essential to the functional coupling of Galpha subunits to receptors. However, our recent discovery of a Gbeta5 binding site (the Ggamma-like or "GGL" domain) within several regulators of G-protein signaling (RGS) proteins revealed the potential for functional GPCR/Galpha coupling in the absence of a conventional Ggamma subunit. In addition, we posit that the interaction between Gbeta5 isoforms and the GGL domains of RGS proteins represents a general mode of binding between beta-propeller proteins and their partners, extending beyond the realm of G-protein-linked signal transduction.  相似文献   

10.
Recent solved structures of G protein-coupled receptors (GPCRs) provide insights into variation of the structure and molecular mechanisms of GPCR activation. In this review, we provide evidence for the emerging paradigm of domain coupling facilitated by intrinsic disorder of the ligand-free state in GPCRs. The structure-function and dynamic studies suggest that ligand-bound GPCRs exhibit multiple active conformations in initiating cellular signals. Long-range intramolecular and intermolecular interactions at distant sites on the same receptor are crucial factors that modulate signaling function of GPCRs. Positive or negative coupling between the extracellular, the transmembrane and the intracellular domains facilitates cooperativity of activating 'switches' as requirements for the functional plasticity of GPCRs. Awareness that allosteric ligands robustly affect domain coupling provides a novel mechanistic basis for rational drug development, small molecule antagonism and GPCR regulation by classical as well as nonclassical modes.  相似文献   

11.
GPCRs represent important targets for drug discovery because GPCRs participate in a wide range of cellular signaling pathways that play a role in a variety of pathological conditions. A large number of screening assays have been developed in HTS laboratories for the identification of hits or lead compounds acting on GPCRs. One type of assay that has found relatively widespread application, due to its at least in part generic nature, relies on the use of a radioactive GTP analogue, [(35)S]GTPgammaS. The G-protein alpha subunit is an essential part of the interaction between receptor and G proteins in transmembrane signaling, where the activated receptor catalyzes the release of GDP from Galpha, thereby enabling the subsequent binding of GTP or a GTP analogue. [(35)S]GTPgammaS allows the extent of this interaction to be followed quantitatively by determining the amount of radioactivity associated with cell membranes. However, with the increased desire to move assays to nonradioactive formats, there is a considerable need to develop a nonradioactive GTP binding assay to monitor ligand-induced changes in GPCR activity. The Eu-GTP binding assay described here is based on TRF that exploits the unique fluorescence properties of lanthanide chelates, and provides a powerful alternative to assays using radioisotopes. In this article, we have used the human alpha(2A)-AR as a model GPCR system to evaluate the usefulness of this Eu-GTP binding assay.  相似文献   

12.
G-protein-coupled receptors (GPCRs) constitute the largest but the most divergent class of cell surface proteins. Although they are thought to share a common 3D-structure composed of seven transmembrane helical domains, they can be activated by extracellular signals as diverse as light, peptides, proteins, lipids, organic odorants, taste molecules, nucleotides or nucleosides. They are involved in an extraordinarily large number of physiological functions and are therefore potential drug targets for many human diseases. During the last decade various GPCRs have been successfully expressed in S. cerevisiae. Yeast is an attractive expression system because it offers the genetic engineering tools typical of a microorganism while possessing an eukaryotic type of secretory pathway and post-translational machinery. This host is particularly attractive for in-vivo manipulation of these receptors due to the high homology between the yeast pheromone signaling pathway and that of mammalian GPCRs. When expressed in yeast, mammalian GPCRs have been shown to couple functionally to either the endogenous yeast Galpha (Gpa1), or co-expressed mammalian Galpha subunits (wild-type or chimeric), and are characterized by a similar pharmacology in response to agonists or antagonists as in native cells. Heterologous expression of wild type or mutant GPCRs in S. cerevisiae allows a rapid assessment of their ability to detect and transduce extracellular stimulations, through the use of a reporter system. Furthermore, this approach is amenable to high-throughput screening of new drugs, which would provide a determinant advantage in the field of therapeutic research, and also for investigation of the still unknown ligands of orphan receptors. This review will focus on the latest developments of yeast-based technology to screen for potential GPCR agonists/antagonists.  相似文献   

