首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and purpose:

Cannabis is the source of at least seventy phytocannabinoids. The pharmacology of most of these has been little investigated, three notable exceptions being Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. This investigation addressed the question of whether the little-studied phytocannabinoid, cannabigerol, can activate or block any G protein-coupled receptor.

Experimental approach:

The [35S]GTPγS binding assay, performed with mouse brain membranes, was used to test the ability of cannabigerol to produce G protein-coupled receptor activation or blockade. Its ability to displace [3H]CP55940 from mouse CB1 and human CB2 cannabinoid receptors and to inhibit electrically evoked contractions of the mouse isolated vas deferens was also investigated.

Key results:

In the brain membrane experiments, cannabigerol behaved as a potent α2-adrenoceptor agonist (EC50= 0.2 nM) and antagonized the 5-HT1A receptor agonist, R-(+)-8-hydroxy-2-(di-n-propylamino)tetralin (apparent KB= 51.9 nM). At 10 µM, it also behaved as a CB1 receptor competitive antagonist. Additionally, cannabigerol inhibited evoked contractions of the vas deferens in a manner that appeared to be α2-adrenoceptor-mediated (EC50= 72.8 nM) and displayed significant affinity for mouse CB1 and human CB2 receptors.

Conclusions and implications:

This investigation has provided the first evidence that cannabigerol can activate α2-adrenoceptors, bind to cannabinoid CB1 and CB2 receptors and block CB1 and 5-HT1A receptors. It will now be important to investigate why cannabigerol produced signs of agonism more potently in the [35S]GTPγS binding assay than in the vas deferens and also whether it can inhibit noradrenaline uptake in this isolated tissue and in the brain.  相似文献   

2.

BACKGROUND AND PURPOSE

Palmitoylethanolamide (PEA) acts via several targets, including cannabinoid CB1 and CB2 receptors, transient receptor potential vanilloid type-1 (TRPV1) ion channels, peroxisome proliferator-activated receptor alpha (PPAR α) and orphan G protein-coupled receptor 55 (GRR55), all involved in the control of intestinal inflammation. Here, we investigated the effect of PEA in a murine model of colitis.

EXPERIMENTAL APPROACH

Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Inflammation was assessed by evaluating inflammatory markers/parameters and by histology; intestinal permeability by a fluorescent method; colonic cell proliferation by immunohistochemistry; PEA and endocannabinoid levels by liquid chromatography mass spectrometry; receptor and enzyme mRNA expression by quantitative RT-PCR.

KEY RESULTS

DNBS administration caused inflammatory damage, increased colonic levels of PEA and endocannabinoids, down-regulation of mRNA for TRPV1 and GPR55 but no changes in mRNA for CB1, CB2 and PPARα. Exogenous PEA (i.p. and/or p.o., 1 mg·kg−1) attenuated inflammation and intestinal permeability, stimulated colonic cell proliferation, and increased colonic TRPV1 and CB1 receptor expression. The anti-inflammatory effect of PEA was attenuated or abolished by CB2 receptor, GPR55 or PPARα antagonists and further increased by the TRPV1 antagonist capsazepine.

CONCLUSIONS AND IMPLICATIONS

PEA improves murine experimental colitis, the effect being mediated by CB2 receptors, GPR55 and PPARα, and modulated by TRPV1 channels.  相似文献   

