首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomato yellow leaf curl virus (TYLCV) is one of the causal agents of tomato yellow leaf curl disease (TYLCD) and can cause up to 100% yield losses in tomato fields. As TYLCV continues to spread, many isolates have been described in different parts of the world. Recently two closely related but distinct TYLCV clades, called TYLCV and TYLCV-Mld, have been identified. Isolates from those two clades differ mainly in the nucleotide sequences of their replication associated protein genes but do not display significantly different symptomatology. In order to improve monitoring of the rapidly expanding worldwide TYLCD epidemic, a multiplex polymerase chain reaction assay (mPCR) was developed. A set of three primers were designed to detect and characterize the TYLCV and TYLCV-Mld clade isolates. The specificity and sensitivity of the mPCR were validated on TYLCV infected tomato plants and Bemisia tabaci whiteflies. Being cheap, fast and highly sensitive this new diagnostic tool should greatly simplify efforts to trace the global spread of TYLCV.  相似文献   

2.
Summary. Diseases caused by begomoviruses (family Geminiviridae, genus Begomovirus) constitute a serious constraint to tomato production in Nicaragua. In this study, the complete nucleotide (nt) sequences of the DNA-A and DNA-B components were determined for the first time for Tomato leaf curl Sinaloa virus (ToLCSinV). In addition, the complete nt sequence was determined for the DNA-A component of two isolates of Tomato severe leaf curl virus (ToSLCV). The genome organization of ToLCSinV and ToSLCV was identical to the bipartite genomes of other begomoviruses described from the Americas. A phylogenetic analysis of DNA-A including 45 begomovirus species showed that the indigenous begomoviruses of the New World can be divided into three major clades and an intermediate group: AbMV clade, SLCV clade, “Brazil clade”, and BGYMV group. Phylogenetic analyses of the DNA-A and DNA-B components and their open reading frames indicated that ToLCSinV and ToSLCV belong to different clades: ToLCSinV to the AbMV clade, and ToSLCV to the SLCV clade. The two Nicaraguan isolates of ToSLCV showed a close relationship with ToSLCV from Guatemala (ToSLCV-[GT96-1]) and Tomato chino La Paz virus (ToChLPV), but differed significantly in the AV1 and AC1 regions, respectively. Computer-based predictions indicated that recombination with another begomovirus had taken place within AV1 of ToSLCV dividing this species into two strains. A high probability was also found that ToChLPV is involved in the evolution of ToSLCV.  相似文献   

3.
A polymerase chain reaction (PCR) using two sets of primers designed from published Tomato yellow leaf curl virus (TYLCV) genomes was developed to distinguish from the TYLCV-IL groups. The specificity of the two sets of primers was proven by testing against control TYLCV genomes and the symptomatic leaves of 34 different tomato cultivars naturally infected with TYLCV in greenhouses. One set for TYLCV-IL strain-specific primers (TYLCV-UNI-F and TYLCV-UNI-R) amplified full-length genome fragments from all the 34 tomato cultivars. Another set for TYLCV-IL group-II strain-specific primers (TYLCV-GPII-F and TYLCV-GPII-R) amplified target DNA fragments from only 9 tomato cultivars. Digestion by BglII and EcoRV of the PCR amplicons produced restriction fragment length polymorphism pattern that distinguished the TYLCV-IL group-I with two fragments from the TYLCV-IL group-II with no digested fragment. PCR coupled with BglII and EcoRV digestion confirmed that the 9 tomato cultivars were infected with the TYLCV-IL group-II and the remained 25 tomato cultivars were infected with the TYLCV-IL group-I.  相似文献   

4.
Park J  Lee H  Kim MK  Kwak HR  Auh CK  Lee KY  Kim S  Choi HS  Lee S 《Virus research》2011,159(2):124-131
New strains of Tobacco leaf curl virus (TbLCV) were isolated from tomato plants in four different local communities of Korea, and hence were designated TbLCV-Kr. Phylogenetic analysis of the sequences of the whole genome and of individual ORFs of these viruses indicated that they are closely related to the Tobacco leaf curl Japan virus (TbLCJV) cluster, which includes Honeysuckle yellow vein virus (HYVV), Honeysuckle yellow vein mosaic virus (HYVMV), and TbLCJV isolates. Four putative recombination events were recognized within these virus sequences, suggesting that the sequence variations observed in these viruses may be attributable to intraspecific and interspecific recombination events involving some TbLCV-Kr isolates, Papaya leaf curl virus (PaLCV), and a local isolate of Tomato yellow leaf curl virus (TYLCV).  相似文献   

