首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to aristolochic acid I (AAI) is associated with aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial cancer. Individual differences in xenobiotic-metabolizing enzyme activities are likely to be a reason for interindividual susceptibility to AA-induced disease. We evaluated the reductive activation and oxidative detoxication of AAI by cytochrome P450 (P450) 1A1 and 1A2 using the Cyp1a1(-/-) and Cyp1a2(-/-) single-knockout and Cyp1a1/1a2(-/-) double-knockout mouse lines. Incubations with hepatic microsomes were also carried out in vitro. P450 1A1 and 1A2 were found to (i) activate AAI to form DNA adducts and (ii) detoxicate it to 8-hydroxyaristolochic acid I (AAIa). AAI-DNA adduct formation was significantly higher in all tissues of Cyp1a1/1a2(-/-) than Cyp1a(+/+) wild-type (WT) mice. AAI-DNA adduct levels were elevated only in selected tissues from Cyp1a1(-/-) versus Cyp1a2(-/-) mice, compared with those in WT mice. In hepatic microsomes, those from WT as well as Cyp1a1(-/-) and Cyp1a2(-/-) mice were able to detoxicate AAI to AAIa, whereas Cyp1a1/1a2(-/-) microsomes were less effective in catalyzing this reaction, confirming that both mouse P450 1A1 and 1A2 are both involved in AAI detoxication. Under hypoxic conditions, mouse P450 1A1 and 1A2 were capable of reducing AAI to form DNA adducts in hepatic microsomes; the major roles of P450 1A1 and 1A2 in AAI-DNA adduct formation were further confirmed using selective inhibitors. Our results suggest that, in addition to P450 1A1 and 1A2 expression levels in liver, in vivo oxygen concentration in specific tissues might affect the balance between AAI nitroreduction and demethylation, which in turn would influence tissue-specific toxicity or carcinogenicity.  相似文献   

2.
Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how “human-like” can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.  相似文献   

3.
A transgenic mouse expressing human CYP1A2 in the pancreas   总被引:2,自引:0,他引:2  
A transgenic mouse line expressing the human cytochrome P450 CYP1A2 in the pancreas under the control of the mouse elastase promoter was established. The expression of CYP1A2 was specific to the transgenic pancreas and was not found in the control wild-type mouse pancreas. The level of CYP1A2 expressed in pancreatic microsomes from transgenic mice was comparable to that of the endogenously expressed CYP1A2 protein in the liver, as judged by western blotting analyses. Estrone metabolism was used to determine the activity of CYP1A2 expressed in the pancreas of the transgenic mouse. The transgenic pancreas exhibited almost one-third to one-half of the activity of wild-type or CYP1A2 transgenic mouse liver, whereas the wild-type pancreas demonstrated no activity. The addition of NADPH-cytochrome P450 oxidoreductase to the reaction mixture containing pancreatic microsomes from the transgenic mice did not increase the estrone metabolism activity significantly. This transgenic mouse line provides another useful tool to study human CYP1A2 and its relation to chemical toxicity and carcinogenesis.  相似文献   

4.
The cytochrome P450 family 1 (CYP1) is considered to be one of the xenobiotic-metabolizing enzyme families and is responsible for oxidative metabolism of polycyclic aromatic hydrocarbons. For example, mouse Cyp1b1 was originally identified as the enzyme responsible for oxidative metabolism of 7,12-dimethylbenz(alpha)anthracene (DMBA). A comparison of the kinetics of this metabolism by mouse and human CYP1B1 orthologs revealed the mouse enzyme to have a more favorable metabolism of DMBA, with a catalytic efficiency ratio (CER) of 0.23. However, CYP1 enzymes are also capable of metabolism of endobiotics, and in the present study, the metabolism of retinoids and lipid endobiotics by human CYP1B1 and mouse Cyp1b1 orthologs was compared. Both hemoproteins oxidized retinol to retinal and retinal to retinoate, but did not oxidize retinoate. The CYP1B1 to Cyp1b1 CERs were 13 and 26 for the two steps, respectively; the Cyp1b1 K(m(app)) values for retinoids were 20-fold higher. Human family 1 cytochromes P450 had unique regional specificities for arachidonate oxidation: the major metabolites of CYP1A1, CYP1A2, and CYP1B1 were 75% terminal hydroxyeicosatetraenoic fatty acids (HETEs), 52% epoxyeicosatrienoic fatty acids (EETs), and 54% mid-chain HETEs, respectively. CYP1A1 and CYP1B1 K(m(app)) values for arachidonate were about 30 microM, whereas CYP1A2 K(m(app)) was 95 microM. The major metabolites of arachidonic acid by Cyp1b1 were EETs (50%) and midchain HETEs (37%). The mouse ortholog had a CER for metabolite production of 64 due to a K(m(app)) of 0.5 mM for arachidonate.  相似文献   