3.
Systemic administration of thiazolidinediones reduces peripheral inflammation in vivo, presumably by acting at peroxisome proliferator-activated receptor γ (PPARγ) in peripheral tissues. Based on a rapidly growing body of literature indicating the CNS as a functional target of PPARγ actions, we postulated that brain PPARγ modulates peripheral edema and the processing of inflammatory pain signals in the dorsal horn of the spinal cord. To test this in the plantar carrageenan model of inflammatory pain, we measured paw edema, heat hyperalgesia, and dorsal horn expression of the immediate-early gene c-fos after intracerebroventricular (ICV) administration of PPARγ ligands or vehicle. We found that ICV rosiglitazone (0.5-50 μg) or 15d-PGJ2 (50-200 μg), but not vehicle, dose-dependently reduced paw thickness, paw volume and behavioral withdrawal responses to noxious heat. These anti-inflammatory and anti-hyperalgesia effects result from direct actions in the brain and not diffusion to other sites, because intraperitoneal and intrathecal administration of rosiglitazone (50 μg) and 15d-PGJ2 (200 μg) had no effect. PPARγ agonists changed neither overt behavior nor motor coordination, indicating that non-specific behavioral effects do not contribute to PPAR ligand-induced anti-hyperalgesia. ICV administration of structurally dissimilar PPARγ antagonists (either GW9662 or BADGE) reversed the anti-inflammatory and anti-hyperalgesic actions of both rosiglitazone and 15d-PGJ2. To evaluate the effects of PPARγ agonists on a classic marker of noxious stimulus-evoked gene expression, we quantified Fos protein expression in the dorsal horn. The number of carrageenan-induced Fos-like immunoreactive profiles was less in rosiglitazone-treated rats as compared to vehicle controls. We conclude that pharmacological activation of PPARγ in the brain rapidly inhibits local edema and the spinal transmission of noxious inflammatory signals.  相似文献   

4.
5.
Peroxisome proliferator-activated receptor (PPAR) belongs to the nuclear hormone receptor superfamily. Recently published reports demonstrate the importance of a direct repeat 2 (DR2) as a PPARγ-responsive element in addition to the canonical direct repeat 1 (DR1) Peroxisome proliferator response elements (PPREs). However, a comprehensive and systematic approach to constructing de novo disease-specific gene networks for PPARγ is lacking, especially one that includes PPARγ target genes containing either DR1 or DR2 site within their promoter region. Here, we computationally identified 1154 PPARγ direct target genes and constructed the PPARγ disease gene network, which revealed 138 PPARγ target genes that are associated with 65 unique diseases. The network shows that PPARγ target genes are highly associated with cancer and neurological diseases. Thirty-eight PPARγ direct target genes were found to be involved in prostate cancer and two key (hub) PPARγ direct target genes, PRKCZ and PGK1, were experimentally validated to be repressed upon PPARγ activation by its natural ligand, 15d-PGJ2 in three prostrate cancer cell lines. We proposed that PRKCZ and PGK1 could be novel therapeutic targets for prostate cancer. These investigations would not only aid in understanding the molecular mechanisms by which PPARγ regulates disease targets but would also lead to the identification of novel PPARγ gene targets.  相似文献   

6.
7.

Background and purpose:

The phytocannabinoid, Δ9-tetrahydrocannabivarin (THCV), can block cannabinoid CB1 receptors. This investigation explored its ability to activate CB2 receptors, there being evidence that combined CB2 activation/CB1 blockade would ameliorate certain disorders.

Experimental approach:

We tested the ability of THCV to activate CB2 receptors by determining whether: (i) it inhibited forskolin-stimulated cyclic AMP production by Chinese hamster ovary (CHO) cells transfected with human CB2 (hCB2) receptors; (ii) it stimulated [35S]GTPγS binding to hCB2 CHO cell and mouse spleen membranes; (iii) it attenuated signs of inflammation/hyperalgesia induced in mouse hind paws by intraplantar injection of carrageenan or formalin; and (iv) any such anti-inflammatory or anti-hyperalgesic effects were blocked by a CB1 or CB2 receptor antagonist.

Key results:

THCV inhibited cyclic AMP production by hCB2 CHO cells (EC50= 38 nM), but not by hCB1 or untransfected CHO cells or by hCB2 CHO cells pre-incubated with pertussis toxin (100 ng·mL−1) and stimulated [35S]GTPγS binding to hCB2 CHO and mouse spleen membranes. THCV (0.3 or 1 mg·kg−1 i.p.) decreased carrageenan-induced oedema in a manner that seemed to be CB2 receptor-mediated and suppressed carrageenan-induced hyperalgesia. THCV (i.p.) also decreased pain behaviour in phase 2 of the formalin test at 1 mg·kg−1, and in both phases of this test at 5 mg·kg−1; these effects of THCV appeared to be CB1 and CB2 receptor mediated.