5.
Idris AM  Brown JK 《Archives of virology》2005,150(5):1003-1012
Summary. Two distinct viral genotypes were identified in the same tomato plant collected from Gezira, Sudan and are provisionally designated Tomato leaf curl Sudan virus (ToLCSDV-Gez) and Tomato yellow leaf curl virus-Sudan (TYLCV-SD). A third genotype was identified in tomato samples collected in Shambat, Sudan (ToLCSDV-Sha). The ToLCSDV-Gez and ToLCSDV-Sha isolates were 90% identical, TYLCV-SD from Gezira shared 93% identity with TYLCV-Mld. Recombination analyses identified two fragments in the ToLCSDV-Gez and TYLCV-SD genomes, providing evidence that these two genomes had undergone intermolecular recombination. A half unit size (737nt) single-stranded satellite DNA was associated with ToLCSDV-Gez and TYLCV-SD.  相似文献   

6.
Tomato is cultivated in the coastal region of Al-Batinah, in the Sultanate of Oman, during the winter season, to meet the high demand for fresh produce in the domestic market. In order to identify the causal agent of a widespread disease associated with infestations of the whitefly Bemisia tabaci (Genn.) leaves were collected from tomato plants showing symptoms characteristic of the disease in Al-Batinah during 2004 and 2005. Total nucleic acids were isolated from the tomato leaves and used as the template for Φ29 DNA polymerase amplification of begomoviral circular DNA. Putative full unit length begomoviral DNA multimers were digested with Nco I and cloned into the plasmid vector pGEM7Zf+. The complete nucleotide (nt) sequence was determined as 2,765 bases, indicative of a monopartite begomoviral genome. A comparison of the genome sequence for the seven field isolates examined, indicated that they shared 99% nt identity. The virus from Oman was most closely related to TYLCV-IR at 91% nt identity, a monopartite begomoviral species described previously from Iran. Based on the guidelines of the ICTV the Oman isolate has been designated TYLCV-Om and is considered an isolate of TYLCV-IR. A satellite DNA (satDNA β), was amplified by polymerase chain reaction using degenerate primers and cloned, and the DNA sequence was determined. Analysis of the complete nt sequence of 1,371 bases indicated that the satDNA shared 88.5% similarity with its closest relatives, which are DNAβ molecules from tomato in Pakistan. This is the first report of a satDNA β associated with the TYLCV species. The TYLCV-Om and associated satDNA, thus represent a begomovirus-complex at the Asian-Middle East crossroads that quiet uniquely share geographical and genetic hallmarks of both.  相似文献   

7.
Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, has a single-stranded DNA genome. TYLCV can induce severe disease symptoms on tomato plants, but other hosts plants such as cucurbits and peppers are asymptomatic. A full-length DNA clone of a Korean TYLCV isolate was constructed by rolling-circle amplification from TYLCV-infected tomatoes in Korea. To assess relative susceptibility of sweet pepper varieties to TYLCV, 19 cultivars were inoculated with cloned TYLCV by agro-inoculation. All TYLCV-infected sweet peppers were asymptomatic, even though Southern hybridization and polymerase chain reaction analysis showed TYLCV genomic DNA accumulation in roots, stems, and newly produced shoots. Southern hybridization indicated that TYLCV replicated and moved systemically from agro-inoculated apical shoot tips to roots or newly produced shoots of sweet peppers. Whitefly-mediated inoculation experiments showed that TYLCV can be transmitted to tomatoes from TYLCV-infected sweet peppers. Taken together, these results indicate that sweet pepper can be a reservoir for TYLCV in nature.  相似文献   

