首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Frontal callosal disconnection syndromes   总被引:1,自引:0,他引:1  
The interhemispheric connections of the cortical areas of the human brain are distributed within the corpus callosum according to a topographic order which is being studied in detail by novel imaging techniques. Total section of the corpus callosum is followed by a variety of interhemispheric disconnection symptoms each of which can be attributed to the interruption of fibers in a specific callosal sector. Disconnection symptoms deriving from posterior callosal sections, disconnecting parietal, temporal and occipital lobes across the midline, are more apparent than those following anterior callosal sections disconnecting the frontal lobes. In spite of the massive bulk of the frontal callosal connections in man, ascertained consequences of their interruption are limited to disorders of motor control, with particular regard to bimanual coordination. Technical advances in brain imaging and the design of appropriate tests are expected to reveal so far undetected deficits in the domain of executive and higher cognitive functions, resulting from callosal disconnection of the prefrontal cortices.  相似文献   

2.
Topography of the human corpus callosum   总被引:22,自引:0,他引:22  
This study was undertaken to determine the topographical organization of fibers coursing through the human corpus callosum. We correlated the distribution of Wallerian degeneration in the corpus callosum with the anatomical sites of focal cortical lesions due to ischemic infarctions or circumscribed contusions. Fibers from the inferior frontal and anterior inferior parietal regions course through the rostrum and genu of the corpus callosum. Callosal connections from the temporo-parieto-occipital junctional region course through the splenium and caudal portion of the body of the corpus callosum. Both the superior parietal lobule and the occipital cortex give rise to interhemispheric fibers that course exclusively through the splenium of the corpus callosum. No callosal degeneration was associated with a cortical lesion in the anterior superior frontal region. The topographical organization of fibers in the human corpus callosum appears to be fairly similar to that found in the rhesus monkey (Macaca mulatta).  相似文献   

3.
Judgment of abnormalities in fetal cortical axon development is more sensitive when a good standard of normal ontogeny is established. The recent availability of postmortem tract tracing methods has greatly improved the observation of axon extension and growth cone morphology in mouse fetuses, which allows much stronger statements about the timing of crucial steps in the formation of the corpus callosum in particular. The first outgrowth and crossing of midplane by axons of the corpus callosum (CC) were examined in 153 normal mouse embryos and fetuses of the hybrid cross B6D2F2/J with carbocyanine dyes applied to brains fixed by perfusion. In most brains a crystal of DiI was inserted into either frontal, parietal, temporal, or occipital cortex in one hemisphere, and a crystal of DiA was placed into a different site in the opposite hemisphere. Although dye diffusion obscured the emergence of axons, linear regression analysis revealed that the first callosal axons emerged from their cortical cells of origin at about 0.4 g body weight or 15.5 days after conception for all four sites. Subsequent axon growth rate was substantially faster for those from frontal cortex (3.2 mm/day) than occipital cortex (1.8 mm/day). Axons from frontal cortex crossed the cerebral midplane first (0.69 g, E16.3), followed by those from parietal (0.74 g), temporal (0.77 g) and occipital cortex (0.92 g, E16.9). Prior to crossing midplane, the pioneering CC axons were usually 200 microns or less in advance of the main bundle, but when they crossed midplane and encountered CC axons growing from homotopic sites in the opposite hemisphere, the pioneering axons were often 0.5 to 2.5 mm ahead of the main bundle. Growth cones were usually large and complex until they had crossed midplane and were thereafter smaller with simple and flat morphologies. The topography of axons in the CC at midplane was organized according to cortical region of origin from the very beginning, when the CC was only a small cap over the hippocampal commissure and dorsal septum. The quantitative results provide a convenient standard for normal callosal development in mice and should facilitate comparative studies.  相似文献   