Conclusions and implications:

THCV can activate CB2 receptors in vitro and decrease signs of inflammation and inflammatory pain in mice partly via CB1 and/or CB2 receptor activation.This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x  相似文献   

8.
Infection of mice with Theiler's murine encephalomyelitis virus (TMEV) leads to the development of TMEV-induced demyelinating disease (TMEV-IDD), an autoimmune, demyelinating and neurodegenerative pathology that serves as a model of multiple sclerosis. Activation of endogenous CB1/CB2 cannabinoid receptors inhibits inflammation and improves the clinical status of TMEV-IDD animals. In the present study, mice with established TMEV-IDD were treated with the CB1/CB2 receptor agonist WIN 55,212-2 (WIN), which restored self-tolerance to a myelin self-antigen while ameliorating the disease in a long-term manner. Accordingly, disruption of self-tolerance with cyclophosphamide provoked chronic relapse. Furthermore, transfer of splenocytes from WIN-treated TMEV-IDD mice to TMEV-infected mice at disease onset prevented the autoimmune inflammatory response and motor impairment. The therapeutic effect of WIN correlated with a decrease in the activation of CD4+CD25+Foxp3? T cells and an increase in regulatory CD4+CD25+Foxp3+ T cells in the CNS, along with alterations in the cytokine and chemokine milieu. These findings demonstrate for the first time that the suppression of autoimmune responses to myelin antigens underlies the therapeutic effect of CB1/CB2 cannabinoid agonists in the treatment of multiple sclerosis.  相似文献   

9.
The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ9-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [3H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [35S]GTPγS binding in mouse brain membranes and β-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity, and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor-mediated antinociceptive effects in the chronic constriction nerve injury model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.  相似文献   

10.

Background and Purpose

Although cannabinoid CB2 receptor ligands have been widely characterized in recombinant systems in vitro, little pharmacological characterization has been performed in tissues natively expressing CB2 receptors. The aim of this study was to compare the pharmacology of CB2 receptor ligands in tissue natively expressing CB2 receptors (human, rat and mouse spleen) and hCB2-transfected CHO cells.

Experimental Approach

We tested the ability of well-known cannabinoid CB2 receptor ligands to stimulate or inhibit [35S]GTPγS binding to mouse, rat and human spleen membranes and to hCB2-transfected CHO cell membranes. cAMP assays were also performed in hCB2-CHO cells.

Key Results

The data presented demonstrate that: (i) CP 55,940, WIN 55,212-2 and JWH 133 behave as CB2 receptor full agonists both in spleen and hCB2-CHO cells, in both [35S]GTPγS and cAMP assays; (ii) JWH 015 behaves as a low-efficacy agonist in spleen as well as in hCB2-CHO cells when tested in the [35S]GTPγS assay, while it displays full agonism when tested in the cAMP assay using hCB2-CHO cells; (iii) (R)-AM 1241 and GW 405833 behave as agonists in the [35S]GTPγS assay using spleen, instead it behaves as a low-efficacy inverse agonist in hCB2-CHO cells; and (iv) SR 144528, AM 630 and JTE 907 behave as CB2 receptor inverse agonists in all the tissues.

Conclusion and Implications

Our results demonstrate that CB2 receptor ligands can display differential pharmacology when assays are conducted in tissues that natively express CB2 receptors and imply that conclusions from recombinant CB2 receptors should be treated with caution.  相似文献   

11.

BACKGROUND AND PURPOSE

N-docosahexaenoylethanolamine (DHEA) is the ethanolamine conjugate of the long-chain polyunsaturated n-3 fatty acid docosahexaenoic (DHA; 22: 6n-3). Its concentration in animal tissues and human plasma increases when diets rich in fish or krill oil are consumed. DHEA displays anti-inflammatory properties in vitro and was found to be released during an inflammatory response in mice. Here, we further examine possible targets involved in the immune-modulating effects of DHEA.