5.
Cytochrome P450 3A (CYP3A) enzymes metabolize approximately half of all drugs on the market. Since the endogenous compounds 4β-hydroxycholesterol (4β-HC) and 25-hydroxycholesterol (25-HC) are generated from cholesterol via CYP3A enzymes, we examined whether the plasma levels of 4β-HC and 25-HC reflect hepatic CYP3A4 activity by using a CYP3A-humanized mouse model, in which the function of endogenous Cyp3a was genetically replaced by human CYP3A. CYP3A-humanized mice have great advantages for evaluation of the relationship between hepatic CYP3A protein levels and plasma and hepatic levels of 4β-HC and 25-HC. Levels of CYP3A4 protein in the liver microsomes of CYP3A-humanized mice were increased by treatment with pregnenolone-16α-carbonitrile, a CYP3A inducer. Hepatic and plasma levels of 4β-HC and 25-HC normalized by cholesterol were significantly correlated with hepatic CYP3A4 protein levels. In addition, in vitro studies using human liver microsomes showed that the formation of 4β-HC was strongly inhibited by a CYP3A inhibitor, while the inhibitory effect of the CYP3A inhibition on the formation of 25-HC was weak. These results suggested that CYP3A mainly contributed to the formation of 4β-HC in human liver microsomes, whereas other factors may be involved in the formation of 25-HC. In conclusion, the in vivo studies using CYP3A-humanized mice suggest that plasma 4β-HC and 25-HC levels reflect hepatic CYP3A4 activity. Furthermore, taking the results of in vitro studies using human liver microsomes into consideration, 4β-HC is a more reliable biomarker of hepatic CYP3A activity.  相似文献   

6.
Involvement of CYP1A2 in mexiletine metabolism   总被引:2,自引:2,他引:0       下载免费PDF全文
Aims Mexiletine has been reported to be hydroxylated by cytochrome P450 2D6 (CYP2D6) in humans. However, the involvement of CYP1A2 in the metabolism of mexiletine has been proposed based on the interaction with theophylline which is mainly metabolized by CYP1A2. The aim of this study was to clarify the role of human CYP1A2 in mexiletine metabolism.
Methods Human CYP isoforms involved in mexiletine metabolism were investigated using microsomes from human liver and B-lymphoblastoid cells expressing human CYPs. The contributions of CYP1A2 and CYP2D6 to mexiletine metabolism were estimated by the relative activity factor (RAF).
Results Mexiletine p - and 2-hydroxylase activities in human liver microsomes were inhibited by ethoxyresorufin and furafylline as well as quinidine. Mexiletine p - and 2-hydroxylase activities in microsomes from nine human livers correlated significantly with bufuralol 1'-hydroxylase activity ( r =0.907, P <0.001 and r =0.886, P <0.01, respectively). Microsomes of B-lymphoblastoid cells expressing human CYP1A2 exhibited lower mexiletine p - and 2-hydroxylase activities than those expressing human CYP2D6. It was estimated by RAF that the major isoform involved in mexiletine metabolism was CYP2D6, and the contribution of CYP1A2 to both mexiletine p - and 2-hydroxylase activities was 7–30% in human liver microsomes. However, the K m values of the expressed CYP1A2 (∼15  μm ) were almost identical with those of the expressed CYP2D6 (∼22  μm ) and human liver microsomes.
Conclusions Mexiletine is a substrate of CYP1A2. The data obtained in this study suggest that the interaction of mexiletine with theophylline might be due to competitive inhibition of CYP1A2.  相似文献   