4.
皮质下缺血性血管性认知损害扩散张量成像研究   总被引:1,自引:0,他引:1  
目的通过扩散张量成像(DTI)探讨皮质下缺血性血管性认知损害患者白质微结构变化及其与认知功能之间的相关性。方法采集49例皮质下缺血性脑血管病患者[轻度血管性痴呆(VaD)10例、非痴呆型血管性认知损害(VCIND)20例、认知功能正常19例]DTI数据并观察皮质下白质微结构改变,分析VaD组患者DTI参数与认知功能间的相关性。结果与对照组相比,VaD组内侧前额叶、前扣带回、胼胝体干、双侧顶叶、右侧颞叶、双侧眶额叶,以及VCIND组右侧额下回、右侧海马、双侧楔前叶FA值减低(均P=0.000);与VCIND组比较,VaD组内侧前额叶、前扣带回、胼胝体、双侧顶叶、右侧颞叶FA值减低(P=0.000)。与对照组相比,VaD组内侧前额叶、胼胝体、双侧顶叶、双侧颞叶、前扣带回,以及VCIND组双侧楔前叶、右侧海马MD值升高(均P=0.000);与VCIND组相比,VaD组右侧内侧前额叶、前扣带回、胼胝体干、双侧顶叶、双侧颞叶MD值升高(均P=0.000)。VaD组内侧前额叶FA值与数字连线测验A时呈显著负相关(r=-0.782,P=0.007),双侧额下回MD值与数字连线试验A时程呈显著正相关(r=0.877,P=0.001)。结论 DTI对皮质下缺血性认知损害患者白质微结构改变更敏感,能够反映患者认知功能早期异常改变;内侧前额叶白质微结构的改变是影响患者执行能力的重要因素。  相似文献   

5.
Despite electrostimulation studies of the white matter pathways, supporting the role of the inferior fronto-occipital fasciculus (IFOF) in semantic processing, little is known about the precise anatomical course of this fascicle, especially regarding its exact cortical terminations. Here, in the lights of these new functional data, we dissected 14 post-mortem human hemispheres using the Klingler fiber dissection technique, to study the IFOF fibers and to identify their actual cortical terminations in the parietal, occipital and temporal lobes. We identified two different components of the IFOF: (i) a superficial and dorsal subcomponent, which connects the frontal lobe with the superior parietal lobe and the posterior portion of the superior and middle occipital gyri, (ii) a deep and ventral subcomponent, which connects the frontal lobe with the posterior portion of the inferior occipital gyrus and the posterior temporo-basal area. Thus, our results are in line with the hypothesis of the functional role of the IFOF in the semantic system, by showing that it is mainly connected with two areas involved in semantics: the occipital associative extrastriate cortex and the temporo-basal region. Further combined anatomical (dissection and Diffusion Tensor Imaging) and functional (intraoperative subcortical stimulation) studies are needed, to clarify the exact participation of each IFOF subcomponent in semantic processing.  相似文献   

