首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the roles of vascular phospholipase C activity in the development of hypertension, phospholipase C activity was examined in the aortic wall of spontaneously hypertensive rats (SHR). Phospholipase C activity was significantly enhanced (+87%, p less than 0.005) in 14-week-old SHR as compared with normotensive Wistar-Kyoto rats (WKY). The enzymatic activities were positively correlated with the levels of blood pressure in both of the rat strains (r = 0.62, p less than 0.003). Vascular phospholipase C was also significantly activated (+62%; p less than 0.006) in the aortic wall of 4-week-old prehypertensive SHR, as compared with age-matched WKY. In contrast, vascular phospholipase A2 activity was unaffected in the aortic wall of either adult or very young SHR. There was no difference in the cardiac phospholipase C activity between adult SHR and WKY. The vascular phospholipase C of SHR had a lower Michaelis constant (Km) value than that of WKY. Moreover, its pH profile and calcium requirement differed in part from those of WKY. These results indicate that the activation of vascular phospholipase C precedes the development of hypertension and that the enhancement may be induced by both quantitative and qualitative changes in phospholipase C in SHR.  相似文献   

2.
This study examines whether longitudinal antioxidant treatment initiated in prehypertensive spontaneously hypertensive rats (SHR) can attenuate vascular oxidant stress and prevent blood pressure elevation during development. Male SHR and age-matched Wistar-Kyoto rats (WKY) were treated from 6 to 11 weeks of age with Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidinoxyl) (1 mmol/l in drinking water), a membrane-permeable superoxide dismutase mimetic. Mean systolic blood pressures (SBPs) were measured by tail-cuff Agonist-induced and basal O2- production was measured in thoracic aortas of 6- and 11-week-old SHR and WKY by lucigenin-derived chemiluminescence and oxidative fluorescent microscopy, respectively. SBP of 6-week-old SHR (131 +/- 5 mmHg) and WKY (130 +/- 4 mmHg) were not different; however, 11-week-old SHR SBP (171 +/- 4 mmHg) was significantly greater (p = .0001) than 11-week-old WKY SBP (143 +/- 5 mmHg). Tempol treatment completely, but reversibly, prevented this age-related rise in SHR SBP (SHR + Tempol: 137 +/- 4 mmHg; p < .0001 versus untreated SHR). Agonist-induced vascular O2- was increased in 6- (p = .03) and 11-week-old SHR (p < .0001) and 11-week-old WKY (p = .03) but not in 6-week-old WKY. Long-term Tempol treatment significantly lowered O2- production in both strains. Basal O2- measurements in both 6- and 11-week-old SHR were qualitatively increased compared with age-matched WKY; this increase in SHR was inhibited with in vitro Tempol treatment. These data show that antioxidant treatment to reduce oxidative stress prevents the age-related development of high blood pressure in an animal model of genetic hypertension.  相似文献   

3.
Changes in cardiac energy metabolism during early development of female SHR   总被引:2,自引:0,他引:2  
We investigated effects of hypertension and early development on myocardial energy metabolism as reflected by maximal enzyme activities, glucose transporter content, and endogenous substrates in female Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Left ventricular hypertrophy and systolic hypertension were evident in SHR at 6 weeks of age and these differences increased at 14 and 22 weeks of age. 3-Hydroxyacyl-CoA dehydrogenase (HOAD) activity in the left ventricle was 18% lower in 6-week-old rats than both 14- and 22-week-old rats, but not different between WKY rats and SHR. Hexokinase activity was 15% lower in 6-week-old SHR than WKY rats and decreased progressively with age in both strains. Glucose transporter (GLUT) 1 content was nearly twofold greater in 6-week-old rats than both 14- and 22-week-old rats. We found no difference in citrate synthase activity or GLUT4 content among groups. Glycogen concentration was 44% lower in SHR than WKY rats, whereas triglyceride was slightly (16%) higher in SHR than WKY rats. Older animals had higher levels both glycogen and triglyceride than younger animals. We conclude that the left ventricle of both SHR and WKY rats may change from predominantly glucose to fatty acid oxidation for energy production during early development.  相似文献   