7.
1 2n-Propylquinoline (2nPQ) is a newly developed drug for visceral antileishmaniasis and its activity has been previously evaluated in mice following oral administration. The study was carried out to investigate the kinetic formation of 2nPQ metabolites and to characterize the human liver CYP forms involved in its oxidative metabolism. 2. The inhibition of 2nPQ metabolite formation by specific substrates or inhibitors of CYP forms and correlation studies were performed in human liver microsomes. 2nPQ biotransformation was then studied in human lymphoblasts expressing specific CYPs and microsomal epoxide hydrolase. 3. Three major metabolites were produced by human liver microsomes and their structures were identified by ESI-LC/MS: dihydroxy-2n-propylquinoline, 3'-hydroxy-2n-propylquinoline and 1'-hydroxy-2n-propylquinoline. An intermediary metabolite, epoxy-2n-propylquinoline, formed by CYP was also biotransformed by microsomal epoxide hydrolase into dihydroxy-2n-propylquinoline. 4. 2nPQ oxidation follows Michaelis-Menten kinetics. In human liver microsomes, its metabolism was extremely inhibited by pilocarpine, coumarin and diethyldithiocarbamate. From a panel of 12 human liver microsome samples, the rate of 2nPQ oxidation was highly correlated with the activities of CYP2A6 and CYP2E1. Human lymphoblasts expressing specific CYPs showed the involvement of CYP2A6, CYP2E1 and CYP2C19. 5. The results indicate that 2nPQ metabolites are 3'- and 1'-hydroxylated by human liver microsomes and an epoxy-2n-propylquinoline is biotransformed into a dihydroxy-2n-propylquinoline by microsomal epoxide hydrolase.  相似文献   

8.
The procarcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most abundant heterocyclic amine formed during the cooking of foods. Metabolism of PhIP by CYP1A2 differs substantially between humans and rodents, with more N2-hydroxylation (activation) and less 4'-hydroxylation (detoxication) in humans. Therefore, the human response to PhIP and other heterocyclic amine exposure may not be accurately reflected in the laboratory rodent. By generating mouse models expressing the human genes, species differences in heterocyclic amine metabolism can be addressed. Two transgenic mouse lines were developed, one expressing the human CYP1A1 CYP1A2 transgene in a mouse Cyp1a1-null background (hCYP1A1) and another expressing human CYP1A1 CYP1A2 in a mouse Cyp1a2-null background (hCYP1A2). Expression of human CYP1A2 protein was detected in the liver and also at considerably lower levels in extrahepatic tissues such as lung, kidney, colon, and heart. In the hCYP1A1 and hCYP1A2 mice, 3-methylcholanthrene (3-MC) induced both human CYP1A1 and CYP1A2 protein in the liver. Differences in the metabolism of the heterocyclic amine PhIP were observed between wild-type and hCYP1A2 mice. PhIP was preferentially metabolized by N2-hydroxylation in hCYP1A2 mice, whereas in wild-type mice, 4'-hydroxylation was the predominant pathway. Since the N2-hydroxylation pathway for PhIP metabolism has been reported to be predominant in humans, these results illustrate the potential effectiveness of using these transgenic, humanized mice as models for determining human health risks to PhIP and other heterocyclic amines instead of wild-type mice.  相似文献   

