首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mammalian epidermis is a stratified, multilayered epithelium, consisting of the interfollicular epidermis and associated appendages, which extend into the dermis and include hair follicles, sebaceous glands, and sweat glands. Stem cells are essential for the maintenance of this tissue and are also potential sources of multipotent adult precursor cells. Stem cell populations occupying specific locations or niches have been identified in the interfollicular epidermis, the hair follicle and the sebaceous gland. Recent research has focused on how the stem cell niches provide specific sites where stem cells can reside indefinitely and undergo self-renewal or differentiation into specific cell lineages, as required for epidermal replenishment or hair follicle growth.  相似文献   

2.
More than one way to skin . .   总被引:2,自引:0,他引:2  
Epithelial stem cells in the skin are specified during development and are governed by epithelial–mesenchymal interactions to differentially adopt the cell fates that enable them to form the epidermis, hair follicle, and sebaceous gland. In the adult, each of three epithelial lineages maintains their own stem cell population for self-renewal and normal tissue homeostasis. However, in response to injury, at least some of these stem cell niches can be mobilized to repair an epithelial tissue whose resident stem cells have been damaged. How do these stem cell populations respond to multiple signaling networks, activate migration, and proliferation, and differentiate along a specific lineage? Recent clues add new pieces to this multidimensional puzzle. Understanding how these stem cells maintain normal homeostasis and wound repair in the skin is particularly important, as these mechanisms, when defective, lead to skin tissue diseases including cancers.[  相似文献   

3.
The intermediate filament keratin 15 (K15) is present in variable amounts in various stratified epithelia, but has also been reported to be a stem cell marker in the hair follicle. Using peptide specific antibodies, we evaluated the temporal and spatial distribution pattern of K15 expression/localization during normal epidermal development and initiation of hair follicle formation, and in the injured mature epidermis (e.g., during acute injury and repair and in tumorigenesis). During development, K15 expression is first localized to a subset of epidermal basal cells and the overlying periderm at E12.5, but its expression is seen throughout the basal layer by E15.5 and beyond. In hair follicle morphogenesis, initial peg formation occurs in a K15-null area at E14.5 and as peg elongation proceeds through to the mature hair follicle, K15 expression follows the leading edge with positive cells restricted to the outer root sheath. In an epidermal injury model, K15 is first up-regulated and associated with both the basal and suprabasal layers of the interfollicular epidermis then expression becomes sporadic and down-regulated before a basal layer-specific association is re-established in the repaired epidermis. During tumorigenesis, K15 is first mis-expressed, and is ultimately down-regulated. Our data suggest that K15 protein expression may reflect not only expression in a stem or progenitor cell subpopulation, but also reflects the activity and responsiveness of basal-like cells to loss of homeostasis of the epidermal differentiation program. Thus, the data suggest caution in using K15 alone to delineate epidermal stem cells, and underscore the need for further investigation of K15 and other markers in epidermal cell subpopulations.  相似文献   

4.
Epidermal stem cells   总被引:59,自引:0,他引:59  
The clinical implications of understanding epidermal stem cell biology abound. Thousands of burns victims across the world have benefited from early research into the proliferation of epidermal keratinocytes in vitro. Advances now indicate there are a number of stem cell repositories within the epidermis, two of which, the interfollicular epidermis and the bulge region of the hair follicle, may supply each other when damaged. This review details the progress made in the identification and characterisation of stem cells within the epidermis and discusses the molecules involved in the epidermal stem cell's choice of fate. Finally, the skin, like bone marrow, could be a readily accessible source of stem cells for therapeutic intervention and evidence of skin stem cell plasticity is highlighted.  相似文献   