6.
A precise knowledge of the timing and origin of the first cortical axons to project through the corpus callosum (CC) and of the subsequent emergence of callosal projection cells is essential for understanding the early ontogeny of this commissure. By using a series of mouse embryos and fetuses of the hybrid cross B6D2F2/J weighing from 0.36 g to 1.0 g (embryonic day E15.75–E17.25), we examined the spatial and temporal distribution of callosal projection cells by inserting crystals of the lipophilic dye (DiI: 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate) into the contralateral white matter just lateral to the midsagittal plane. Around 0.4 g or E15.8, retrogradely labeled cells were found restricted to a discrete cluster continuously distributed from the most ventral part of presumptive cingulate cortex to the hippocampus. During subsequent development, however, the tangential distribution of these labeled cells in ventromedial cortex did not extend further dorsally, and in fetuses where the CC became distinct from the hippocampal commissure (HC), labeled axons of cells in the ventral cingulate cortex were observed to intersect the callosal pathway and merge with labeled axons of the HC derived from cells in the hippocampus. The first cortical axons through the CC crossed the midline at about 0.64 g or E16.4, and these axons originated from a scattered neuronal population in the dorsal to lateral part of the presumptive frontal cortex. The earliest callosal cells were consistently located in the cortical plate and showed an immature bipolar appearance, displaying an ovoid- or pearl-shaped perikaryon with an apical dendrite coursing in a zig-zagging manner toward the pial surface and a slender axon directed toward the underlying white matter. Callosal projection cells spread progressively with development across the tangential extent of the cerebral cortex in both lateral-to-medial and rostral-to-caudal directions. In any cortical region, the first labeled cells appeared in the cortical plate and their number in the subplate was insignificant compared to that in the cortical plate. Thus, these results clarify that the CC is pioneered by frontal cortical plate cells, and the subsequent ontogeny of callosal projection cells proceeds according to the gradient of cortical maturation. J. Comp. Neurol. 400:197–206, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
To examine how fibers from functionally distinct cortical zones interrelate within their target areas of the superior temporal sulcus (STS) in the rhesus monkey, separate anterograde tracers were injected in two different regions of the same hemisphere known to project to the STS. Paired injections were placed in dorsal prearcuate cortex and the caudal inferior parietal lobule (IPL), interconnected regions that are part of a hypothesized distributed network concerned with visuospatial analysis or directed attention; in a presumed auditory region of the superior temporal gyrus (STG) and in extrastriate visual cortex, the caudal IPL and lower rim of the intraparietal sulcus; and in dorsal prearcuate cortex and the STG. Overlapping and nonoverlapping projections were then examined in STS visual and polysensory areas. Prefrontal and parietal fibers directly overlapped extensively in area MST and all subdivisions of presumed polysensory cortex (areas TPOc, TPOi, and TPOr), although nonoverlapping connections were also found. Although STG and IPL fibers targeted all TPO subdivisions, connections were to nonoverlapping, but often adjacent, columns. Paired prefrontal and STG injections revealed largely nonoverlapping vertical columns of connections but substantial overlap within layers VI and I of areas TPOc and TPOi. The findings suggest that area TPO contains differently connected modules that may maintain at least initial segregation of visual versus auditory inputs. Other modules within area TPO receive directly converging input from the posterior parietal and the prefrontal cortices and may participate in a distributed cortical network concerned with visuospatial functions. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Visual perceptual skills are basically mature by the age of 7 years. White matter, however, continues to develop until late adolescence. Here, we examined children (aged 5–7 years) and adults (aged 20–30 years) using diffusion tensor imaging (DTI) fiber tracking to investigate the microstructural maturation of the visual system. We characterized the brain volumes, DTI indices, and architecture of visual fiber tracts passing through white matter structures adjacent to occipital and parietal cortex (dorsal stream), and to occipital and temporal cortex (ventral stream). Dorsal, but not ventral visual stream pathways were found to increase in volume during maturation. DTI indices revealed expected maturational differences, manifested as decreased mean and radial diffusivities and increased fractional anisotropy in both streams. Additionally, fractional anisotropy was increased and radial diffusivity was decreased in the adult dorsal stream, which can be explained by specific dorsal stream myelination or increasing fiber compaction. Adult dorsal stream architecture showed additional intra‐ and interhemispheric connections: Dorsal fibers penetrated into contralateral hemispheres via commissural structures and projection fibers extended to the superior temporal gyrus and ventral association pathways. Moreover, intra‐hemispheric connectivity was particularly strong in adult dorsal stream of the right hemisphere. Ventral stream architecture also differed between adults and children. Adults revealed additional connections to posterior lateral areas (occipital‐temporal gyrus), whereas children showed connections to posterior medial areas (posterior parahippocampal and lingual gyrus). Hence, in addition to dorsal stream myelination or fiber compaction, progressing maturation of intra‐ and interhemispheric connectivity may contribute to the development of the visual system. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
We have examined the circuitry connecting the posterior parietal cortex with the frontal lobe of rhesus monkeys. HRP-WGA and tritiated amino acids were injected into subdivisions 7m, 7a, 7b, and 7ip of the posterior parietal cortex, and anterograde and retrograde label was recorded within the frontal motor and association cortices. Our main finding is that each subdivision of parietal cortex is connected with a unique set of frontal areas. Thus, area 7m, on the medial parietal surface, is interconnected with the dorsal premotor cortex and the supplementary motor area, including the supplementary eye field. Within the prefrontal cortex, area 7m's connections are with the rostral sector of the frontal eye field (FEF), the dorsal bank of the principal sulcus, and the anterior bank of the inferior arcuate sulcus (Walker's area 45). In contrast, area 7a, on the posterior parietal convexity, is not linked with premotor regions but is heavily interconnected with the rostral FEF in the anterior bank of the superior arcuate sulcus, the dorsolateral prefrontal convexity, the rostral orbitofrontal cortex, area 45, and the fundus and adjacent cortex of the dorsal and ventral banks of the principal sulcus. Area 7b, in the anterior part of the posterior parietal lobule, is interconnected with still a different set of frontal areas, which include the ventral premotor cortex and supplementary motor area, area 45, and the external part of the ventral bank of the principal sulcus. The prominent connections of area 7ip, in the posterior bank of the intraparietal sulcus, are with the supplementary eye field and restricted portions of the ventral premotor cortex, with a wide area of the FEF that includes both its rostral and caudal sectors, and with area 45. All frontoparietal connections are reciprocal, and although they are most prominent within a hemisphere, notable interhemispheric connections are also present. These findings provide a basis for a parcellation of the classically considered association cortex of the frontal lobe, particularly the cortex of the principal sulcus, into sectors defined by their specific connections with the posterior parietal subdivisions. Moreover, the present findings, together with those of a companion study (Cavada and Goldman-Rakic: J. Comp. Neurol. this issue) have allowed us to establish multiple linkages between frontal areas and specific limbic and sensory cortices through the posterior parietal cortex. The networks thus defined may form part of the neural substrate of parallel distributed processing in the cerebral cortex.  相似文献   

10.
The efferent connections of the posterior parietal cortex were studied in rhesus monkeys subjected to selective lesions of the superior and inferior parietal lobules, which correspond approximately to Brodmann's areas 5 and 7, respectively.