EXPERIMENTAL APPROACH

Antagonists for cannabinoid (CB)1 and CB2 receptors and PPARγ were used to explore effects of DHEA on NO release by LPS-stimulated RAW264.7 cells. The possible involvement of CB2 receptors was studied by comparing effects in LPS-stimulated peritoneal macrophages obtained from CB2−/− and CB2+/+ mice. Effects on NF-κB activation were determined using a reporter cell line. To study DHEA effects on COX-2 and lipoxygenase activity, 21 different eicosanoids produced by LPS-stimulated RAW264.7 cells were quantified by LC-MS/MS. Finally, effects on mRNA expression profiles were analysed using gene arrays followed by Ingenuity® Pathways Analysis.

KEY RESULTS

CB1 and CB2 receptors or PPARs were not involved in the effects of DHEA on NO release. NF-κB and IFN-β, key elements of the myeloid differentiation primary response protein D88 (MyD88)-dependent and MyD88-independent pathways were not decreased. By contrast, DHEA significantly reduced levels of several COX-2-derived eicosanoids. Gene expression analysis provided support for an effect on COX–2-mediated pathways.

CONCLUSIONS AND IMPLICATIONS

Our findings suggest that the anti-inflammatory effects of DHEA in macrophages predominantly take place via inhibition of eicosanoids produced through COX-2.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids 2013 published in volume 171 issue 6. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2014.171.issue-6/issuetoc  相似文献   

12.
Very low density lipoprotein receptor (VLDLR) is a member of the low density receptor family, expressed mostly in adipose tissue, heart, and skeletal muscles. VLDLR binds apolipoprotein-E-triglyceride-rich lipoproteins and plays a key role in lipid metabolism. In adipocytes, VLDLR expression increases with differentiation but it is not known whether it plays a role in the adipogenesis. Here we report that VLDLR expression in 3T3-L1 adipocytes is upregulated by PPARγ agonist 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) in dose- and time-dependant manners. Knockdown of peroxisome proliferator-activated receptor-γ (PPARγ) with siRNA abolished pioglitazone- and 15d-PGJ2-induced VLDLR expression and simultaneously reduced VLDL uptake in adipocytes. In addition, PPARγ-agonist treatment of control mouse adipocytes (vldlr+/+) enhanced adipogenesis and VLDL uptake concurrently with the induction of VLDLR expression. However, vldlr deficiency (vldlr−/−) significantly blunted the proadipogenic effects of PPARγ agonists. Sequence analysis revealed the presence of a putative PPARγ responsive sequence (PPRE) within the vldlr promoter, which is responsive to natural (15d-PGJ2) and synthetic (pioglitazone) PPARγ agonists. Reporter gene assays using serial deletion of the 5′-flanking region showed that this putative PPRE site induced promoter transactivation, while a site-targeted mutation abolished transactivation. Moreover, electrophoresis mobility shift assay (EMSA) and chromatic immunoprecipitation (ChIP) assays showed the specific binding of PPARγ to the PPRE sequence.Together, these results support a crucial function for VLDLR in adipocyte differentiation and mediation of the proadipogenic effect of PPARγ.  相似文献   