5.
An organism's outermost covering, the integument, has evolved to fulfil a diverse range of functions. Skin provides a physical barrier, an environment for immunological surveillance, and also performs a range of sensory, thermoregulatory and biosynthetic functions. Examination of the skin of limb digits reveals a range of skin types including the thickened hairless epidermis of the toe pads (palmar or plantar epidermis) and thinner epidermis between the hair follicles (interfollicular epidermis) of hairy skin. An important developmental function of skin is to give rise to a diverse group of appendages including hair follicles, with associated sebaceous glands (or feathers and scales in chick), eccrine sweat glands and the nail. A key question is how does this morphological variety arise from the single‐layered epithelium covering embryonic limb buds? This review will attempt to address this question by linking the extensive morphological/anatomical data on maturation of epidermis and its appendages with (1) current research into the range, plasticity and location of the putative epidermal stems cells; (2) molecular/microenvironmental regulation of epidermal stem cell lineages and lineage choice; and (3) regulation of the differentiation pathways, focusing on differentiation of the interfollicular epidermis.  相似文献   

6.
Plasticity of adult cells has been identified in several post-natal tissues in the past few years and has attracted special attention in regenerative medicine. Skin is the biggest organ in the body. Adult skin consists of epidermis, dermis and appendages such as hairs and glands which are linked to the epidermis but project deep into the dermal layer. Skin stem cell biology has been a focus of increasing interest in current life science. Committed stem cells with limited differentiation potential for regeneration and repair of epidermis have been known for decades. Recent studies further report that adult skin tissues contain cell populations with pluripotent characteristics. Multipotent stem cells from hair follicle and non-follicular skin, both in epidermal and dermal tissues, are found to have the differentiation capacity to generate multiple cell lineages. Basing on the present data, our hypothesis is that skin may serve as a local reservoir of various adult stem cell populations, including committed stem cell populations and pluripotent stem cell populations both in epidermal and dermal tissues. Given its easy accessibility, stem cells in skin will not only provide an experimental model for skin biology, but also may provide an experimental model for studying the epithelial-mesenchymal interactions of several other organs outside of skin. The stem cell populations in skin tissues may also have extensive therapeutic implications in the replacement of skin and may serve as an alternative source of stem cells for several other organs outside of skin. The in situ activation and mobilization of stem cell populations in the skin is an ideal way to renew and repair epidermis and dermis, even appendages.  相似文献   

7.
Adult mammalian skin consists of the epidermis, hair follicles (HFs), and sebaceous glands (SGs). Each of these three epithelial lineages contains its own stem cell (SC) population for normal tissue homeostasis, HF cycling, and repair of the epidermis following injury. Here, we provide an overview of the current knowledge on follicle SCs of the adult skin, including their essential features and, most importantly, the control of follicle SC fate. Wnt/β-catenin is required for follicle SC maintenance and niche biology, and β-catenin activation is essential for promoting quiescent follicle SCs to proliferate and terminally differentiate along the hair cell lineage. Further, β-catenin stabilization promotes de novo HF morphogenesis, and constitutively active β-catenin expression results in pilomatricoma. Both bone morphogenetic protein (BMP) and transforming growth factor-β (TGF-β) signals are required for quiescent niche maintenance: BMP deletion results in SC activation, whereas TGF-β may play a role in SC identity maintenance.  相似文献   

8.
Epithelial progenitor cells in skin give rise to multiple lineages, comprising the hair follicle, an associated sebaceous gland, and overlying epidermis; however, the signals that regulate sebocyte development are poorly understood. We tested the potential involvement of the Hedgehog pathway in sebaceous gland development using transgenes designed to either block or stimulate Hedgehog signaling in cutaneous keratinocytes in vivo. Whereas inhibition of the Hedgehog pathway selectively suppressed sebocyte development, Hedgehog pathway activation led to a striking increase both in size and number of sebaceous glands. Remarkably, ectopic Hedgehog signaling also triggered the formation of sebaceous glands from footpad epidermis, in regions normally devoid of hair follicles and associated structures. These ectopic sebaceous glands expressed molecular markers of sebocyte differentiation and were functional, secreting their contents directly onto the skin's surface instead of into a hair canal. The Hedgehog pathway thus plays a key role in sebocyte cell fate decisions and is a potential target for treatment of skin disorders linked to abnormal sebaceous gland function, such as acne.  相似文献   