13.
Regulators of G-protein signaling (RGS) proteins are important components of signal transduction pathways initiated through G-protein-coupled receptors (GPCRs). RGS proteins accelerate the intrinsic GTPase activity of G-protein alpha-subunits (Galpha) and thus shorten the time course and reduce the magnitude of G-protein alpha- and betagamma-subunit signaling. Inhibiting RGS action has been proposed as a means to enhance the activity and specificity of GPCR agonist drugs, but pharmacological targeting of protein-protein interactions has typically been difficult. The aim of this project was to identify inhibitors of RGS4. Using a Luminex 96-well plate bead analyzer and a novel flow-cytometric protein interaction assay to assess Galpha-RGS interactions in a high-throughput screen, we identified the first small-molecule inhibitor of an RGS protein. Of 3028 compounds screened, 1, methyl N-[(4-chlorophenyl)sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986), inhibited RGS4/Galpha(o) binding with 3 to 5 muM potency. It binds to RGS4, inhibits RGS4 stimulation of Galpha(o) GTPase activity in vitro, and prevents RGS4 regulation of mu-opioid-inhibited adenylyl cyclase activity in permeabilized cells. Furthermore, CCG-4986 is selective for RGS4 and does not inhibit RGS8. Thus, we demonstrate the feasibility of targeting RGS/Galpha protein-protein interactions with small molecules as a novel means to modulate GPCR-mediated signaling processes.  相似文献   

14.
The aim of this review is to provide a systematic overview on constitutively active G-protein-coupled receptors (GPCRs), a rapidly evolving area in signal transduction research. We will discuss mechanisms, pharmacological tools and methodological approaches to analyze constitutive activity. The two-state model defines constitutive activity as the ability of a GPCR to undergo agonist-independent isomerization from an inactive (R) state to an active (R*) state. While the two-state model explains basic concepts of constitutive GPCR activity and inverse agonism, there is increasing evidence for multiple active GPCR conformations with distinct biological activities. As a result of constitutive GPCR activity, basal G-protein activity increases. Until now, constitutive activity has been observed for more than 60 wild-type GPCRs from the families 1-3 and from different species including humans and commonly used laboratory animal species. Additionally, several naturally occurring and disease-causing GPCR mutants with increased constitutive activity relative to wild-type GPCRs have been identified. Alternative splicing, RNA editing, polymorphisms within a given species, species variants and coupling to specific G-proteins all modulate the constitutive activity of GPCRs, providing multiple regulatory switches to fine-tune basal cellular activities. The most important pharmacological tools to analyze constitutive activity are inverse agonists and Na(+) that stabilize the R state, and pertussis toxin that uncouples GPCRs from G(i)/G(o)-proteins. Constitutive activity is observed at low and high GPCR expression levels, in native systems and in recombinant systems, and has been reported for GPCRs coupled to G(s)-, G(i)- and G(q)-proteins. Constitutive activity of neurotransmitter GPCRs may provide a tonic support for basal neuronal activity. For the majority of GPCRs known to be constitutively active, inverse agonists have already been identified. Inverse agonists may be useful in the treatment of neuropsychiatric and cardiovascular diseases and of diseases caused by constitutively active GPCR mutants.  相似文献   