9.
Human CYP2E1 mediates the formation of glycidamide from acrylamide   总被引:2,自引:2,他引:0  
Regarding the cancer risk assessment of acrylamide (AA) it is of basic interest to know, as to what amount of the absorbed AA is metabolized to glycidamide (GA) in humans, compared to what has been observed in laboratory animals. GA is suspected of being the ultimate carcinogenic metabolite of AA. From experiments with CYP2E1-deficient mice it can be concluded that AA is metabolized to GA primarily by CYP2E1. We therefore examined whether CYP2E1 is involved in GA formation in non-rodent species with the focus on humans by using human CYP2E1 supersomes™, marmoset and human liver microsomes and in addition, genetically engineered V79 cells expressing human CYP2E1 (V79h2E1 cells). Special emphasis was placed on the analytical detection of GA, which was performed by gas chromatography/mass spectrometry. The results show that AA is metabolized to GA in human CYP2E1 supersomes™, in marmoset and human liver microsomes as well as in V79h2E1 cells. The activity of GA formation is highest in supersomes™; in human liver it is somewhat higher than in marmoset liver. A monoclonal CYP2E1 human selective antibody (MAB-2E1) and diethyldithiocarbamate (DDC) were used as specific inhibitors of CYP2E1. The generation of GA could be inhibited by MAB-2E1 to about 80% in V79h2E1 cells and to about 90% in human and marmoset liver microsomes. Also DDC led to an inhibition of about 95%. In conclusion, AA is metabolized to GA by human CYP2E1. Overall, the present work describes (1) the application and refinement of a sensitive methodology in order to determine low amounts of GA, (2) the applicability of genetically modified V79 cell lines in order to investigate specific questions concerning metabolism and (3) the involvement, for the first time, of human CYP2E1 in the formation of GA from AA. Further studies will compare the activities of GA formation in genetically engineered V79 cells expressing CYP2E1 from different species.  相似文献   

10.
To characterize a phase 1 metabolite of mycophenolic acid (MPA) and the human cytochrome P450 isoform(s) (CYP) involved in its formation. MPA metabolites were investigated in blood and urine samples from transplant patients under mycophenolate mofetil therapy (n = 5) as well as with in vitro incubation of MPA with human liver microsomes. The CYP isoforms involved in the oxidative metabolism were investigated in vitro on human liver microsomes with isoform-specific inhibitors as well as in human embryonic kidney cell lines expressing recombinant human CYPs. The analytic methods used were based on LC-MS/MS. A 6-O-desmethyl-MPA (DM-MPA) metabolite and 2 related glucuronides were identified in patients' blood and urine. Human liver microsomes produced DM-MPA with an apparent Km = 0.83 +/- 0.06 mmol/L and Vmax = 5.57 +/- 0.29 pmol/mg/min. The CYP3A inhibitor ketoconazole was found to inhibit DM-MPA formation by 50.3% with respect to the control, and trimethoprim (CYP2C8 inhibitor) reduced it by 30.1%. However, DM-MPA was produced only by the transfected cell lines expressing CYP3A4 and, to a lesser extent, CYP3A5. In vitro, MPA at concentrations above the plasma therapeutic range was found to decrease the metabolism of tacrolimus, suggesting a possible competition for CYP3A. No effect of MPAat therapeutic or higher level was found on cyclosporin metabolism. The phase 1 metabolite of MPA previously known as M-3 was identified as 6-O-desmethyl-MPA and is produced by CYP3A4/5 and probably CYP2C8. MPA might compete with other drugs on CYP3A because of its high therapeutic concentrations, although this was not the case for cyclosporin and to only a small extent for tacrolimus.  相似文献   