4.
Correlation of blood pressure (BP) with expression levels of large-conductance, voltage- and Ca2+-activated K+ (BK) channel beta1 subunit in vascular tissues from spontaneously hypertensive rats (SHR), Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD) at different ages was investigated. Systolic BP and BK beta1 expression in mesenteric arteries at either mRNA or protein levels were not different among 4-week-old SHR, WKY, and SD. With hypertension developed at 7 weeks and reached plateau at 12 weeks, expression levels of BK beta1 mRNA in mesenteric arteries and aortae from SHR during this period of time were significantly higher than in age-matched normotensive WKY. The BK beta1 protein expression was significantly higher in mesenteric arteries from 12-week-old but not 7-week-old SHR when compared with age-matched WKY and SD. The BK beta1 protein levels in aortae were not different among 7-week-old SHR, WKY, and SD but were significantly lower in 12-week-old WKY than in age-matched SHR and SD. Captopril treatment normalized BP of 12-week-old SHR. This treatment downregulated BK beta1 protein in mesenteric arteries but upregulated it in aortae. No significant difference in BK alpha subunit expression was detected in mesenteric arteries from three strains of rats as well as the captopril-treated SHR. It appears that expression patterns of BK beta1 in vascular tissues vary depending on tissue types, animal age, and animal strains. Expression of BK beta1 in mesenteric arteries is closely correlated with BP in SHR. Increased BK beta1 expression in mesenteric arteries may represent a compensatory reaction to limit the development of hypertension.  相似文献   

5.
The vascular wall has the capacity to produce thromboxane A2. However, the role of vascular thromboxane A2 is still uncertain. In this study, we examined the relationship between vascular thromboxane A2 generation and vascular smooth muscle cell growth in spontaneously hypertensive rats (SHR). Vascular thromboxane A2 generation was significantly enhanced by 49% in 5-week-old and by 117% in 15-week-old SHR as compared with age-matched Wistar-Kyoto rats (WKY). Thromboxane A2 generation was also significantly enhanced by 59% in the cultured vascular smooth muscle cells of SHR when compared with production in WKY. Vascular smooth muscle cells of SHR exhibited a significantly shortened doubling time (by 32%) and greater [3H]thymidine uptake (by 56%), as compared with those of WKY. OKY 046 (10(-5) M), a thromboxane synthase inhibitor, significantly tempered the rapid vascular smooth muscle cell growth in SHR by 9% for doubling time and by 10% for [3H]thymidine uptake. OKY 046 did not influence the doubling time of WKY. Conversely, a stable analogue of thromboxane A2 dose-dependently stimulated the [3H]thymidine uptake by vascular smooth muscle cells of WKY, and, at a concentration of 10(-5) M, shortened the doubling time of vascular smooth muscle cells of WKY by 11%, whereas it showed slight effects on SHR. These data indicate that vascular thromboxane A2 is involved in the regulatory mechanism of vascular smooth muscle cell growth and that enhanced vascular thromboxane A2 generation is partly responsible for the rapid proliferation of vascular smooth muscle cells of SHR. The alterations of vascular thromboxane production may be a key trait for genetic hypertension.  相似文献   

6.
The aim of the present study was to analyze the possible involvement of vasoconstrictors prostanoids on the reduced endothelium-dependent relaxations produced by chronic administration of aldosterone in Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). For this purpose, acetylcholine (ACh) relaxations in aortic segments from both strains were analyzed in absence and presence of the cyclooxygenase-1 (COX-1) and COX-2 inhibitor indomethacin, the specific COX-2 inhibitor NS-398, the TP receptor antagonist (SQ 29 548), the thromboxane A2 (TXA2) synthase inhibitor furegrelate, and the prostacyclin (PGI2) synthesis inhibitor tranylcypromine (TCP). In addition, COX-2 protein expression was studied by Western blot analysis. Release of prostaglandin E2 (PGE2) and the metabolites of PGF2alpha, TXA2, and PGI2, 13,14-dihydro-15-keto PGF2a, TXB2, and 6-keto-PGF1alpha, respectively, were measured. Treatment with aldosterone did not modify blood pressure levels in any strain. However, aldosterone markedly reduced (P<0.05) ACh-induced relaxations in segments from both strains in a similar extent. Indomethacin, NS-398, SQ 29 548, and TCP enhanced (P<0.05) ACh relaxations in both strains treated with aldosterone. Aortic COX-2 protein expression was higher in both strains of rats treated with aldosterone. In normotensive animals, aldosterone increases the ACh-stimulated aortic production of 13,14-dihydro-15-keto PGF2a, PGE2, and 6-keto-PGF1alpha (P<0.05). In SHR, ACh only increased the 6-keto-PGF1alpha production (P<0.05). It could be concluded that chronic treatment with aldosterone was able to produce endothelial dysfunction through COX-2 activation in normotensive and hypertensive conditions. PGI2 seems to be the main factor accounting for endothelial dysfunction in hypertensive rats, whereas other prostanoids besides PGI2 appear to be involved in endothelial dysfunction under normotensive conditions.  相似文献   