9.
The accurate maintenance of genomic integrity is essential for tissue homeostasis. Deregulation of this process leads to cancer and aging. BRCA1 is a critical mediator of this process. Here, we performed conditional deletion of Brca1 during epidermal development and found that BRCA1 is specifically required for hair follicle (HF) formation and for development of adult HF stem cells (SCs). Mice deficient for Brca1 in the epidermis are hairless and display a reduced number of HFs that degenerate progressively. Surprisingly, the interfollicular epidermis and the sebaceous glands remain unaffected by Brca1 deletion. Interestingly, HF matrix transient amplifying progenitors present increased DNA damage, p53 stabilization, and caspase-dependent apoptosis compared with the interfollicular and sebaceous progenitors, leading to hyperproliferation, apoptosis, and subsequent depletion of the prospective adult HF SCs. Concomitant deletion of p53 and Brca1 rescues the defect of HF morphogenesis and loss of HF SCs. During adult homeostasis, BRCA1 is dispensable for quiescent bulge SCs, but upon their activation during HF regeneration, Brca1 deletion causes apoptosis and depletion of Brca1-deficient bulge SCs. Our data reveal a major difference in the requirement of BRCA1 between different types of epidermal SCs and progenitors and during the different activation stages of adult HF SCs.  相似文献   

10.
Sulfur mustard (SM) is a bifunctional alkylating agent causing skin inflammation, edema and blistering. A hallmark of SM-induced toxicity is follicular and interfollicular epithelial damage. In the present studies we determined if SM-induced structural alterations in hair follicles and sebaceous glands were correlated with cell damage, inflammation and wound healing. The dorsal skin of hairless mice was treated with saturated SM vapor. One to seven days later, epithelial cell karyolysis within the hair root sheath, infundibulum and isthmus was apparent, along with reduced numbers of sebocytes. Increased numbers of utriculi, some with connections to the skin surface, and engorged dermal cysts were also evident. This was associated with marked changes in expression of markers of DNA damage (phospho-H2A.X), apoptosis (cleaved caspase-3), and wound healing (FGFR2 and galectin-3) throughout pilosebaceous units. Conversely, fatty acid synthase and galectin-3 were down-regulated in sebocytes after SM. Decreased numbers of hair follicles and increased numbers of inflammatory cells surrounding the utriculi and follicular cysts were noted within the wound 3–7 days post-SM exposure. Expression of phospho-H2A.X, cleaved caspase-3, FGFR2 and galectin-3 was decreased in dysplastic follicular epidermis. Fourteen days after SM, engorged follicular cysts which expressed galectin-3 were noted within hyperplastic epidermis. Galectin-3 was also expressed in basal keratinocytes and in the first few layers of suprabasal keratinocytes in neoepidermis formed during wound healing indicating that this lectin is important in the early stages of keratinocyte differentiation. These data indicate that hair follicles and sebaceous glands are targets for SM in the skin.  相似文献   

11.
Altered stem cell homeostasis is linked to organismal aging. However, the mechanisms involved remain poorly understood. Here we report novel alterations in hair follicle stem cells during skin aging, including increased numbers, decreased function, and an inability to tolerate stress. Performing high-throughput RNA sequencing on aging stem cells, cytokine arrays, and functional assays, we identify an age-associated imbalance in epidermal Jak–Stat signaling that inhibits stem cell function. Collectively, this study reveals a role for the aging epidermis in the disruption of cytokine and stem cell homeostasis, suggesting that stem cell decline during aging may be part of broader tumor-suppressive mechanisms.  相似文献   

12.
13.
毛囊细胞--一种新的皮肤组织工程种子细胞   总被引:1,自引:0,他引:1  
毛囊的上皮细胞和真皮细胞与皮肤的表皮角朊细胞和真皮成纤维细胞具有很大的相似性,但其具有更强的增殖分化能力和更多的生物学特性,并且毛囊真皮细胞具有干细胞的一些特性,作为皮肤组织工程的种子细胞具有更独特的优势,在构建带有皮肤附属器的组织工程皮肤上有潜在的前景.  相似文献   