11.
In this study the drug interaction between ciprofloxacin (CIPRO) and pentoxifylline (PTX) was investigated and the role of CYP1A2 in the drug interaction was determined with the aid of a selective CYP1A2 inhibitor, furafylline (FURA), and the Cyp1A2 knockout mouse. Serum concentrations of PTX (83.4+/-1 micromol/l) and metabolite-1 (M-1) (13.7+/-2.8 micromol/l) following a single injection of PTX (100 mg/kg i.p.) were significantly higher (P<0.05) in mice treated with CIPRO (25 mg/kg i.p. 9 days) compared to serum concentrations of PTX (46.3+/-0.5 micromol/l) and M-1 (6.4+/-1.1 micromol/l) in mice administered saline. Murine hepatic microsomes were incubated with PTX alone or the combination of PTX and CIPRO. The metabolism of PTX in the murine hepatic microsomes containing both CIPRO and PTX was significantly decreased compared to microsomes incubated with PTX alone, suggesting that CIPRO may inhibit the metabolism of PTX. To further clarify the role of CYP1A2 in the metabolism of PTX in mice, the effect of a selective CYP1A2 mechanism based inhibitor, FURA, on the metabolism of PTX was investigated and our results indicate that FURA inhibited metabolism of PTX. We then investigated PTX elimination in the Cyp1A2 knockout mouse. Blood levels of PTX were assessed at 2 and 20 min following a single injection of PTX (32 mg/kg i.v). Serum concentration of PTX was determined in Cyp1A2 knockout mice compared to Cyp1A2 wild type control mice. The serum concentration of PTX in Cyp1A2 wild type mice (n=9) was 22.2+/-3.2 micromol/l at 20 min following injection of PTX. The serum concentration of PTX in Cyp1A2 knockout mice (n=11) was significantly elevated at 20 min following injection of PTX compared to Cyp1A2 wild type mice. These results clearly indicate that inhibition of CYP1A2 catalytic activity that occurs in the Cyp1A2 knockout mice is sufficient to alter metabolism of PTX and result in markedly elevated levels in serum of Cyp1A2 knockout mice. The results of Western analysis in murine microsomes suggest that CYP1A2 protein levels were not altered by CIPRO indicating that CIPRO did not downregulate Cyp1A2. The results of Western analysis also indicated that CIPRO treatment increased CYP2E1 in mouse microsomes and the implications of these will be discussed.  相似文献   

12.
1. The cytochrome P450 (CYP)-mediated metabolism of tauromustine has been evaluated in liver and lung microsomes from various species. Liver microsomes from rat pretreated with typical CYP inducers, human liver microsomes and cDNA-expressed human CYP enzymes were used to study the enzymatic basis of the metabolism. The further metabolism of the monodemethylated product of tauromustine and that of the denitrosated product were also investigated. 2. The major routes of tauromustine metabolism were demethylation to the alkylating active compound, R2, and denitrosation to the inactive metabolite, M3. The extent of metabolism and the activity of demethylation versus denitrosation varied among the species. The highest metabolism was found in mouse (BDF strain) followed by dog, rat and the human liver. Tauromustine was also metabolized to a low extent in lung microsomes from these species. 3. The further metabolism of R2 and M3 was approximately 100 times lower in activity than that of tauromustine. Both the demethylation and the denitrosation of tauromustine were increased 3-fold in liver microsomes from rat pretreated with phenobarbital, whereas treatment with cyanopregnenolone enhanced the denitrosation 11-fold, indicating the involvement of CYP3A. 4. Metabolism across a panel of 10 human liver microsomal samples demonstrated a correlation with testosterone 6beta-hydroxylation of demethylation (r2 = 0.86) and denitrosation of tauromustine (r2 = 0.79). Among the human cDNA expressed CYP enzymes, not only was tauromustine determined to be catalysed predominantly by CYP3A4, but also to some extent by CYP2C19 and CYP2D6. 5. In conclusion, the present results indicate a major role of CYP3A enzymes in the metabolism of tauromustine.  相似文献   