7.
In the current study, we investigated the NO-generation pathway in response to mechanical stimuli in SHR at the prehypertensive stage. To examine the role of NO in coronary autoregulation, we evaluated the effects of L-NAME on the coronary flow in SHR at both the prehypertensive and hypertensive stages. Isolated perfused hearts from 5- and 15-week-old SHR and from age-matched Wistar-Kyoto rats (WKY) were used. After stabilization at 60 mmHg, perfusion pressure was immediately raised to 90 mmHg to record the change in coronary flow for 10 min without (control) or with NO synthesis blockade by Nomega-nitro-L-arginine methyl ester (L-NAME). NOx- (nitrite/nitrate) was measured in coronary effluent. At 5 weeks of age, SHR did not have hypertension, while the coronary autoregulation was enhanced. L-NAME did not affect this enhanced autoregulation in 5-week-old SHR. At perfusion pressures of both 60 and 90 mmHg, 5-week-old SHR showed less coronary NOx- production than age-matched WKY. At 15 weeks, SHR showed a higher blood pressure than WKY. The coronary autoregulation in SHR remained higher than that in WKY, but was below that in 5-week-old SHR. NOx- production in 15-week-old SHR recovered to the level of age-matched WKY. These results indicate that NOx- production induced by mechanical stimulation was markedly reduced in 5-week-old SHR at the prehypertensive stage, which may have enhanced coronary autoregulation. An impaired nitric oxide production may precede the onset of hypertension in SHR.  相似文献   

8.
OBJECTIVES: To investigate the basal and NADH-stimulated superoxide (.O2-) production and inactivation by Cu/Zn superoxide dismutase (SOD) in aorta from spontaneously hypertensive rats (SHR) and from desoxycorticosterone acetate (DOCA)-salt hypertensive (DOCA-HT) rats. METHODS: Tissue .O2- levels were estimated with the lucigenin-enhanced chemiluminescence method in aorta and cultured smooth muscle cells (SMCs) from SHR and in aorta from DOCA-HT rats treated for 4 weeks. RESULTS: The basal aortic .O2- generation was increased by 135 and 100%, and the NADH stimulated .O2- production was also increased 37 and 22% in SHR and in DOCA-HT rats compared to their normotensive controls, respectively. Although no difference existed in blood pressure as well as in basal and in NADH stimulated .O2- production between Wistar-Kyoto (WKY) rats and SHR rats at age of 6 weeks, O2- production and blood pressure increased concomitantly in SHR aged 9 and 12 weeks. Basal and NADH-stimulated .O2- production, in cultured SMCs, was also 80 and 64% higher, respectively, in SHR compared to WKY rats. The NADH oxidase activity was found to be increased in aorta from both SHR and DOCA-HT rats but SOD activity was reduced only in aorta from DOCA-HT rats. CONCLUSIONS: An enhanced .O2- formation resulting from an increased NADH oxidase activity was found in aorta from SHR and DOCA-HT rats. Cultured arterial SMCs from SHR also generated excessive .O2- formation under basal and stimulated conditions. The age-related increase in vascular .O2- formation in association with the rise in blood pressure in SHR suggests that the oxidative stress might contribute to the development of hypertension. NADH oxidase activity was greater in aorta of both hypertension models, but a decrease of Cu/Zn SOD activity could also contribute to the high level of aortic .O2- in DOCA-HT rats.  相似文献   