13.
《Biochemical pharmacology》2012,83(12):1950-1962
Very low density lipoprotein receptor (VLDLR) is a member of the low density receptor family, expressed mostly in adipose tissue, heart, and skeletal muscles. VLDLR binds apolipoprotein-E-triglyceride-rich lipoproteins and plays a key role in lipid metabolism. In adipocytes, VLDLR expression increases with differentiation but it is not known whether it plays a role in the adipogenesis. Here we report that VLDLR expression in 3T3-L1 adipocytes is upregulated by PPARγ agonist 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) in dose- and time-dependant manners. Knockdown of peroxisome proliferator-activated receptor-γ (PPARγ) with siRNA abolished pioglitazone- and 15d-PGJ2-induced VLDLR expression and simultaneously reduced VLDL uptake in adipocytes. In addition, PPARγ-agonist treatment of control mouse adipocytes (vldlr+/+) enhanced adipogenesis and VLDL uptake concurrently with the induction of VLDLR expression. However, vldlr deficiency (vldlr−/−) significantly blunted the proadipogenic effects of PPARγ agonists. Sequence analysis revealed the presence of a putative PPARγ responsive sequence (PPRE) within the vldlr promoter, which is responsive to natural (15d-PGJ2) and synthetic (pioglitazone) PPARγ agonists. Reporter gene assays using serial deletion of the 5′-flanking region showed that this putative PPRE site induced promoter transactivation, while a site-targeted mutation abolished transactivation. Moreover, electrophoresis mobility shift assay (EMSA) and chromatic immunoprecipitation (ChIP) assays showed the specific binding of PPARγ to the PPRE sequence.Together, these results support a crucial function for VLDLR in adipocyte differentiation and mediation of the proadipogenic effect of PPARγ.  相似文献   

14.
15.
Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, anti-oxidant, anti-emetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and anti-oxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ9-tetrahydrocannabinol is already under clinical evaluation in patients with Huntington''s disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ9-tetrahydrocannabinol, i.e. CB1 and CB2 receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB2 receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels.  相似文献   

16.

BACKGROUND AND PURPOSE

The aim of this study was to explore the effects of CB2 receptor agonist and antagonist in the regulation of anxiety-like behaviours.

EXPERIMENTAL APPROACHES

Effects of acute and chronic treatment with the CB2 receptor agonist JWH133 and CB2 receptor antagonist AM630 were evaluated in the light-dark box (LDB) and elevated plus maze (EPM) tests in Swiss ICR mice. CB2 receptor, GABAAα2 and GABAAγ2 gene and protein expression in the cortex and amygdala of mice chronically treated with JWH133 or AM630 were examined by RT-PCR and Western blot. Effects of chronic AM630 treatment were evaluated in spontaneously anxious DBA/2 mice in LDB.

KEY RESULTS

Acute JWH133 treatment failed to produce any effect. Acute AM630 treatment increased anxiety and was blocked by pre-treatment with JWH133. Chronic JWH133 treatment increased anxiety-like behaviour whereas chronic AM630 treatment was anxiolytic in LDB and EPM tests. Chronic AM630 treatment increased gene and reduced protein expression of CB2 receptors, GABAAα2 and GABAAγ2 in cortex and amygdala. Chronic JWH133 treatment resulted in opposite gene and protein alterations. In addition, chronic AM630 administration decreased the anxiety of DBA/2 mice in the LDB test.

CONCLUSIONS AND IMPLICATIONS

The opposing behavioural and molecular changes observed after chronic treatment with AM630 or JWH133 support the key role of CB2 receptors in the regulation of anxiety. Indeed, the efficacy of AM630 in reducing the anxiety of the spontaneously anxious DBA/2 strain of mice strengthens the potential of the CB2 receptor as a new target in the treatment of anxiety-related disorders.  相似文献   

17.
Cannabinoid receptor type 2 (CB2) is the primary receptor pathway mediating the immunologic consequences of cannabinoids. We recently reported that human peripheral blood B cells express CB2 on both the extracellular membrane and at intracellular sites, where-as monocytes and T cells only express intracellular CB2. To better understand the pattern of CB2 expression by human B cells, we examined CD20+ B cells from three tissue sources. Both surface and intracellular expression were present and uniform in cord blood B cells, where all cells exhibited a naïve mature phenotype (IgD+/CD38Dim). While naïve mature and quiescent memory B cells (IgD?/CD38?) from tonsils and peripheral blood exhibited a similar pattern, tonsillar activated B cells (IgD?/CD38+) expressed little to no surface CB2. We hypothesized that regulation of the surface CB2 receptor may occur during B cell activation. Consistent with this, a B cell lymphoma cell line known to exhibit an activated phenotype (SUDHL-4) was found to lack cell surface CB2 but express intracellular CB2. Furthermore, in vitro activation of human cord blood resulted in a down-regulation of surface CB2 on those B cells acquiring the activated phenotype but not on those retaining IgD expression. Using a CB2 expressing cell line (293 T/CB2-GFP), confocal microscopy confirmed the presence of both cell surface expression and multifocal intracellular expression, the latter of which co-localized with endoplasmic reticulum but not with mitochondria, lysosomes, or nucleus. Our findings suggest a dynamic multi-compartment expression pattern for CB2 in B cells that is specifically modulated during the course of B cell activation.  相似文献   