13.
1. The cytochrome P450 (CYP)-mediated metabolism of tauromustine has been evaluated in liver and lung microsomes from various species. Liver microsomes from rat pretreated with typical CYP inducers, human liver microsomes and cDNA-expressed human CYP enzymes were used to study the enzymatic basis of the metabolism. The further metabolism of the monodemethylated product of tauromustine and that of the denitrosated product were also investigated. 2. The major routes of tauromustine metabolism were demethylation to the alkylating active compound, R2, and denitrosation to the inactive metabolite, M3. The extent of metabolism and the activity of demethylation versus denitrosation varied among the species. The highest metabolism was found in mouse (BDF strain) followed by dog, rat and the human liver. Tauromustine was also metabolized to a low extent in lung microsomes from these species. 3. The further metabolism of R2 and M3 was ~100 times lower in activity than that of tauromustine. Both the demethylation and the denitrosation of tauromustine were increased 3-fold in liver microsomes from rat pretreated with phenobarbital, whereas treatment with cyanopregnenolone enhanced the denitrosation 11-fold, indicating the involvement of CYP3A. 4. Metabolism across a panel of 10 human liver microsomal samples demonstrated a correlation with testosterone 6beta-hydroxylation of demethylation (r2= 0.86) and denitrosation of tauromustine (r2=0.79). Among the human cDNA expressed CYP enzymes, not only was tauromustine determined to be catalysed predominantly by CYP3A4, but also to some extent by CYP2C19 and CYP2D6. 5. In conclusion, the present results indicate a major role of CYP3A enzymes in the metabolism of tauromustine.  相似文献   

14.
AIMS: To identify the cytochrome P450 (CYP) isoforms responsible for the metabolism of simvastatin hydroxy acid (SVA), the most potent metabolite of simvastatin (SV). METHODS: The metabolism of SVA was characterized in vitro using human liver microsomes and recombinant CYPs. The effects of selective chemical inhibitors and CYP antibodies on SVA metabolism were assessed in human liver microsomes. RESULTS: In human liver microsomes, SVA underwent oxidative metabolism to three major oxidative products, with values for Km and Vmax ranging from about 50 to 80 microM and 0.6 to 1.9 nmol x min(-1) x mg(-1) protein, respectively. Recombinant CYP3A4, CYP3A5 and CYP2C8 all catalysed the formation of the three SVA metabolites, but CYP3A4 was the most active. CYP2D6 as well as CYP2C19, CYP2C9, CYP2A6, CYP1A2 did not metabolize SVA. Whereas inhibitors that are selective for CYP2D6, CYP2C9 or CYP1A2 did not significantly inhibit the oxidative metabolism of SVA, the CYP3A4/5 inhibitor troleandomycin markedly (about 90%) inhibited SVA metabolism. Quercetin, a known inhibitor of CYP2C8, inhibited the microsomal formation of SVA metabolites by about 25-30%. Immunoinhibition studies revealed 80-95% inhibition by anti-CYP3A antibody, less than 20% inhibition by anti-CYP2C19 antibody, which cross-reacted with CYP2C8 and CYP2C9, and no inhibition by anti-CYP2D6 antibody. CONCLUSIONS: The metabolism of SVA in human liver microsomes is catalysed primarily (> or = 80%) by CYP3A4/5, with a minor contribution (< or = 20%) from CYP2C8. CYP2D6 and other major CYP isoforms are not involved in the hepatic metabolism of SVA.  相似文献   

15.
The metabolism of (+)-fenchol was investigated in vitro using liver microsomes of rats and humans and recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human/rat P450 and NADPH-P450 reductase cDNAs had been introduced. The biotransformation of (+)-fenchol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Fenchol was oxidized to fenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on GC. Several lines of evidence suggested that CYP2A6 is a major enzyme involved in the oxidation of (+)-fenchol by human liver microsomes. (+)-Fenchol oxidation activities by liver microsomes were very significantly inhibited by (+)-menthofuran, a CYP2A6 inhibitor, and anti-CYP2A6. There was a good correlation between CYP2A6 contents and (+)-fenchol oxidation activities in liver microsomes of ten human samples. Kinetic analysis showed that the Vmax/Km values for (+)-fenchol catalysed by liver microsomes of human sample HG03 were 7.25 nM-1 min-1. Human recombinant CYP2A6-catalyzed (+)-fenchol oxidation with a Vmax value of 6.96 nmol min-1 nmol-1 P450 and apparent Km value of 0.09 mM. In contrast, rat CYP2A1 did not catalyse (+)-fenchol oxidation. In the rat (+)-fenchol was oxidized to fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol by liver microsomes of phenobarbital-treated rats. Recombinant rat CYP2B1 catalysed (+)-fenchol oxidation. Kinetic analysis showed that the Km values for the formation of fenchone, 6-exo- hydroxyfenchol and 10-hydroxyfenchol in rats treated with phenobarbital were 0.06, 0.03 and 0.03 mM, and Vmax values were 2.94, 6.1 and 13.8 nmol min-1 nmol-1 P450, respectively. Taken collectively, the results suggest that human CYP2A6 and rat CYP2B1 are the major enzymes involved in the metabolism of (+)-fenchol by liver microsomes and that there are species-related differences in the human and rat CYP2A enzymes.  相似文献   