9.
We examined the effects of arterial injections of bradykinin on perfusion pressure and output of PGE2 and 6-keto-PGF1 alpha in isolated kidneys of spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). The kidneys were perfused with Krebs' bicarbonate buffer containing phenylephrine, both with and without indomethacin (1 microgram/mL). In kidneys perfused without indomethacin, bradykinin increased the output of PGE2 and 6-keto-PGF1 alpha in the kidneys of both WKY and SHR. Bradykinin also reduced perfusion pressure, indicative of renal vasodilation. This effect in the kidneys of SHR clearly exceeded that in the kidneys of WKY. The addition of indomethacin to the perfusion media suppressed the bradykinin-induced output of PGE2 and 6-keto-PGF1 alpha without altering the vasodilatory response to bradykinin in either SHR or WKY kidneys. Hence, the kidneys of SHR demonstrated an increased vasodilatory responsiveness to bradykinin irrespective of whether the peptide stimulated prostaglandin synthesis. We conclude that the augmented responsiveness of SHR kidneys to bradykinin-induced vasodilation cannot be attributed to enhanced expression of prostaglandin-mediated mechanisms of vasodilation.  相似文献   

10.
We examined the possible alterations in calcium handling through the calcium channels of spontaneously hypertensive rats (SHR) using 45Ca2+ uptake measurements in cultured aortic cells. Primary cultures of vascular smooth muscle cells (VSMC) were obtained by enzymatic dissociation of the thoracic aortas from 8-week-old SHR and age-matched Wistar-Kyoto rats (WKY). The functions of voltage sensitive calcium channels (VSCC) and receptor operated calcium channels (ROCC) were estimated from the activated 45Ca2+ uptake in VSMC with high K+ depolarization and arginine vasopressin (AVP), respectively. Compared to basal conditions, depolarization with 55 mM KCl increased 45Ca2+ uptake at 20 min by 94 +/- 17 (SE) % in SHR and 38 +/- 6% in WKY. The activated 45Ca2+ uptake was significantly greater in SHR than in WKY (p < 0.01). There was no significant difference in 45Ca2+ uptake at 20 min in the presence of 5 x 10(-8)M AVP between SHR and WKY. These results suggest that calcium uptake, at least through VSCC, is increased in VSMC of SHR. This enhanced activity may be implicated in the hypertensive mechanisms in this model of hypertension.  相似文献   

11.
I Laher  C Triggle 《Hypertension》1984,6(5):700-708
The responses of isolated thoracic aortic rings to 10(-5) M norepinephrine (NE) and 5 mM lanthanum chloride (La3+) were compared in tissues from 6- to 8-week-old and 12- to 16-week-old rats. Twelve strains of rats were selected: spontaneously hypertensive (SHR), Wistar-Kyoto (WKY), genetically related outcross F1 and F2, backcross BC1(S) and BC1(W), and Wistar, SHR/Wistar, and Wistar/WKY crosses, Sprague-Dawley (SD), and also Dahl salt-sensitive (DS) and salt-resistant (DR) rats. The La3+ response, expressed as the percentage of the maximal response to NE, demonstrated both age and blood pressure (BP) components in the SHR, WKY, F1, F2, and BC rats; however, when the La3+ response was expressed as mg force/mg tissue, no significant differences within these same groups were noted. The magnitude of the NE response in the same group of rats was inversely related to the BP of the 12- to 16-week-old animals (r = -0.45), and was not affected by treatment of the animal from conception with alpha-methyldopa. Aortic tissues from DS, but not DR or SD rats, demonstrated a response to La3+ which increased with the BP of the rat. This was not observed in prehypertensive DS rats and was prevented by the control of hypertension with either hydrochlorothiazide or MK-421 (a converting-enzyme inhibitor). We conclude that the reduced NE response in aortic tissues from SHR and related hypertensive rats reflects an inherent defect in the vascular smooth cell of the rat and is unaffected by BP control with antihypertensive drug therapy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The reactivity of old hypertensive rat aortas has not been investigated in relation to each phenotype of the blood pressure curve, mean arterial pressure (MAP), and pulse pressure (PP). Aortic reactivities from 3- to 78-week-old Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were studied with the use of organ chambers and invasive blood pressure, carotid diameter, and histomorphometry. MAP and PP were elevated in SHR, but at 78 weeks, a selective increase of PP without further MAP increase was observed for the same carotid diameter as WKY. Aortic relaxation in response to carbamylcholine decreased similarly with age in both strains. With (+) or without (-) endothelium (E), maximal developed tension (MDT) under KCl increased linearly with age in SHR, proportionally to wall thickness and MAP increase. Under norepinephrine (NE), MDT of E(-) aortas from SHR and controls increased with age and reached plateaus at 12 weeks, whereas MDT of E(+) aortas from SHR increased linearly with age. Because the NE-induced MDT was higher for E(-) than E(+), the difference estimated endothelial function. This difference reached plateaus from 12 to 78 weeks in WKY but was abolished beyond 12 weeks in SHR, a finding also observed under NO-synthase inhibition. In old hypertensive rats, (1) increased KCl reactivity is endothelium independent but influenced by the MAP-dependent aortic hypertrophy with resulting increased vascular smooth muscle reactivity, whereas (2) increased NE reactivity is endothelium dependent in association with increased PP, altered endothelial function, and extracellular matrix, with resulting enhanced intrinsic arterial stiffness.  相似文献   