Following ablations of either the superior or inferior parietal lobule, axon degeneration, stained with the Nauta and Fink-Heimer methods, was traced into the extreme, external, and internal capsules, and into the cerebral peduncle. This degeneration extended into the ipsilateral insular cortex, cingulate gyrus, prefrontal and premotor cortices, and the precentral and postcentral gyri. In addition to these connections, the superior lobule sends fibers to the ipsilateral inferior parietal lobule and superior temporal gyrus, and via the corpus callosum to the contralateral superior and inferior parietal lobules, whereas the inferior parietal lobule sends fibers to the ipsilateral superior parietal lobule and to the contralateral superior and inferior parietal lobules. A prominent fiber system to the ipsilateral temporal lobe degenerates following lesions in the inferior parietal lobule (area 7); in such cases fiber degeneration appears in the superior, middle and inferior temporal convolutions, and in the fusiform and parahippocampal gyri.

Both lobules evidently project to the claustrum and body of the caudate nucleus. Both, moreover, have massive efferent connections with the dorsal two-thirds of the putamen. By contrast, no evidence of projections from the parietal cortex to the globus pallidus was found in any of the cases studied.

A further subcortical projection from the posterior parietal cortex involves the nucleus reticularis thalami and the nucleus lateralis posterior thalami. The inferior lobule projects directly to the nucleus lateralis dorsalis and to the mediodorsal region of the nucleus lateralis posterior that closely adjoins two thalamic cell groups: the n. lateralis dorsalis and the intralaminar nucleus centralis lateralis. The superior parietal lobule, by contrast, projects massively to a ventrolateral district of the nucleus lateralis posterior.

Parietosubthalamic connections could be traced from areas 5 and 7 to the zona incerta and fields H2 and H of Forel, but evidence for terminal connections with the n. subthalamicus (Luys) could not be foud.

Both areas 5 and 7 project massively to the pretectal area and the deeper layers of the superior colliculus. This parieto-mesencephalic connection is amplified by a fiber connection from the inferior parietal lobule (area 7) to the lateral, densocellular region of the circumaqueductal gray matter. No evidence of parietal corticonigral fibers connections was found. Finally, both parietal lobules were found to project to the pontine nuclei.

Speculations regarding the associative functions of the parietal lobules at the cortical and subcortical levels are presented, with particular emphasis upon the possible significance of the projections from the inferior parietal lobule to insular, cingulate and temporal regions of the cortex.  相似文献   


11.
Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large–scale bi‐hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post‐mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter‐hemispheric connections. In particular, we found three types of fronto‐callosal fibers, having a dorso‐ventral organization. First, the dorso‐medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro‐lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro‐striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three‐dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter‐hemispheric connectivity. Hum Brain Mapp 37:4718–4735, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
BackgroundStudies show that white matter hyperintensities, regardless of location, primarily affect frontal lobe metabolism and function. This report investigated how regional white matter integrity (measured as fractional anisotropy [FA]) relates to brain metabolism, to unravel the complex relationship between white matter changes and brain metabolism.ObjectiveTo elucidate the relationship between white matter integrity and gray matter metabolism using diffusion tensor imaging and fluorodeoxyglucose-positron emission tomography in a cohort of 16 subjects ranging from normal to demented (age, >55 years).MethodsMean FA values from white matter regions underlying the medial prefrontal, inferior-lateral prefrontal, parietal association, and posterior temporal areas and the corpus callosum were regressed with glucose metabolism (by positron emission tomography), using statistical parametric mapping (P < 0.005; voxel cluster, >100). Regional cerebral glucose metabolism was the primary outcome measure. According to our hypothesis, those hypometabolic cortical regions affected by Alzheimer's disease would correlate with a lower FA of associated tracks.ResultsOur data show inter-regional positive correlations between FA and gray matter metabolism for the prefrontal cortex, temporal, and parietal regions. Our results suggest that left prefrontal FA is associated with left temporal and parietal metabolism. Further, left posterior temporal FA correlated with left prefrontal metabolism. Finally, bilateral parietal FA correlated with bilateral temporal metabolism.ConclusionsThese regions are associated with cognitive processes affected in Alzheimer's disease and cerebrovascular disease, suggesting a link with white matter degeneration and gray matter hypometabolism. Therefore, cortical function and white matter degeneration are related in aging and dementia.  相似文献   