16.
Ellipticine is an antineoplastic agent, which forms covalent DNA adducts mediated by cytochromes P450 (CYP) and peroxidases. We evaluated the role of hepatic versus extra-hepatic metabolism of ellipticine, using the HRN (Hepatic Cytochrome P450 Reductase Null) mouse model, in which cytochrome P450 oxidoreductase (POR) is deleted in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated i.p. with 1 and 10 mg/kg body weight of ellipticine. Multiple ellipticine-DNA adducts detected by (32)P-postlabelling were observed in organs from both mouse strains. Highest total DNA binding levels were found in liver, followed by lung, kidney, urinary bladder, colon and spleen. Ellipticine-DNA adduct levels in the liver of HRN mice were up to 65% lower relative to WT mice, confirming the importance of CYP enzymes for the activation of ellipticine in livers, recently shown in vitro with human and rat hepatic microsomes. When hepatic microsomes of both mouse strains were incubated with ellipticine, ellipticine-DNA adduct levels with WT microsomes were up to 2.9-fold higher than with those from HRN mice. The ratios of ellipticine-DNA adducts in extra-hepatic organs between HRN and WT mice of up to 4.7 suggest that these organs can activate ellipticine and that more ellipticine is available in the circulation. These results and the DNA adduct patterns found in vitro and in vivo demonstrate that both CYP1A or 3A and peroxidases participate in activation of ellipticine to reactive species forming DNA adducts in the mouse model used in this study.  相似文献   

17.
We determined whether the drug efflux protein P-glycoprotein (Pgp) could influence the extent of CYP3A-mediated metabolism of erythromycin, a widely used model substrate for CYP3A. We compared CYP3A metabolism of erythromycin (a Pgp substrate) using the erythromycin breath test in mice proficient and deficient of mdr1 drug transporters. We first injected mdr1(+/+) mice with [(14)C]N-methyl erythromycin and measured the rate of appearance of (14)CO(2) in the breath as a measure of hepatic CYP3A activity. Animals treated with CYP3A inducers or inhibitor showed accelerated or diminished (14)CO(2) in the breath, respectively. The erythromycin breath test was next administered to mdr1a(-/-) and mdr1a/1b(+/+) and (-/-) mice. These animals had equivalent levels of immunoreactive CYP3A and CYP3A activity as measured by erythromycin N-demethylase activity in liver microsomes. Nevertheless, the rate of (14)CO(2) appearance in the breath showed no relationship with these measurements of CYP3A, but changed proportionally to expression of mdr1. The average breath test (14)CO(2) area under the curves were 1.9- and 1.5-fold greater in mdr1a/1b(-/-) and mdr1a(-/-) mice, respectively, compared with (+/+) mice, and CER(max) was 2-fold greater in mdr1a/1b(-/-) compared with (+/+) mice. We conclude that Pgp, by limiting intracellular substrate availability can be an important determinant of CYP3A metabolism of numerous medications that are substrates for CYP3A and Pgp.  相似文献   

