首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a large demand for new bone regeneration to restore the function during bone injuries. Bone filling materials are important in bone tissue restoration. In this study, the demineralized bone matrix (DBM) was activated with the engineering human bone morphogenetic protein-2 (BMP-2). To enhance the binding of BMP-2 to the DBM scaffolds, a collagen-binding peptide was fused to the N-terminal of BMP-2. The in vitro results showed that the engineered collagen-targeted BMP-2 (rhBMP2-v) bound to DBM scaffolds specifically and the rhBMP2-v had increased alkaline phosphatase activity in C2C12 cells. In vivo, the DBM scaffolds impregnated with rhBMP2-v showed greater effect on ectopic bone formation. Our data suggested that the collagen-based BMP-2 targeting bone repair system had greater bone inducing ability than DBM loaded with regular BMP-2.  相似文献   

2.
Bone tissue-derived biomaterials have often been applied for bone repair because of their similarity to human bone in structure and composition. When combined with growth factors, they could accelerate bone formation. Here, we explore a collagen containing mineralized bone-derived matrix (CCMBM) from bovine bone tissues, which not only maintains proper mechanical strength but also binds to the collagen-binding recombinant human collagen-binding bone morphogenetic protein-2 (CBD-BMP(2)). By analyzing its morphology and composition, we found that CCMBM was porous and mainly composed of calcium compounds. CCMBM could provide mechanical support for bone injury repair. It also showed good biocompatibility and proper degradation rate that would be helpful for bone regeneration. In addition, the intentionally preserved collagen allowed the specific binding of CBD-BMP(2) to CCMBM, and resulted in significantly increased osteogenesis in vivo. The results indicated that the combination of CCMBM with collagen-binding BMP(2) could be emerged into an effective medical device for bone repair.  相似文献   

3.
Salivary pleomorphic adenomas are often associated with chondroid tissue formation. We have found that bone morphogenetic proteins (BMP), especially BMP-2, may play an important role in ectopic chondrogenesis in this tumor. Bone morphogenetic protein-6 was reported to be related to the osteogenic metastasis of prostatic carcinomas. The relationship between BMP-6 expression and chondroid tissue formation is investigated. Twenty-three pleomorphic adenomas were examined immunohistochemically. The overexpression of BMP-6 was observed in 10 pleomorphic adenomas of the major salivary glands (43. 5%), and no evidence of BMP-6 expression in any of the nine pleomorphic adenomas of the palate. Bone morphogenetic protein-6 was immunolocalized in the lacuna cells of the chondroid tissue, in which type II collagen was localized. Bone morphogenetic protein-6 was expressed in inner ductal cells of the tubulo-glandular structures in the pleomorphic adenomas. This finding indicates that BMP-6 may be associated with the differentiation of inner ductal cells. Bone morphogenetic protein-6 was expressed weakly in neoplastic myoepithelial cells in the myxoid areas, which may be related to the production of extracellular matrices. Bone morphogenetic protein-6 has a role in chondroid formation, and also tubulo-glandular differentiation in pleomorphic adenomas. In conclusion, a large portion of pleomorphic adenomas of the salivary gland origin, but not of palate origin, was shown to overexpress BMP-6 protein.  相似文献   

4.
To develop a collagen-based wound targeting repair system, we introduced two collagen-binding domains (CBDs) into the human basic fibroblast growth factor (bFGF). Three expression vectors were constructed: the first one (named V-bFGF) contained bFGF and the CBD WREPSFCALS derived from von Willeband's factor (vWF); the second (named C-bFGF) contained bFGF and the CBD TKKTLRT derived from collagenase; the third (named bFGF) was bFGF as a control. The recombinant proteins of V-bFGF and C-bFGF were demonstrated to retain both growth factor activity and collagen-binding activity. We found that C-bFGF possessed higher collagen-binding ability than V-bFGF. The targeted repair systems consisting of collagen scaffolds and CBD-bFGFs were assembled in vitro and then implanted subcutaneously. Results showed that C-bFGF promoted vascularization at the implanted sites more effectively than V-bFGF. Histological analysis showed more cells migrated into collagen scaffolds incorporated with C-bFGF than those with V-bFGF. These data suggested that the higher collagen-binding ability the CBD-bFGF possessed, the more significant vascularization, and cellularization were observed. In summary, CBD-bFGF/collagen system could be used as a targeted repair system with beneficial effects of the restriction of bFGF diffusion, the prolonging of bFGF activity, and the targeted promotion of vascularization and cellularization.  相似文献   