15.
Signal transduction by G protein-coupled receptors (GPCRs) is mediated by interactions between intracellular proteins and exposed motifs on the cytoplasmic face of these receptors. Arrestins bind to GPCRs and modulate receptor function either by interfering with heterotrimeric G protein signaling or by serving as signaling adaptors themselves. Calmodulin interacts with GPCRs triggering a calcium response. We have studied the interaction of arrestin2 and calmodulin with intracellular elements of the human V1-vascular vasopressin receptor (hV1R). For this purpose, we designed, expressed, and purified soluble fusion proteins with the maltose-binding protein (MBP) from Escherichia coli that mimic the intracellular surface of the hV1R. These MBP fusion proteins bind arrestin2 and calmodulin with affinities in the micromolar range. A different series of soluble receptor analogs, named vasopressin receptor 1 elements on a soluble scaffold (V1ROSS) proteins, consist of the third intracellular loop and/or the C-terminal segment of the hV1R receptor juxtaposed on the surface of the MBP. V1ROSS proteins bind calmodulin and a truncated, phosphorylation-independent form of arrestin2 more tightly than the corresponding linear fusion proteins. Thus, embedding receptor loops within the three-dimensional structure of the MBP yields a better representation of the active conformation of these receptor loops than linear receptor peptides fused onto the C terminus of the MBP. V1ROSS proteins provide a valuable tool to study receptor interactions because they are more amenable to structural analysis than the native membrane receptor. These findings set the stage for the detailed structural analysis of these protein-protein interactions that are important for understanding the mechanism of signaling.  相似文献   

16.
The wingless/int1 (WNT)/Frizzled (FZD) signalling pathway controls numerous cellular processes such as proliferation, differentiation, cell-fate decisions, migration and plays a crucial role during embryonic development. Nineteen mammalian WNTs can bind to 10 FZDs thereby activating different downstream pathways such as WNT/β-catenin, WNT/planar cell polarity and WNT/Ca2+. However, the mechanisms of signalling specification and the involvement of heterotrimeric G proteins are still unclear. Disturbances in the pathways can lead to various diseases ranging from cancer, inflammatory diseases to metabolic and neurological disorders. Due to the presence of seven-transmembrane segments, evidence for coupling between FZDs and G proteins and substantial structural differences in class A, B or C GPCRs, FZDs were grouped separately in the IUPHAR GPCR database as the class FZD within the superfamily of GPCRs. Recently, important progress has been made pointing to a direct activation of G proteins after WNT stimulation. WNT/FZD and G protein coupling remain to be fully explored, although the basic observation supporting the nature of FZDs as GPCRs is compelling. Because the involvement of different (i) WNTs; (ii) FZDs; and (iii) intracellular binding partners could selectively affect signalling specification, in this review we present the current understanding of receptor/ligand selectivity of FZDs and WNTs. We pinpoint what is known about signalling specification and the physiological relevance of these interactions with special emphasis on FZD–G protein interactions.LINKED ARTICLESThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5  相似文献   

17.
G-protein-coupled receptor (GPCR) proteins [Lundstrom KH, Chiu ML, editors. G protein-coupled receptors in drug discovery. CRC Press; 2006] are the single largest drug target, representing 25-50% of marketed drugs [Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006;5(12):993-6; Parrill AL. Crystal structures of a second G protein-coupled receptor: triumphs and implications. ChemMedChem 2008;3:1021-3]. While there are six subclasses of GPCR proteins, the hallmark of all GPCR proteins is the transmembrane-spanning region. The general architecture of this transmembrane (TM) region has been known for some time to contain seven α-helices. From a drug discovery and design perspective, structural information of the GPCRs has been sought as a tool for structure-based drug design. The advances in the past decade of technologies for structure-based design have proven to be useful in a number of areas. Invoking these approaches for GPCR targets has remained challenging. Until recently, the most closely related structures available for GPCR modeling have been those of bovine rhodopsin. While a representative of class A GPCRs, bovine rhodopsin is not a ligand-activated GPCR and is fairly distant in sequence homology to other class A GPCRs. Thus, there is a variable degree of uncertainty in the use of the rhodopsin X-ray structure as a template for homology modeling of other GPCR targets. Recent publications of X-ray structures of class A GPCRs now offer the opportunity to better understand the molecular mechanism of action at the atomic level, to deploy X-ray structures directly for their use in structure-based design, and to provide more promising templates for many other ligand-mediated GPCRs. We summarize herein some of the recent findings in this area and provide an initial perspective of the emerging opportunities, possible limitations, and remaining questions. Other aspects of the recent X-ray structures are described by Weis and Kobilka [Weis WI, Kobilka BK. Structural insights into G-protein-coupled receptor activation. Curr Opin Struct Biol 2008;18:734-40] and Mustafi and Palczewski [Mustafi D, Palczewski K. Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 2009;75:1-12].  相似文献   