18.
Human and mouse liver microsomes and membranes isolated from Escherichia coli, which expressed cytochrome P450 (CYP) 1A2, 3A4, 2C9 or 2D6, were used to investigate CYP-mediated metabolism of five selected dietary flavonoids. In human and mouse liver microsomes kaempferol, apigenin and naringenin were hydroxylated at the 3'-position to yield their corresponding analogs quercetin, luteolin and eriodictyol, whereas hesperetin and tamarixetin were demethylated at the 4'-position to yield eriodictyol and quercetin, respectively. Microsomal flavonoid metabolism was potently inhibited by the CYP1A2 inhibitors, fluvoxamine and -naphthoflavone. Recombinant CYP1A2 was capable of metabolizing all five investigated flavonoids. CYP3A4 recombinant protein did not catalyze hesperetin demethylation, but showed similar metabolic profiles for the remaining compounds, as did human microsomes and recombinant CYP1A2, although the reaction rates in general were lower as compared to CYP1A2. CYP2C9 catalyzed the 4'-demethylation of tamarixetin, whereas CYP2D6 did not seem to play any role in the metabolism of the selected flavonoids. The major involvement in flavonoid metabolism of human CYP1A2, which mediates the formation of metabolites with different biochemical properties as compared to the parent compound and furthermore is known to be expressed very differently among individuals, raises the important question of whether individual differences in the CYP enzyme activity might affect the beneficial outcome of dietary flavonoids, rendering some individuals more or less refractory to the health-promoting potential of dietary flavonoids.  相似文献   

19.
Abstract

1. Human chimeric mice (h-PXB mice) having humanized liver, constructed by transplantation of human hepatocytes, were evaluated as an experimental model for predicting human drug metabolism. Metabolism of zaleplon in h-PXB mice was compared with that in rat chimeric mice (r-PXB mice) constructed by transplantation of rat hepatocytes.

2. Zaleplon is metabolized to 5-oxo-zaleplon by aldehyde oxidase and to desethyl-zaleplon by cytochrome P450 (CYP3A4) in rat and human liver preparations.

3. Liver S9 fraction of h-PXB mice metabolized zaleplon to 5-oxo-zaleplon and desethyl-zaleplon in similar amounts. However, liver S9 fractions of r-PXB and control (urokinase-type plasminogen activator-transgenic severe combined immunodeficient) mice predominantly metabolized zaleplon to desethyl-zaleplon. 5-Oxo-zaleplon was detected as a minor metabolite.

4. Oxidase activity of h-PXB mouse liver cytosol toward zaleplon was about 10-fold higher than that of r-PXB or control mice. In contrast, activities for desethyl-zaleplon formation were similar in liver microsomes from these mice, as well as rat and human liver microsomes.

5. In vivo, the level of 5-oxo-zaleplon in plasma of h-PXB mice was about 7-fold higher than that in r-PXB or control mice, in agreement with the in vitro data. Thus, aldehyde oxidase in h-PXB mice functions as human aldehyde oxidase, both in vivo and in vitro.

6. In contrast, the plasma level of desethyl-zaleplon in r-PXB and control mice was higher than that in h-PXB mice.

7. These results suggest h-PXB mice with humanized liver could be a useful experimental model to predict aldehyde oxidase- and CYP3A4-mediated drug metabolism in humans.  相似文献   

20.
1. Transgenic mice were evaluated with six human cytochrome P450 (CYP) selective probe substrates, as little is known about their metabolism in the mouse. Mouse strains characterized include C57BL/SJL, FVB/N, mdr 1a/1b (-/-), ob/ob and ACCA. 2. Human CYP probe substrates used for characterization of mouse CYP activities included bufuralol, testosterone, dextromethorphan, phenacetin, diclofenac and S-mephenytoin. Activities were compared with those obtained in human liver microsomes and in human recombinant enzyme preparations. All transgenic mouse strains showed similar apparent K(m) with bufuralol, testosterone and dextromethorphan which compared favourably with those observed in human liver microsomes. 3. K(m) for phenacetin O-deethylase and S-mephenytoin 4'-hydroxylation were more variable across strains and in some cases demonstrated biphasic kinetics. Phenacetin O-deethylase activity was low in all mouse strains except FVB/N and mdr 1a/1b (-/-). Diclofenac 4-hydroxylation did not occur to any significant extent in the five strains of mouse evaluated here. 4. The findings suggest the validity of using five of the probes for transgenic mouse hepatic CYP characterization and gross comparison with data generated with human CYP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号