8.
Hu ZZ  Feng ZK  Zhang ZJ  Liu YB  Tao XR 《Archives of virology》2011,156(10):1905-1908
Tomato spotted wilt virus (TSWV) is well established in most countries worldwide, while it is rarely reported in China. In this report, we have determined the complete nucleotide sequence of a TSWV isolate named TSWV-YN infecting tomato in Yunnan province in southwestern China. The tripartite genome of TSWV-YN was found to consist of L, M and S RNAs of 8910, 4773 and 2970 nt, respectively. The complete genome sequence and the sequence of each genomic region of TSWV-YN from China were compared to those of four other TSWV isolates from Brazil and Korea. The phylogenetic relationship of the Chinese TSWV-YN isolate to other TSWV isolates of different geographic origin, based on the nucleotide sequences of the glycoprotein (GP) and nucleocapsid (N) genes, was also analyzed in this study.  相似文献   

9.
Tomato yellow leaf curl (TYLC) is one of the most devastating viral diseases of cultivated tomato (Lycopersicon esculentum) in tropical and subtropical regions worldwide, and losses of up to 100% are frequent. In many regions, TYLC is the main limiting factor in tomato production. The causal agents are a group of geminivirus species belonging to the genus Begomovirus of the family Geminiviridae, all of them named Tomato yellow leaf curl virus (TYLCV) (sensu lato). There has been almost 40 years of research on TYLCV epidemics and intensive research programmes have been conducted to find solutions to the severe problem caused by these viruses. This paper provides an overview of the most outstanding achievements in the research on the TYLCV complex that could lead to more effective control strategies.  相似文献   

10.
Tomato yellow leaf curl virus (TYLCV) belongs to the genus Begomovirus, family Geminiviridae. It is transmitted by the whitefly Bemisia tabaci. A pair of primers was designed according to the specific sequence of the TYLCV gene and used in the PCR detection of the virus in the infected tissues of tomato grown in the Shanghai area of China. DNA was extracted from leaves, fruits, seeds, and roots of infected tomato plants separately. The results showed that the target fragment of about 570 bp could be isolated from the leaves, fruits, roots of infected tomato plants, but not from the seeds. Thus, the PCR-based detection technology for the Shanghai TYLCV (TYLCV-Sh10) has been established. Primers were then designed based on the sequence of the 570 bp fragment to obtain the complete DNA-A sequence of TYLCV-Sh10 by genome walking. Sequencing results indicated that the DNA-A sequence of TYLCV-Sh10 contained 2781 nt that included six ORFs. BLAST results showed that DNA-A of TYLCV-Sh10 had low homology with the characterized TYLCV in China (TYLCCNV) except TYLCV-ZJ8 (TYLCV isolated from Zhejiang China). But it was most closely related to TYLCV-USA (99.28% sequence identity). TYLCV-Sh10, TYLCV-ZJ8, TYLCV-USA, TYLCV-Mex, and TYLCV-Eg formed an independent branch by pairwise comparison and phylogenetic analysis. All these results strongly suggested that Sh10 was an isolate of America or Africa TYLCV.  相似文献   

11.
After the first identification of tomato yellow leaf curl virus (TYLCV) in the southern part of Korea in 2008, TYLCV has rapidly spread to tomato farms in most regions of Korea. From 2008 to 2010, a survey of natural weed hosts that could be reservoirs of TYLCV was performed in major tomato production areas of Korea. About 530 samples were collected and identified as belonging to 25 species from 11 families. PCR and Southern hybridization were used to detect TYLCV in samples, and replicating forms of TYLCV DNA were detected in three species (Achyranthes bidentata, Lamium amplexicaule, and Veronica persica) by Southern hybridization. TYLCV transmission mediated by Bemisia tabaci from TYLCV-infected tomato plants to L. amplexicaule was confirmed, and TYLCV-infected L. amplexicaule showed symptoms such as yellowing, stunting, and leaf curling. TYLCV from infected L. amplexicaule was also transmitted to healthy tomato and L. amplexicaule plants by B. tabaci. The rate of infection of L. amplexicaule by TYLCV was similar to that of tomato. This report is the first to show that L. amplexicaule is a reservoir weed host for TYLCV.  相似文献   