18.
A variety of G protein-coupled receptors (GPCRs) are phosphorylated by G protein-coupled receptor kinase 2 (GRK2). This event promotes the binding of regulatory proteins termed beta-arrestins to GPCRs, leading to uncoupling from G proteins and receptor internalization. Recent data indicate that GRK2 and beta-arrestins also play an important role in the stimulation of the extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinase (MAPK) cascade by GPCRs. In this report, we have investigated the existence of functional interactions between GRK2 and MAPK. We show that activation of beta(2)-adrenergic receptors (beta(2)-AR) promotes the rapid association of GRK2 and MAPK in living cells, as assessed by coimmunoprecipitation experiments in COS-7 cells transfected with beta(2)-AR, GRK2, and an epitope-tagged MAPK. Coimmunoprecipitation of MAPK and GRK2 is blocked by inhibition of the MAPK cascade and is not observed upon activation of MAPK in the absence of beta(2)-AR stimulation, thus indicating that both an active MAPK and agonist occupancy of GPCR are required for the association to occur. Interestingly, we have found that purified ERK1/MAPK can directly phosphorylate the C-terminal domain of GRK2, and that the phosphorylation process is favored by the presence of Gbetagamma-subunits or an activated receptor. Furthermore, GRK2 phosphorylation by MAPK leads to a decreased activity of GRK2 toward GPCR. Taken together, our results suggest that stimulation of GPCRs promotes the rapid association of GRK2 and MAPK leading to modulation of GRK2 functionality, thus putting forward a new feedback mechanism for the regulation of GPCR signaling.  相似文献   

19.
In previous studies, we have shown that agonists influence the ability of D2 dopamine receptors to couple to G proteins and here we extend this work. The human D2Short dopamine receptor and a natural polymorphism of this D(2Short)(Ser311Cys), have been studied by co-expressing the receptors in insect cells with Gbeta1gamma2 and either Galpha(o), Galpha(i1), Galpha(i2) or Galpha(i3) G protein subunits. These preparations have been used to study the G protein coupling profiles of the two receptors and the influence of agonists. Receptor/G protein coupling was analysed in dopamine/[3H]spiperone competition binding experiments and through stimulation of [35S]GTPgammaS binding. Although the Ser311Cys polymorphism itself had no appreciable effect on the G protein coupling specificity of the D2 receptor, agonist stimulation of [35S]GTPgammaS binding, revealed that both dopamine and (+)-3PPP showed a clear preference for Galpha(o) compared to the Galpha(i) subtypes, but quinpirole did not. These results indicate that agonists are able to stabilise different receptor conformations with different abilities to couple to G proteins.  相似文献   

20.
The widely accepted model of G protein-coupled receptor (GPCR) regulation describes a system where the agonist-activated receptors couple to G proteins to induce a cellular response, and are subsequently phosphorylated by a family of kinases called the G protein-coupled receptor kinases (GRKs). The GRK-phosphorylated receptor then acts as a substrate for the binding of a family of proteins called arrestins, which uncouple the receptor and G protein so desensitizing the agonist-induced response. Other kinases, principally the second messenger-dependent protein kinases, are also known to play a role in the desensitization of many GPCR responses. It is now clear that there are subtle and complex interactions between GRKs and second messenger-dependent protein kinases in the regulation of GPCR function. Functional selectivity describes the ability of agonists to stabilize different active conformations of the same GPCR. With regard to desensitization, distinct agonist-activated conformations of a GPCR could undergo different molecular mechanisms of desensitization. An example of this is the mu opioid receptor (MOPr), where the agonists morphine and [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) induce desensitization of the MOPr by different mechanisms, largely protein kinase C (PKC)- or GRK-dependent, respectively. This can be best explained by supposing that these two agonists stabilize distinct conformations of the MOPr, which are nevertheless able to couple to the relevant G-proteins and produce similar responses, yet are sufficiently different to trigger different regulatory processes. There is evidence that other GPCRs also undergo agonist-selective desensitization, but the full therapeutic consequences of this phenomenon await further detailed study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号