5.
Current therapies for tissue regeneration rely on the presence or direct delivery of growth factors to sites of repair. Bone morphogenetic protein-2 (BMP-2), combined with a carrier (usually collagen), is clinically proven to induce new bone formation during spinal fusion and nonunion repair. However, due to BMP-2's short half-life and its diffusive properties, orders of magnitude above physiological levels are required to ensure effectiveness. In addition, a high dose of this multifunctional growth factor is known to induce adverse effects in patients. To circumvent these challenges, we proposed and tested a new approach for BMP-2 delivery, by controlling BMP activity via carrier binding and localized proteolysis. BMP-2 was covalently bound to gelatin through site-specific enzymatic crosslinking using a microbial transglutaminase. Binding of BMP-2 to gelatin can completely switch off BMP-2 activity, as evidenced by loss of its transdifferentiating ability toward C2C12 promyoblasts. When gelatin sequestered BMP-2 is incubated with either microbial collagenase or tissue-derived matrix metalloproteinases, BMP-2 activity is fully restored. The activity of released BMP-2 correlates with the protease activity in a dose- and time-dependent manner. This observation suggests a novel way of delivering BMP-2 and controlling its activity. This improved delivery method, which relies on a physiological feedback, should enhance the known potential of this and other growth factors for tissue repair and regeneration.  相似文献   

6.
Currently, functional treatment of fracture non-unions and bone loss remains a significant challenge in the field of orthopaedic surgery. Tissue engineering of bone has emerged as a new treatment alternative in bone repair and regeneration. Our approach is to combine a polymeric matrix with a cellular vehicle for delivery of bone morphogenetic protein-2 (BMP-2), constructed through retroviral gene transfer. The objective of this study is to develop an osteoinductive, tissue-engineered bone replacement system by culturing BMP-2-producing cells on an osteoconductive, biodegradable, polymeric-ceramic matrix. The hypothesis is that retroviral gene transfer can be used effectively in combination with a biodegradable matrix to promote bone formation. First, we examined the in vitro attachment and growth of transfected BMP-producing cells on a PLAGA-HA scaffold. Second, the bioactivity of the produced BMP in vitro was evaluated using a mouse model. It was found that the polymer-ceramic scaffold supported BMP-2 production, allowing the attachment and growth of retroviral transfected, BMP-2-producing cells. In vivo, the scaffold successfully functioned as a delivery vehicle for bioactive BMP-2, as it induced heterotopic bone formation in a SCID mouse model.  相似文献   