14.
In the skin, multipotent keratinocyte stem cells (KSC) are localised in the hair follicle bulge region. Although, KSC can be cultivated and grown in two-dimensional (2D) culture they rapidly lose stem cell markers when isolated from their niche. Currently, there is no KSC culture method available which recapitulates an environment similar to the KSC niche in the hair follicle. Here we describe the successful establishment of an in vitro 3D stem cell culture model developed from clonally growing keratinocyte lines derived from neonatal mice using culture conditions previously established for human keratinocytes. After 20 passages, keratinocyte lines showed a stable ratio of holoclones (stem cells), meroclones (stem and precursor cells) and paraclones (differentiating cells), with approximately 29% holoclones, 54% meroclones and 17% paraclones, and were thus termed keratinocyte stem and precursor cell (KSPC) cultures. In high calcium medium, KSPC cultures grown at the air-liquid interphase differentiated and formed epidermal equivalents. Notably, and in contrast to primary keratinocytes, keratinocytes from KSPC cultures were able to aggregate and form spherical clusters in hanging drops, a characteristic hallmark shared with other stem cell types. Similar to the in vivo situation in the hair follicle bulge, KSPC aggregates also showed low proliferation, down-regulation of keratin 6, absence of keratin 1, and expression of the KSC markers keratin 15, Sox9, NFATc1 and Zfp145. KSPC aggregates therefore provide an optimal in vitro 3D environment for the further characterisation and study of normal and genetically modified KSPC.  相似文献   

15.
In the past few years, the plasticity of adult cells in several post-natal tissues has attracted special attention in regenerative medicine. Skin is the largest organ in the body. Adult skin consists of epidermis, dermis and appendages such as hair and glands that are linked to the epidermis but project deep into the dermal layer. Stem cell biology of skin has been a focus of increasing interest in current life science. Committed stem cells with a limited differentiation potential for regeneration and repair of epidermis have been known for decades. Recent studies further found that adult skin tissues contain cell populations with pluripotent characteristics. Multipotent stem cells from skin with and without hair follicles, both in epidermal and dermal tissues, can differentiate and generate multiple cell lineages. Especially, the hematopoietic system in epidermal and dermal tissue, like skin, may be a local, acceptable reservoir of various adult stem cell populations. Given their easy accessibility, such stem cells can provide an experimental model not only for skin biology but also for studying the epithelial–mesenchymal cell interactions of organs other than the skin. This review presents an overview of recent advances in research into skin repair and regeneration involving stem cells from epidermis, dermis, and bone marrow. In particular, we focus on the possible use of blood stem cells as an alternative resource for research advances in skin biology.  相似文献   

16.
Sebaceous glands (SGs) undergo cyclic renewal independent of hair follicle stem cells (HFSCs) activation while HFSCs have the potential to differentiate into sebaceous gland cells, hair follicle and epidermal keratinocytes. Abnormalities of sebaceous gland progenitor cells contribute to the development of sebaceous neoplasms, but little is known about the role of HFSCs during sebaceous neoplasm development. Here, using dimethylbenzanthracene (DMBA) plus 12-o-tetradecanoyl phorbol-13-acetate (TPA) treatment developing sebaceous neoplasms (SNs) were identified with H&E and Oil red O staining. And then the molecular expression and activation of HFSCs and was characterized by immunostaining. Wnt10b/β-catenin signaling molecular which is important for activation of HFSCs were detected by immunostaining. We found hair follicle and epidermal cell markers were expressed in sebaceous neoplasms. Furthermore, SOX-9 and CD34-positive HFSCs were located in the basal layer of sebaceous lobules within the sebaceous neoplasms. Many appear to be in an active state. Finally, Wnt10b/β-catenin signaling was activated within the basal cells of sebaceous lobules in the sebaceous neoplasms. Collectively, our findings suggest that the abnormal activation of both HFSCs and Wnt10b/β-catenin signaling involves in the development of sebaceous neoplasms.  相似文献   