13.
It has been suggested that regional corpus callosum atrophy in Alzheimer's disease (AD) may serve as an in vivo index of neuronal loss in the neocortex. In this study total and regional size of the corpus callosum was evaluated with respect to the volumes of the frontal, temporal, and parietal lobes in 38 patients with AD (NINCDS-ADRDA criteria) using quantitative magnetic resonance imaging. Twenty healthy subjects matched for age and gender served as a control group. All quantitative measurements were performed by manual tracing using personal computer-based software. Both total size and the five measured regional subsections were significantly smaller in AD when compared to the control subjects. The severity of dementia was significantly correlated with the size of the middle sections of the corpus callosum (rostral body and midbody). Within the AD group, the rostral body of the corpus callosum was significantly correlated with the frontal lobe volumes, the midbody was correlated with the temporal lobe volumes, and size of the splenium was correlated with the parietal lobe volumes. We conclude that callosal atrophy in AD reflects the severity and pattern of cortical neuronal damage. Correlations between regional callosal atrophy and severity of dementia indicate that interhemispheric cortico-cortical disconnection may contribute to the dementia syndrome.  相似文献   

14.
It is widely accepted that abnormalities in the frontal area of the brain underpin the pathophysiology of obsessive‐compulsive disorder (OCD). Fundamental to this investigation is the delineation of frontal white matter tracts including dorsal and ventral frontal projections of interhemispheric connections. While previous investigations of OCD have examined the dorsal and ventral frontal regions, the corresponding callosal connections have not been investigated, despite their importance. We recruited twenty patients with OCD (15 drug‐naïve and 5 currently unmedicated) and demographically similar healthy controls, and conducted fiber tractography and post hoc quantitative analysis using diffusion tensor imaging. We extracted fractional anisotropy (FA) of the fronto‐callosal fibers along the entire length of the tract. Function‐specific [by the Brodmann area region‐of‐interest (ROI) approach] and region‐specific (by the length‐parameterization approach) tracts were defined. In addition, we devised a new index of dorsal‐ventral imbalance (DVII) of fiber integrity. Significant FA decreases were observed in orbitofrontal and dorsolateral prefrontal projections of the corpus callosum (P < 0.05, false discovery rate‐corrected) with higher function/region sensitivity than voxel‐based or ROI‐based approaches. Importantly, OCD patients also exhibited significantly higher ventral‐greater‐than‐dorsal asymmetry of FA values than normal controls (P < 0.05, FDR‐corrected). This study is the first to investigate fiber integrity in the dorsal/ventral frontal parts of the callosal tractography in unmedicated OCD patients. Using a more quantitative method in terms of functional and regional specificity than previous studies, we report abnormalities in interhemispheric connectivity of both dorsal and ventral networks in the pathophysiology of OCD. Hum Brain Mapp 33:2441–2452, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
In this investigation the efferent projections from ventral temporal neocortical and limbic cortical areas to the entorhinal and perirhinal cortices have been investigated in the rhesus monkey using silver impregnation methods. It was observed that virtually all ventral temporal neocortical areas contribute some afferents to the transitional zones of periallocortex (perirhinal and prorhinal cortices) forming the walls of the rhinal sulcus. These areas in turn project medially to the entorhinal cortex and hippocampus. Additional direct sources of afferent input to the entorhinal cortex were found to originate in Brodmann's areas 51, 49 and 27, and Bonin and Bailey's areas TF and TH. These connections have been characterized as final relays in multisynaptic cortico-cortical pathways linking the entorhinal cortex and, ultimately, hippocampus to the association areas of the frontal, parietal, temporal, and occipital lobes.  相似文献   