7.
Bone morphogenetic protein-2/absorbable collagen sponge (BMP-2/ACS) implants have been approved for clinical use to induce bone regeneration. We previously showed that exaggerated inflammation characterized by elevated level of inflammatory cytokines including TNF-α, IL-1β, and IL-6 has been shown to inhibit BMP-2/ACS-induced bone regeneration. Furthermore, unlike the negative effects of TNF-α and IL-1β, IL-6 seemed not to affect BMP-2-induced osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs). We hypothesized that there may be a regulatory loop between IL-6 and BMP-2 singling to affect BMP-2/ACS-induced bone regeneration. Here, we established a BMP-2/ACS-induced ectopic bone formation model in rats and fund that IL-6 injection significantly increased BMP-2/ACS-induced bone mass. Consistent with this animal model, an in vitro study demonstrated that synergy between IL-6 and soluble IL-6 receptor (IL-6/sIL-6R) promotes BMP-2-induced osteoblastic differentiation of human BMSCs through amplification of BMP/Smad signaling. Strikingly, IL-6 injection did not activate osteoclast-mediated bone resorption in the ectopic bone formation model, and IL-6/sIL-6R treatment did not affect receptor activator of NF-κB ligand (RANKL)-induced osteoclastic differentiation of human peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, IL-6/sIL-6R treatment did not affect expression of BMP receptors, but enhanced the cell surface translocation of BMP receptor IA (BMPRIA) and inhibited the degradation of BMPRIA. Collectively, these findings indicate that synergy between IL-6 and sIL-6R promotes the cell surface translocation of BMPRIA and maintains the stability of BMPRIA expression, leading to enhanced BMP-2/ACS-induced bone regeneration.  相似文献   

8.
9.
Studies have shown that exogenous platelet-derived growth factor-BB (PDGF-BB) could accelerate the ulcer healing, but the lack of efficient growth factor delivery system limits its clinical application. Our previous work has demonstrated that the native human PDGF-BB was added a collagen-binding domain (CBD), TKKTLRT, to develop a collagen-based PDGF targeting delivery system. Here, we showed that this CBD-fused PDGF-BB (CBD-PDGF) could bind to collagen membrane efficiently. We used the rabbit dermal ischemic ulcer model to study the effects of CBD-PDGF loaded on collagen membranes. Results revealed that this system maintained a higher concentration and stronger bioactivity of PDGF-BB on the collagen membranes and promoted the re-epithelialization of dermal ulcer wounds, the collagen deposition, and the formation of capillary lumens within the newly formed tissue area. It demonstrated that collagen membranes loaded with collagen-targeting human PDGF-BB could effectively promote ulcer healing.  相似文献   

10.
Studies have shown that exogenous platelet-derived growth factor-BB (PDGF-BB) could accelerate the ulcer healing, but the lack of efficient growth factor delivery system limits its clinical application. Our previous work has demonstrated that the native human PDGF-BB was added a collagen-binding domain (CBD), TKKTLRT, to develop a collagen-based PDGF targeting delivery system. Here, we showed that this CBD-fused PDGF-BB (CBD-PDGF) could bind to collagen membrane efficiently. We used the rabbit dermal ischemic ulcer model to study the effects of CBD-PDGF loaded on collagen membranes. Results revealed that this system maintained a higher concentration and stronger bioactivity of PDGF-BB on the collagen membranes and promoted the re-epithelialization of dermal ulcer wounds, the collagen deposition, and the formation of capillary lumens within the newly formed tissue area. It demonstrated that collagen membranes loaded with collagen-targeting human PDGF-BB could effectively promote ulcer healing.  相似文献   

11.
Yamamoto M  Takahashi Y  Tabata Y 《Biomaterials》2003,24(24):4375-4383
The objective of this study is to develop a carrier for the controlled release of bone morphogenetic protein-2 (BMP-2) suitable for enhancement of the bone regeneration activity. Hydrogels with different water contents were prepared through glutaraldehyde crosslinking of gelatin with an isoelectric point of 9.0 under varied reaction conditions. Following subcutaneous implantation of the gelatin hydrogels incorporating 125I-labeled BMP-2 into the back of mice, the in vivo retention period of BMP-2 prolonged with a decrease in the water content of hydrogels used, although every time period was much longer than that of BMP-2 solution injection. Ectopic bone formation studies demonstrated that the alkaline phosphatase (ALP) activity and osteocalcin content around the implanted site of BMP-2-incorporated gelatin hydrogels were significantly high compared with those around the injected site of BMP-2 solution. The values became maximum for the gelatin hydrogel incorporating BMP-2 with a middle period of BMP-2 retention, while bone formation was histologically observed around the hydrogel incorporating BMP-2. The ALP activity was significantly higher than that of the collagen sponge incorporating BMP-2. We concluded that the controlled release technology of BMP-2 for a certain time period was essential to induce the potential activity for bone formation.  相似文献   