13.
T Hano  J Rho 《Hypertension》1989,14(1):44-53
We examined the overflow of endogenous norepinephrine with electrical stimulation, the associated pressor response, and rate of initial neuronal uptake of [3H]norepinephrine in perfused mesenteric arteries of 7- and 13-week-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. The tissues of two rats, a spontaneously hypertensive and a WKY control rat, were simultaneously processed and subjected to the same electrical stimulation. Both absolute and fractional overflow of endogenous norepinephrine during periarterial nerve stimulation (5 and 10 Hz for 1 minute) in the tissue of 7-week-old SHR was significantly greater whereas overflow of 13-week-old SHR was equivalent as compared with that of the age-matched WKY rats. The tissue content of norepinephrine was 20-25% higher in SHR of both ages. There was significantly enhanced [3H]norepinephrine uptake in the tissues of young SHR, but no difference was observed in the older SHR. The pressor response to periarterial nerve stimulation was significantly enhanced in 7-week-old SHR and much more so at the older age as compared with the WKY control rats. Exogenous norepinephrine dose-response curves in the tissues of 7-week-old SHR exhibited a parallel leftward shift, characteristic of a change in sensitivity, whereas that of 13-week-old SHR showed a much steeper slope as compared with the respective WKY control rats. This finding suggests that in addition to smooth muscle supersensitivity, structural alterations had occurred in vasculature of 13-week-old SHR. These data indicate that in SHR both the exocytotic release of norepinephrine and the responsiveness of the vascular smooth muscle cells are enhanced in the developmental stage of hypertension whereas smooth muscle supersensitivity to norepinephrine and nonspecific structural alterations primarily contribute to the maintenance of hypertension at 13 weeks of age.  相似文献   

14.
OBJECTIVE: We investigated whether angiotensin II (Ang II)-induced reactive oxygen species (ROS) generation is altered in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) during the phases of prehypertension, developing hypertension, and established hypertension and assessed the putative role of insulinlike growth factor-1 receptor (IGF-1R) in Ang II-mediated actions. METHODS: The VSMCs from SHR and Wistar-Kyoto rats (WKY) aged 4 (prehypertensive), 9 (developing hypertension), and 16 (established hypertension) weeks were studied. The ROS production and NAD(P)H oxidase activation were determined by fluorescence and chemiluminescence, respectively. The role of IGF-1R was assessed with the selective inhibitor AG1024. The ROS bioavailability was manipulated with Tiron (10(-5) mol/L) and diphenylene iodonium (DPI) (10(-6) mol/L). RESULTS: Angiotensin II dose dependently increased ROS production in WKY and SHR at all ages. The Ang II-induced responses were greater in SHR versus WKY at 9 and 16 weeks (P < .05). The Ang II-stimulated ROS increase was greater in 9- and 16-week-old SHR versus 4-week SHR (P < .05). These effects were reduced by AG 1024. Basal NAD(P)H oxidase activity was higher in VSMCs from 9-week-old SHR versus 4-week-old rats (P < .05). Angiotensin II induced a significant increase in oxidase activity in VSMCs from 9- and 16-week-old SHR (P < .001), without influencing responses in cells from 4-week-old SHR. Pretreatment of 9- and 16-week-old SHR cells with AG1024 reduced Ang II-mediated NAD(P)H oxidase activation (P < .05). CONCLUSIONS: Basal and Ang II-induced NAD(P)H-driven ROS generation are enhanced in VSMCs from SHR during development of hypertension, but not in cells from prehypertensive rats. Transactivation of IGF-1R by Ang II may be important in vascular oxidative excess in the development of hypertension in SHR.  相似文献   