16.
It has been suggested that regional corpus callosum atrophy in Alzheimer’s disease (AD) may serve as an in vivo index of neuronal loss in the neocortex. In this study total and regional size of the corpus callosum was evaluated with respect to the volumes of the frontal, temporal, and parietal lobes in 38 patients with AD (NINCDS-ADRDA criteria) using quantitative magnetic resonance imaging. Twenty healthy subjects matched for age and gender served as a control group. All quantitative measurements were performed by manual tracing using personal computer-based software. Both total size and as the five measured regional subsections were significantly smaller in AD when compared to the control subjects. The severity of dementia was significantly correlated with the size of the middle sections of the corpus callosum (rostral body and midbody). Within the AD group, the rostral body of the corpus callosum was significantly correlated with the frontal lobe volumes, the midbody was correlated with the temporal lobe volumes, and size of the splenium was correlated with the parietal lobe volumes. We conclude that callosal atrophy in AD reflects the severity and pattern of cortical neuronal damage. Correlations between regional callosal atrophy and severity of dementia indicate that interhemispheric cortico-cortical disconnection may contribute to the dementia syndrome.  相似文献   

17.
The course and composition of the cingulum bundle was examined by using the autoradiographic tracer technique in the rhesus monkey. The cingulum bundle is observed to consist of three major fiber components originating from thalamus, cingulate gyrus, and cortical association areas. Following isotope injections in the anterior and lateral dorsal thalamic nuclei, labelled fibers form an arch in the white matter behind the cingulate sulcus and occupy the ventral sector of the cingulum bundle. The fibers from the anterior thalamic nucleus coursing in the cingulum bundle extended rostrally to the frontal cortex and caudally to area 23 and the retrosplenial cortex. In contrast, the fibers from lateral dorsal nucleus reached the retrosplenial cortex as well as the parahippocampal gyrus and presubiculum. Efferent fibers from the cingulate gyrus occupy a dorsolateral sector of the cingulum bundle. Those fibers from area 24 of the cingulate gyrus are directed to the premotor and prefrontal regions as well as area 23 and retrosplenial cortex. The fibers from area 23 extend rostrally to the prefrontal cortex and caudoventrally to the presubiculum and parahippocampal gyrus. Finally, an association component originates mainly from prefrontal cortex and posterior parietal region. These fibers occupy a more dorsal and lateral periphery in the cingulate white matter. Cingulum bundle fibers from the prefrontal cortex extend up to the retrosplenial cortex while those from the posterior parietal cortex extend caudally to the parahippocampal gyrus and presubiculum, and rostrally up to the prefrontal cortex.  相似文献   

18.
Unilateral lesions of the occipital visual areas performed on postnatal day 5 (P5) in the ferret are not compensated by the appearance, in the lesioned hemisphere, of visual responses at ectopic locations. Instead, when parts of the visual areas are spared, they show abnormal retinotopic organizations; furthermore, callosal connections are abnormally distributed in relation to the retinotopic maps. Lesions that completely eliminate the visual areas including the posterior parietal cortex cause the appearance of abnormal callosal connections from the primary somatosensory cortex on the lesion side to the contralateral, intact, posterior parietal cortex. The occipital visual areas (17, 18, 19, and 21) of the intact hemisphere show a normal retinotopy but lose callosal connections in territories homotopic to the lesions. These findings clarify the nature and limits of structural developmental plasticity in the visual cortex. Early in life, certain regions of cortex have been irreversibly allocated to the visual areas, but two properties defining the areas, that is, retinotopy and connections, remain modifiable. The findings might be relevant for understanding the consequences of early-onset visual cortical lesions in humans.  相似文献   

19.
We report a double dissociation between visuo-spatial abilities and semantic knowledge (knowledge of the names and attributes of objects and people), in two brain-injured people with longstanding stable impairments, using a wide range of tests to explore the extent of the dissociation. MU, who has bilateral lesions of occipito-parietal cortex, shows severe spatial disorientation with relatively well-preserved semantic knowledge. He is contrasted with JBR, who has bilateral temporal lobe damage and shows severe semantic problems and no impairment on visuo-spatial tasks. Our findings thus demonstrate a double dissociation between the performance of semantic and spatial tasks by MU and JBR. This pattern is consistent with Ungerleider and Mishkin's (1982) neurophysiological hypothesis of separable cortical visual pathways; one which is specialised for spatial perception and follows a dorsal route from occipital to parietal lobes, and the other following a more ventral route from occipital to temporal lobes, whose target is semantic information needed in specifying what an object is.  相似文献   

20.
Neonatal hamsters were subjected to transection of the callosal bridge. Later examination of the brains showed complete or partial absence of the corpus callosum and an anomalous bilateral longitudinal bundle of fibers. In addition, aberrant commissural fibers were seen to connect heterotopically the parietal cortex with the contralateral frontal cortex through a callosal remnant over the septum, and the olfactory cortex with the opposite frontal and parietal cortices through the anterior commissure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号