12.
Ueda S  Onuki M  Yamashita M  Yamato Y 《Virus genes》2012,44(2):338-344
Tomato yellow leaf curl virus (TYLCV) and Ageratum yellow vein betasatellite (AYVB) are members of the genus Begomovirus (family Geminiviridae). TYLCV and AYVB have been found in Japan over the last 15 years, and are associated with tomato leaf curl and the tomato yellow leaf curl diseases (TYLCD). AYVB is also associated with some monopartite begomoviruses. We have cloned both TYLCV and AYVB and demonstrated that TYLCV can trans-replicate with AYVB in Nicotiana benthamiana and tomato plants. A mixed infection of TYLCV and AYVB induced more severe symptoms of upward leaf curl, stunting, vein thickening, and swelling compared with TYLCV infection alone. The symptoms induced by infection of AYVB included a rise in abnormal cell proliferation, and pigmentation around leaf vein tissues. This is the first study to show that a complex of TYLCV and AYVB can be transmitted by vector insects among tomato plants. These results indicate that TYLCV possesses the potential to induce severe TYLCD by associating with AYVB.  相似文献   

13.
Tomato yellow leaf curl disease (TYLCD)-associated viruses present a highly structured population in the western Mediterranean basin, depending on host, geographical region and time. About 1,900 tomato and common bean samples were analyzed from which 111 isolates were characterized genetically based on a genome sequence that comprises coding and non-coding regions. Isolates of three distinct begomoviruses previously described were found (Tomato yellow leaf curl virus, TYLCV, Tomato yellow leaf curl Sardinia virus, TYLCSV, and Tomato yellow leaf curl Málaga virus, TYLCMalV), together with a novel recombinant virus. Mixed infections were detected in single plants, rationalizing the occurrence of recombinants. Except for TYLCV-type strain, single, undifferentiated subpopulations were present for each virus type, probably the result of founder effects. Limited genetic variation was observed in genomic regions, with selection against amino acid change in coding regions.  相似文献   

14.
15.
Beet western yellows virus (BWYV) has previously been reported as an agent of sugar beet yellowing disease in China. In this article, the complete genomic RNA sequences of two Chinese BWYV isolates infecting beet from Inner Mongolia (BWYV-IM) and Gansu (BWYV-GS) were determined and compared with three beet poleroviruses (BMYV, BChV and BWYV-US) and other non-beet-infecting poleroviruses. The genomes of the two isolates were 5,668 nt in length, and had almost the same genomic organization and characteristics as BWYV-US. The full length of BWYV-IM shared nucleotide sequence identities of 97.4, 86.6, 64.4 and 70.8% with BWYV-GS, BWYV-US, BChV and BMYV, respectively. Further sequence analysis indicated that the Chinese BWYV isolates were more closely related to BWYV-US; however, the identity of any gene product between the Chinese isolates and BWYV-US was <90%. Therefore, on the basis of genome sequence, we propose that these Chinese isolates are a distinct strain of BWYV that infect sugar beet. In addition, recombinant detection analysis revealed that BWYV-IM might be a recombinant virus.  相似文献   

16.
Tomato yellow leaf curl disease (TYLCD) is well known in Mediterranean countries, where it has been causing severe losses in tomato crops for decades. Until recently, two viruses (with several isolates) in the genus Begomovirus, family Geminiviridae, have been associated with the epidemics: Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV). However, recombinants between these, such as Tomato yellow leaf curl Malaga virus (TYLCMalV), are spreading, and new methods for detecting all viruses present in the region are needed. By considering all DNA sequences available of viruses causing TYLCD in the Mediterranean basin, a PCR/RFLP protocol was developed that amplifies the intergenic region in a multiplex reaction, followed by digestion with AclI (=Psp1406I) restriction enzyme. This procedure generates an easily recognizable pattern on gels, with DNA fragments of specific size for each virus species and each recombinant: 800 bp for TYLCSV, 410 bp for TYLCV, 570 bp for TYLCMalV and the other detected recombinants, 640 bp for hypothetical recombinants of different type. This new method gives, with a single reaction, an overview of the species present in the sample and will be useful for screening the causal agents of TYLCD, as well as in breeding programs for resistance.  相似文献   