12.
Reparation of bone defects remains a major clinical and economic concern, with more than 3 million bone grafts performed annually only in the United States and the EU. The search for alternatives to autologous bone grafting led to the approval by the FDA of an absorbable collagen carrier combined with rhBMP-2 for the treatment of certain bone diseases and fractures. The present work is focused on the production of a collagen-targeted rhBMP-2 based system to improve bone formation. We produced a modified rhBMP-2 with only an additional collagen-binding decapeptide derived from the von Willebrand factor and tested its affinity to collagen and its ability to induce ectopic bone formation in vivo when implanted in combination with absorbable collagen sponges or hydroxyapatite. The results showed not only that the rhBMP2–CBD had an increased affinity to collagen, but also that this binding was very stable during a prolonged period of time. In vivo experiments demonstrated that this rhBMP2–CBD maintained its osteoinductive activity, being capable of inducing new bone formation even at lower concentrations than native rhBMP-2. These results indicate that the combination of the fusion protein with absorbable collagen may be a suitable and safer alternative to rhBMP-2 for bone repair purposes.  相似文献   

13.
Lin H  Zhao Y  Sun W  Chen B  Zhang J  Zhao W  Xiao Z  Dai J 《Biomaterials》2008,29(9):1189-1197
Demineralized bone matrix (DBM) is a collagen-based scaffold, but its low mechanical strength and limited BMP-2 binding ability restrict its application in bone repair. It is known that heparin could be immobilized onto scaffolds to enhance their binding of growth factors with the heparin-binding domain. Here, we crosslinked heparin to DBM to increase its BMP-2 binding ability. To our surprise, the mechanical strength of DBM was also dramatically increased. The compression modulus of heparin crosslinked DBM (HC-DBM) have improved (seven-fold increased) under wet condition, which would allow the scaffolds to keep specific shapes in vivo. As expected, HC-DBM showed specific binding ability to BMP-2. Additional studies showed the bound BMP-2 exerted its function to induce cell differentiation on the scaffold. Subcutaneous implantation of HC-DBM carrying BMP-2 showed higher alkaline phosphatase (ALP) activity (2 weeks), more calcium deposition (4 and 8 weeks) and more bone formation than that of control groups. It is concluded that HC-DBM has increased mechanical intensity as well as specific BMP-2 binding ability; HC-DBM/BMP-2 enhances the osteogenesis and therefore could be an effective medical device for bone repair.  相似文献   

14.
Successful bone-implant osseointegration in large peri-implant bone defects is often difficult, even through autologous bone grafting. Recently, cell-mediated regional gene therapy was introduced to deliver potent morphogens or growth factors in regenerative medicine. We applied liposomal vectors carrying bone morphogenetic protein (BMP)-2 cDNA directly into freshly created peri-implant bone defects on pig calvariae, with or without autologous bone graft. The BMP-2 gene was efficiently introduced into immigrating cells and trabecular cells lining the marginal bone surrounding the bony defect. After 1 week, abundant BMP-2 protein was detected throughout the peri-implant bone defect by immunohistochemistry. At 4 weeks, BMP-producing cells were still present in the defect and peri-implant area, which significantly enhanced new bone formation, compared with the control groups. Interestingly within a week of BMP-2 gene delivery with bone grafts, most osteoblastic cells lining the grafted bone chips also produced BMP-2. Particulated bone was immediately reorganized into newly formed trabecular bone. Grafted bone without BMP-2 gene delivery was still scattered and new bone matrix formation was not detected until 4 weeks after bone grafting. In conclusion, direct application of the BMP-2 gene using a liposomal vector enhanced bone regeneration in a bony defect and gene delivery combined with bone graft could induce a rapid osseointegration of the bone-implant interface at earlier stage.  相似文献   