15.
We previously demonstrated that the mesenteric resistance blood vessels have nonadrenergic, noncholinergic vasodilator innervation in which calcitonin gene-related peptide (CGRP) is a possible neurotransmitter. The role of CGRP-containing vasodilator nerves in hypertension was investigated in perfused mesenteric vascular beds isolated from spontaneously hypertensive rats (SHR). The adrenergic vasoconstrictor responses to perivascular nerve stimulation in both SHR (8-, 15-, and 30-week-old) and age-matched Wistar-Kyoto (WKY) rat preparations increased with aging, but the response was greater in SHR than in WKY rats at all ages. The preparation isolated from SHR and WKY rats was precontracted by continuous perfusion of Krebs' solution containing 7 x 10(-6) M methoxamine plus 5 x 10(-6) M guanethidine. In both SHR and WKY rats, perivascular nerve stimulation (1-8 Hz) produced frequency-dependent vasodilation, which was blocked by 1 x 10(-7) M tetrodotoxin, pretreatment with 5 x 10(-7) M capsaicin, and denervation by cold storage (4 degrees C for 72 hours). The vasodilation induced by perivascular nerve stimulation in SHR greatly decreased with age, whereas a slight decrease in the response with age was found in WKY rats. The neurogenic vasodilation in the young SHR preparation was similar in magnitude to the vasodilation in age-matched WKY rats, whereas the vasodilation in 15- and 30-week-old SHR was significantly smaller than that in age-matched WKY rats. In both SHR and WKY rats, perfusion of rat CGRP (1 x 10(-10) to 3 x 10(-8) M) produced marked vasodilation in a concentration-dependent manner. The CGRP-induced vasodilation in SHR increased with age, whereas an age-related decrease in vasodilation was found in WKY rats. Perivascular nerve stimulation (4 and 8 Hz) of the perfused mesenteric vascular bed evoked an increased release of CGRP-like immunoreactive substance in the perfusate, which was significantly less in 15-week-old SHR than in age-matched WKY rats. Immunohistochemical studies showed an age-related decrease in CGRP-like immunoreactive fibers in SHR but not in WKY rats. These results suggest that CGRP-containing vasodilator innervation is greatly decreased when SHR develop and maintain hypertension. It is also suggested that the decreased vasodilator mechanism by CGRP-containing nerves contributes to the development and maintenance of hypertension.  相似文献   

16.
The effects of exogenous corticotropin releasing factor and arginine vasopressin were evaluated in 6- and 11-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Basal adrenocorticotropic hormone (ACTH) and vasopressin levels did not differ between SHR and WKY, but basal corticosterone level was higher in 6-week-old SHR (p less than 0.01). To block endogenous corticotropin releasing factor secretion and nonspecific systemic responses, both groups were pretreated with chlorpromazine, morphine, and sodium pentobarbital anesthesia before measurement of ACTH responses to corticotropin releasing factor and vasopressin infusion. Basal ACTH level was lower in anesthetized 6-week-old SHR than in age-matched WKY (p less than 0.01), but no difference was seen between 11-week-old WKY and SHR. The ACTH response to corticotropin releasing factor in 6-week-old WKY was significantly greater than that in age-matched SHR (p less than 0.01), whereas in 11-week-old SHR and WKY the response was similar. Compared with responses in WKY, SHR showed an increased ACTH response to high doses of vasopressin (0.25 micrograms/100 g body weight) at both ages (p less than 0.05). These results indicate that the ACTH response to corticotropin releasing factor is blunted in the early stages of hypertension in SHR but later recovers. These abnormal responses to corticotropin releasing factor and vasopressin may be related to the development of spontaneous hypertension.  相似文献   