18.
19.
Liver fibrosis can be induced by environmental chemicals or toxicants, and finally stimulates fibrogenic cytokines expression, such as transforming growth factor-β (TGF-β) and its downstream mediator connective tissue growth factor (CTGF). 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a metabolite of arachidonic acid, can act as a peroxisome proliferator-activated receptor γ (PPARγ) ligand, and function as either anti-inflammatory or inflammatory agents in different cell types. In this study, CTGF was detected in three human hepatoma cell lines, Hep3B, HepG2, and Huh-7, and it was up-regulated by TGF-β. 15d-PGJ2 significantly inhibited TGF-β-induced CTGF protein and mRNA expressions, and promoter activity in hepatoma cells. 15d-PGJ2 suppressed TGF-β-induced Smad2 phosphorylation, however enhancing the phosphorylation of ERK, c-Jun N-terminal kinase (JNK), and p38 in TGF-β-treated Hep3B cells. Other PPAR ligands like the PPARγ agonist, troglitazone; the PPARα agonist, Wy-14643, and bezafibrate were also able to inhibit TGF-β-induced CTGF. The results suggest that 15d-PGJ2 inhibits TGF-β-induced CTGF expression by inhibiting the phosphorylation of Smad2, which is independent of PPAR, and 15d-PGJ2 might also act through a PPAR-dependent mechanism in human hepatoma cells. 15d-PGJ2 might have a beneficent effect on prevention of liver fibrosis induced by environmental toxicants.  相似文献   

20.

BACKGROUND AND PURPOSE

Cannabinoid CB2 receptor activation has been reported to attenuate myocardial, cerebral and hepatic ischaemia-reperfusion (I/R) injury.

EXPERIMENTAL APPROACH

We have investigated the effects of a novel CB2 receptor agonist ((1S,4R)-2-(2,6-dimethoxy-4-(2-methyloctan-2-yl)phenyl)-7,7-dimethylbicyclo[2.2.1]hept-2-en-1-yl)methanol (HU-910) on liver injury induced by 1 h of ischaemia followed by 2, 6 or 24 h of reperfusion, using a well-established mouse model of segmental hepatic I/R.

KEY RESULTS

Displacement of [3H]CP55940 by HU-910 from specific binding sites in CHO cell membranes transfected with human CB2 or CB1 receptors (hCB1/2) yielded Ki values of 6 nM and 1.4 µM respectively. HU-910 inhibited forskolin-stimulated cyclic AMP production by hCB2 CHO cells (EC50= 162 nM) and yielded EC50 of 26.4 nM in [35S]GTPγS binding assays using hCB2 expressing CHO membranes. HU-910 given before ischaemia significantly attenuated levels of I/R-induced hepatic pro-inflammatory chemokines (CCL3 and CXCL2), TNF-α, inter-cellular adhesion molecule-1, neutrophil infiltration, oxidative stress and cell death. Some of the beneficial effect of HU-910 also persisted when given at the beginning of the reperfusion or 1 h after the ischaemic episode. Furthermore, HU-910 attenuated the bacterial endotoxin-triggered TNF-α production in isolated Kupffer cells and expression of adhesion molecules in primary human liver sinusoidal endothelial cells stimulated with TNF-α. Pretreatment with a CB2 receptor antagonist attenuated the protective effects of HU-910, while pretreatment with a CB1 antagonist tended to enhance them.

CONCLUSION AND IMPLICATIONS

HU-910 is a potent CB2 receptor agonist which may exert protective effects in various diseases associated with inflammation and tissue injury.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号