17.
In normal adult skin, β-catenin is a structural component of the intercellular junction and the Wnt/β-catenin pathway plays a key role in the regulation of cutaneous homeostasis, particularly in the maintenance of hair follicle stem cells. No data are available on the expression pattern of β-catenin in normal canine skin and in canine cutaneous epidermal and follicular tumours. The present study used immunohistochemistry to determine β-catenin expression in four samples of normal canine skin and 62 cutaneous epithelial tumours (14 epidermal, 30 follicular and 18 glandular). β-catenin expression was localized to the nucleus of matrical and dermal papilla cells in anagen hair follicles and was also found in scattered cells of the outer root sheath, suggesting that these follicular epithelial cells may have a high proliferative potential. Nuclear labelling, considered a hallmark of activation of the Wnt/β-catenin signalling pathway, was observed in canine follicular tumours with matrical differentiation (100% of cases of trichoepithelioma and pilomatricoma), suggesting that a possible mutation of the canine CTNBB1 gene may underlie these tumours. In contrast, malignant tumours (squamous cell carcinoma, basal cell carcinoma, sebaceous and apocrine gland carcinoma and epithelioma) were characterized by reduction/loss of β-catenin membrane labelling compared with normal cutaneous epithelial cells and benign tumours, suggesting that reduction/loss of β-catenin expression is important in the acquisition of the malignant phenotype and may have a role in the infiltration and metastasis of these tumours.  相似文献   

18.
Protein kinase C epsilon (PKCepsilon) overexpressing transgenic (PKCepsilon Tg) mice develop papilloma-independent squamous cell carcinomas (SCC) elicited by 7,12-dimethylbenz[a]anthracene (DMBA) tumor initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) tumor promotion. We examined whether epidermal cell turnover kinetics was altered during the development of SCC in PKCepsilon Tg mice. Dorsal skin samples were fixed for histological examination. A single application of TPA resulted in extensive infiltration of polymorphonuclear neutrophils (PMNs) into the epidermis at 24 h after TPA treatment in PKCepsilon Tg mice while wild-type (WT) mouse skin showed focal infiltration by PMNs. Complete epidermal necrosis was observed at 48 h in PKCepsilon Tg mice only; at 72 h, epidermal cell regeneration beginning from hair follicles was observed in PKCepsilon Tg mice. Since the first TPA treatment to DMBA-initiated PKCepsilon Tg mouse skin led to epidermal destruction analogous to skin abrasion, we propose the papilloma-independent phenotype may be explained by death of initiated interfollicular cells originally destined to become papillomas. Epidermal destruction did not occur after multiple doses of TPA, presumably reflecting adaptation of epidermis to chronic TPA treatment. Prolonged hyperplasia in the hair follicle may result in the early neoplastic lesions originally described by Jansen et al. (2001) by expanding initiated cells in the hair follicles resulting in the subsequent development of SCC.  相似文献   

19.
20.
The epidermis is the outermost layer of skin that acts as a barrier to protect the body from the external environment and to control water and heat loss. This barrier function is established through the multistage differentiation of keratinocytes and the presence of bioactive sphingolipids such as ceramides, the levels of which are tightly regulated by a balance of ceramide synthase and ceramidase activities. Here we reveal the essential role of alkaline ceramidase 1 (Acer1) in the skin. Acer1‐deficient (Acer1?/?) mice showed elevated levels of ceramide in the skin, aberrant hair shaft cuticle formation and cyclic alopecia. We demonstrate that Acer1 is specifically expressed in differentiated interfollicular epidermis, infundibulum and sebaceous glands and consequently Acer1?/? mice have significant alterations in infundibulum and sebaceous gland architecture. Acer1?/? skin also shows perturbed hair follicle stem cell compartments. These alterations result in Acer1?/? mice showing increased transepidermal water loss and a hypermetabolism phenotype with associated reduction of fat content with age. We conclude that Acer1 is indispensable for mammalian skin homeostasis and whole‐body energy homeostasis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号