17.
Vascular angiotensin II receptors in SHR   总被引:2,自引:0,他引:2  
We investigated the density (Bmax) of angiotensin II (ANG II) receptors in the mesenteric vascular bed of spontaneously hypertensive rats (SHR) and age-matched Wistar-Kyoto (WKY) control rats. In 12-week-old SHR, the Bmax and the dissociation constant (Kd) of ANG II binding sites were not different from those of WKY rats in the sodium replete state or after sodium depletion. In prehypertensive (4- and 6-week-old) SHR, the Bmax of the vascular ANG II receptors was significantly higher (p less than 0.05) than in age-matched WKY rats. This result could not be attributed entirely to differences in the circulating renin-angiotensin-aldosterone system in 4-week-old-rats. In 6-week-old WKY rats, the plasma renin activity was significantly higher (p less than 0.05), which may account in part for the higher density of ANG II binding sites in SHR. There was an age-related decrease in the number of ANG II receptors in SHR. The increased density of vascular ANG II receptors in young SHR may play a role in the development of high blood pressure in this model of spontaneous hypertension. The higher number of ANG II binding sites in young SHR is not selective for ANG II receptors, since an increased density of alpha 1-adrenergic receptors was also found in the mesenteric arteries of 4-week-old SHR.  相似文献   

18.
The morphology and reactivity of mesenteric arteries from spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar Kyoto rats (WKY) were investigated. Isolated, perfused mesenteric vascular beds were prepared from 6-, 11- and 18-week-old SHR and WKY. At these ages, the walls and media of large mesenteric arteries were significantly thicker in SHR than in WKY. The number of smooth muscle cell layers in the media was significantly larger in SHR than in WKY. This difference between SHR and WKY increased as rats grew older, in parallel with differences in the blood pressure. Flow rate-perfusion pressure curves indicated that the vascular basal resistance to flow increased more profoundly in SHR preparations than in WKY preparations as rats grew older. This may be related to the structural alterations of the resistance vessel wall in SHR. The pressor responses to KCl were greater in SHR preparations than in WKY preparations as rats grew older. This may be caused partly by the increase of the number of smooth muscle cell layers in the media of SHR resistance vessels. The pressor response to norepinephrine (NE) was significantly higher in SHR preparations than in WKY preparations at all ages investigated. In marked contrast to the vascular basal resistance and the pressor response to KCl, the pressor response to NE was extremely exaggerated in SHR at the age of 6 weeks. This extremely high NE response in younger SHR may not be caused by the structural alteration in resistance vessels. It may be caused by a functional change, which is regulated by the signal transduction process in smooth muscle cells of resistance vessels. These results suggest that the development of hypertension in SHR may be caused by genetic structural and functional abnormalities of resistance vessels. Both abnormalities may be caused by the hyperreactivity to NE through an altered signal transduction process in smooth muscle cells of resistance vessels in SHR.  相似文献   

19.
20.
This study was designed to investigate the effects of dietary modification of prostaglandin (PG) synthesis on blood pressure regulation in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats under conditions of normal and elevated salt intake. Forty rats from both strains were placed on either a two-series PG inhibitory diet of Max eicosapentaenoic acid (EPA) fish oil or a control diet of saturated fat for an initial period of 4 weeks. The groups were then divided into two, so that half of each received 1.5% saline in place of their drinking water for 1 week. Blood pressure of the SHR and WKY were unaffected by dietary fat before the addition of saline, but with salt loading, the Max EPA-fed SHRs showed a mean blood pressure increase of 21 mmHg relative to the EPA-fed SHR with access to water. Rats fed EPA showed impaired ability to generate serum thromboxane (TXB2) and in the groups with access to water, diminished excretion of urinary 6-keto-PGF1 alpha and PGE2. Salt loading increased prostanoid synthesis and excretion. Spontaneously hypertensive rats had greater serum TXB2 generating capacity than WKYs, but diminished urinary PGE2 excretion in those animals with access to water. The increased blood pressure observed in the salt-loaded SHR on the Max EPA-diet may be explained by reduced PG synthesis resulting in either mild sodium retention and/or increased vascular reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号