15.
BACKGROUND: Bone morphogenetic protein (BMP) can improve the osteogenesis capacity of tissue-engineered bone. However, how to prolong BMP release is a key for constructing tissue-engineered bone. OBJECTIVE: To study the repair effect of porous calcium phosphate cement (CPC) with bone marrow mesenchymal stem cells transfected with BMP-2 gene on bone defects. METHODS: After modeling of bilateral femoral condyle bone defects, 12 model rabbits were given implantation of porous CPC with bone marrow mesenchymal stem cells transfected with BMP-2 on the left (experimental group) and given implantation of porous CPC with bone marrow mesenchymal stem cells on the right (control group). Bilateral femoral condyles were taken and analyzed histologically at 4 and 12 weeks after implantation. RESULTS AND CONCLUSION: Better osteogenesis including more newly formed bone tissues and faster scaffold absorption was observed in the experimental group compared with the control group at 4 and 12 weeks after implantation. The area of newly formed bone tissues at different time and rate of bone formation at 12 weeks were significantly higher in the experimental group than in the control group (P < 0.001, P < 0.05). These findings indicate that transfer of BMP-2 into bone marrow mesenchymal stem cells combined with porous CPC could increase repair of bone defects.  相似文献   

16.
The porous TiO(2)/glass composite Ecopore has potential applications in hard tissue replacement. We describe the modification of Ecopore with the growth factor bone morphogenetic protein-2 (BMP-2) to add osteoinductive properties. Ecopore covalently coated with BMP-2 caused a weak induction of alkaline phosphatase in murine embryonal fibroblasts. In a rabbit bone defect model, BMP-2-coated Ecopore had moderately higher bone apposition rates and ingrown bone quantities at 6 weeks after implantation. To overcome loss of function due to chemical surface coupling, we filled the pore system of Ecopore with heparinized collagen sponge and loaded this secondary matrix with BMP-2. Heparinization of collagen filling increased the BMP-2 loading capacity of the matrix approximately 1.28-fold. Within 96 h, 17.0+/-0.1 and 10.1+/-0.2% of the used BMP-2 was released from non-modified and heparinized Ecopore/collagen, respectively, indicating that the heparin modification retarded BMP-2 release. Revealed by energy-dispersive X-ray spectroscopy analysis of implant cross-sectional areas, BMP-2-loaded Ecopore/collagen had significantly higher bony ingrowth quantities in rabbits, with the heparinized modification yielding the highest value (16.09+/-3.51%, p<0.005) compared with the non-heparinized matrix (10.72+/-4.07%, p<0.05) and the BMP-2-free controls (5.60+/-1.47%). This suggested a beneficial effect of the biomimetic modification of Ecopore with heparinized collagen for bone healing and integration.  相似文献   

17.
Bone morphogenetic proteins (BMP) are unique molecules with a specific biological activity for inducing ectopic bone formation when implanted with a suitable carrier matrix. However, incorporation of BMP into the carrier has disadvantages, including early burst release and protein degradation in biological environments. Therefore, we considered that the next greatest challenge in achieving successful clinical use was the development of a carrier system for site-specific delivery of the morphogenetic signal of BMP. In this study, a novel BMP-2-derived oligopeptide, NSVNSKIPKACCVPTELSAI, was coupled covalently to alginate. Then NSVNSKIPKACCVPTELSAI-linked alginate hydrogel composites were implanted into the calf muscle of rats and harvested 3 or 8 weeks after surgery. Ectopic bone formation was observed in alginate hydrogel linked with BMP-2-derived peptide. It is suggested that alginate hydrogel linked with an oligopeptide derived from BMP-2 might provide an alternative system for topical delivery of the morphogenetic signal of BMP-2.  相似文献   