17.
Biolistic inoculation of plants with tomato yellow leaf curl virus DNA   总被引:1,自引:0,他引:1  
Tomato yellow leaf curl virus (TYLCV) full-length DNA was amplified by PCR and cloned into a bacterial plasmid. The cloned TYLCV DNA was excised from the plasmid, ligated and the resulting monomeric circular double-stranded TYLCV DNA was used to inoculate tomato (Solanum lycopersicom) and datura (Datura stramonium) plants by particle bombardment. The bombarded plants produced typical disease symptoms, similar to those produced following whitefly-mediated inoculation, albeit 5-7 days later than whitefly-inoculated plants. The success rate of inoculating tomato plants by particle bombardment averaged 37%, whereas with datura plants, it averaged 85%. With whitefly-mediated inoculation of TYLCV, the success rate of inoculation was also higher in datura plants than in tomato plants. Bombardment of datura plants with a linear form of TYLCV DNA also resulted in viral infection, with an inoculation success rate similar to that with the closed-circular TYLCV DNA. Bombarding datura plants with the bacterial plasmid containing the cloned TYLCV DNA did not result in viral infection, but bombardment with a bacterial plasmid containing a cloned dimer of TYLCV DNA yielded an infection rate of 50-100%. This is the first report of TYLCV inoculation of plants using particle bombardment of a cloned monomeric linear or closed-circular form of TYLCV double-stranded DNA.  相似文献   

18.
Summary. The complete nucleotide sequence of the genomes of two Spanish isolates (LE-2000 and LE-2002) from tomato and one Peruvian isolate (LP-2001) from Lycopersicon peruvianum of the Pepino mosaic virus (PepMV) were determined. The tomato isolates share identities higher than 99%, while the genome of LP-2001 had mean nucleotide identities of 95.6% to 96.0% with tomato isolates. The predicted amino acid sequences showed similarities ranging between 95.2% and 100% with TGBp3 and TGBp2 and CP proteins, respectively. In LP-2001 two main differences were found with respect to the tomato isolates; (i) the 5 untranslated region (UTR) was 2nt shorter by deletion at position 12–13 and it had some polymorphims at the putative promoter sequence reported for PepMV tomato isolates and other potexviruses, which could be functionally significant for RNA replication, and (ii) the TGBp3 protein had two extra amino acids in the C-terminal region.  相似文献   

19.
Tobacco vein banding mosaic virus (TVBMV) is a species of the largest plant virus genus Potyvirus. Its incidence has been increasing in Chinese tobacco-growing area. TVBMV isolates can be clustered into three genetic groups that are corresponding with their geographical origin. We have reported the complete genomic sequence of TVBMV isolate YND with unique NIb/CP cleavage site. Here, we determined and analyzed the complete genomic sequence of isolate HN39, which was collected from tobacco in Henan Province and represented Chinese prevalent strain of TVBMV. HN39 has similar host range with YND, but induce mild vein banding symptom in Nicotiana tabacum cv. Samsun. The genome of TVBMV-HN39 is composed of 9,570 nucleotides, excluding the poly(A) tail. It contains a large ORF of 9,240 nucleotides and encode a polyprotein of 3,079 amino acids. The putative NIa-Pro cleavage site for NIb/CP is Q/G. The identities between the complete genomes of isolates HN39 and YND were 90.0% at nucleotide level and 95.4% at amino acid level. As for other potyviruses, HN39 shared the highest identity with wild tomato mosaic virus (WTMV) at complete genomic level, while different genes shared the highest identities with different potyviruses. This is the second complete genomic sequence of TVBMV reported.  相似文献   

20.
Summary.  We have reported previously that Tomato yellow leaf curl virus from Israel (TYLCV) penetrates the reproductive system of its vector, the whitefly Bemisia tabaci biotype B, and may be transmitted to progeny [9]. In order to mimic this phenomenon and to understand how TYLCV accompanies the development of the insect, we have bombarded B. tabaci eggs with an infectious DNA clone of TYLCV. After a linear full-length genomic copy of TYLCV DNA was delivered to eggs, the DpnI-sensitive DNA became circular and DpnI resistant. When a dimeric copy of TYLCV DNA was delivered to eggs, the viral DNA was detected in all the whitefly developmental stages. Adult insects that developed from the treated eggs were able to infect tomato test plants with variable frequency. Viral DNA was detected in the progeny of whiteflies that developed from eggs bombarded with TYLCV. Similarly, when insect eggs were bombarded with a dimeric copy of an infectious clone of the genome of Tomato yellow leaf curl virus from Sardinia, Italy (TYLCSV), adults that eclosed from the treated eggs were able to infect tomato test plants. Received February 19, 2001 Accepted September 20, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号