18.
This study addresses synergistic effects of bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta3 (TGF-beta3) in the induction of chondrocytic differentiation of bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro for potential use in intervertebral disc (IVD) repair. Human BM MSCs encapsulated in alginate beads were induced to differentiate in serum-free medium containing BMP-2 and TGF-beta3. The expression of chondrocytic genes and proteins was analyzed by real-time PCR, western blot, histological, and immunohistochemical assays. This differentiation system showed a potent induction of chondrocytic phenotypes. The expression of chondrocytic markers, such as aggrecan (ACAN) and type II collagen (COL2A1), was upregulated at higher levels than using TGF-beta3 alone. Blocking BMP-2 by noggin completely suppressed BMP-2-enhanced gene and protein expression, confirming a crucial input of BMP-2 signaling in this differentiation process. Inhibition of extracellular signal-regulated kinases 1 and 2 signaling resulted in an increase in ACAN and COL2A1 gene expression, suggesting a negative regulatory role of this pathway. In conclusion, BMP-2 enhances TGF-beta3-mediated chondrogenesis of MSCs. The combination of BMP-2 and TGF-beta3 in alginate culture is superior to the standard differentiation method using TGF-beta alone. This potent induction system may provide an alternative cell source for IVD and cartilage regeneration in clinical practice.  相似文献   

19.
Bone morphogenetic protein-2 (BMP-2) is known to enhance fracture healing when delivered via a bovine collagen sponge. However, collagen rapidly releases BMP-2 with a high burst phase that is followed by a low sustained phase. As a result, supra-physiological doses of BMP-2 are often required to successfully treat bone defects. High BMP-2 dosing can introduce serious side effects that include edema, bone overgrowth, cyst-like bone formation and significant inflammation. As the release behavior of BMP-2 carriers significantly affects the efficacy of fracture healing, we sought to compare the influence of two BMP-2 delivery matrices with contrasting release profiles on BMP-2 bioactivity and ectopic bone formation. We compared a thiol-modified hyaluronan (Glycosil?) hydrogel that exhibits a low burst followed by a sustained release of BMP-2 to a collagen sponge for the delivery of three different doses of BMP-2, the bioactivities of released BMP-2 and ectopic bone formation. Analysis of bone formation by micro-computed tomography revealed that low burst followed by sustained release of BMP-2 from a hyaluronan hydrogel induced up to 456% more bone compared to a BMP-2 dose-matched collagen sponge that has a high burst and sustained release. This study demonstrates that BMP-2 released with a low burst followed by a sustained release of BMP-2 is more desirable for bone formation. This highlights the therapeutic potential of hydrogels, particularly hyaluronan-based, for the delivery of BMP-2 for the treatment of bone defects and may help abrogate the adverse clinical effects associated with high dose growth factor use.  相似文献   

20.
Non-healing bone defects present tremendous socioeconomic costs. Although successful in some clinical settings, bone morphogenetic protein (BMP) therapies require supraphysiological dose delivery for bone repair, raising treatment costs and risks of complications. We engineered a protease-degradable poly(ethylene glycol) (PEG) synthetic hydrogel functionalized with a triple helical, α2β1 integrin-specific peptide (GFOGER) as a BMP-2 delivery vehicle. GFOGER-functionalized hydrogels lacking BMP-2 directed human stem cell differentiation and produced significant enhancements in bone repair within a critical-sized bone defect compared to RGD hydrogels or empty defects. GFOGER functionalization was crucial to the BMP-2-dependent healing response. Importantly, these engineered hydrogels outperformed the current clinical carrier in repairing non-healing bone defects at low BMP-2 doses. GFOGER hydrogels provided sustained in vivo release of encapsulated BMP-2, increased osteoprogenitor localization in the defect site, enhanced bone formation and induced defect bridging and mechanically robust healing at low BMP-2 doses which stimulated almost no bone regeneration when delivered from collagen sponges. These findings demonstrate that GFOGER hydrogels promote bone regeneration in challenging defects with low delivered BMP-2 doses and represent an effective delivery vehicle for protein therapeutics with translational potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号