首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past decade the increase of elderly population has determined a rise in the incidence of bone fractures, and the improvement of the implant-bone interface remains an open problem. Metal-organic chemical vapour deposition (MOCVD) has recently been proposed as a technique to coat orthopaedic and dental prostheses with metal nanostructured oxide films either through the decomposition of oxygenated compounds (single-source precursors) or the reaction of oxygen-free metal compounds with oxygenating agents. The present study was performed to assess the in vivo biocompatibility of commercially pure Ti (control material: TI/MA) implants ( psi 2 mm x 5 mm length) coated with nanostructured TiO2 films by MOCVD (Ti/MOCVD) and then inserted into rabbit femoral cortical (middhiaphysis) and cancellous (distal epiphysis) bone. Histomorphometric, ultrastructural and microhardness investigations were carried out. Four and 12 weeks after surgery, significant (p<0.0005) increases in AI of Ti/MOCVD implants were observed as compared to Ti/MA implants (distal femoral epiphysis: 4 weeks=8.2%, ns; 12 weeks=52.3%, p <0.005; femoral diaphysis: 4 weeks=20.2%, p <0.0005; 12 weeks=10.7%, p <0.005). Bone microhardness results showed significant increases for the Ti/MOCVD versus Ti/MA implants at 200 microm in the femoral diaphysis (4 weeks=14.2, p <0.005) and distal femoral epiphysis (12 weeks=14.5, p <0.01) at 4 and 12 weeks, respectively. In conclusion, the current findings demonstrate that the nanostructured TiO2 coating positively affects the osseointegration rate of commercially pure Ti implants and the bone mineralization at the bone-biomaterial interface in both cortical and cancellous bone.  相似文献   

2.
Calcium-deficient hydroxyapatite (Ca-def-HAP) thin films were elaborated on Ti6Al4V substrates by electrodeposition. The coatings exhibit two different morphologies and crystallinities. Human osteoblast-like cells (MG-63) were cultured on the surfaces of these materials; the cell content and viability were evaluated up to 28 days. The scanning electron microscopy and biological investigations showed cells with a normal morphology, good proliferation, and viability from 7 to 21 days. But after 28 days, the number of live cells decreases in both cases; however, this decrease is less important in the case of calcium phosphate (CaP) coating surface when compared with the control (cell culture plastic). The cells cultured on Ca-def-HAP coating exhibit more cellular extensions and extracellular matrix. RT-PCR for type I collagen, alkaline phosphatase, and osteocalcin studies were also carried out, and was found that the CaP enhances gene expression of ALP and OC and thus the differentiation of osteoblast-like cells. Moreover, this study shows that the difference in the morphology of CaP coatings has no effect on the biocompatibility.  相似文献   

3.
The corrosion behavior and cell adhesion property of nanostructured TiO2 films deposited electrolytically on Ti6Al4V were examined in the present in vitro study. The nanostructured TiO2 film deposition on Ti6Al4V was achieved via peroxoprecursors. SEM micrographs exhibit the formation of amorphous and crystallite TiO2 nanoparticles on Ti6Al4V before and after being annealed at 500 degrees C. Corrosion behavior of TiO2-deposited and uncoated Ti6Al4V was evaluated in freely aerated Hank's solution at 37 degrees C by the measurement and analysis of open-circuit potential variation with time, Tafel plots, and electrochemical impedance spectroscopy. The electrochemical results indicated that nano-TiO2 coated Ti6Al4V showed a better corrosion resistance in simulated biofluid than uncoated Ti6Al4V. Rat bone cells and human aortic smooth muscle cells were grown on these substrates to study the cellular responses in vitro. The SEM images revealed enhanced cell adhesion, cell spreading, and proliferation on nano-TiO2 coated Ti6Al4V compared to those grown on uncoated substrates for both cell lines. These results suggested that nanotopography produced by deposition of nanostructured TiO2 onto Ti alloy surfaces might enhance corrosion resistance, biocompatibility, and cell integration for implants made of Ti alloys.  相似文献   

4.
Hydroxyapatite-TiO2 hybrid coating on Ti implants   总被引:3,自引:0,他引:3  
A hydroxyapatite (HA)-titania (TiO(2)) hybrid coating is developed to improve the biocompatibility of titanium (Ti) implants. The HA predeposited layer on Ti via electron beam (e-beam) evaporation is subsequently treated by micro-arc oxidation (MAO) to produce an HA-TiO(2) hybrid layer on Ti. The e-beam-deposited HA layer has a thickness of approximately 1 microm and was highly dense prior to MAO. By means of MAO treatment, a rough and porous TiO(2) layer is formed beneath the HA layer with a simultaneous local dissolution of the HA layer. Due to the HA precoating, high concentrations of Ca and P are preserved on the coating surface. The osteoblast-like cells on the hybrid coating layer grow and spread favorably. The cell proliferation rate on the hybrid coatings is not much different from that on pure Ti or simple MAO-treated Ti. However, the alkaline phosphatase (ALP) activity of the cells is significantly higher (p < 0.05) on the HA-TiO(2) hybrid coatings than on either the pure Ti or the simple MAO-treated specimen, suggesting that the cellular activity on the hybrid coatings is improved.  相似文献   

5.
6.
A new austenitic stainless steel compound, P558, has been widely recognized to have good mechanical properties, excellent potential for corrosion resistance and negligible nickel ion release, making it a promising substitute for more expensive metallic prostheses with limited machinable features. The effect of P558 was studied in vitro and human osteoblast- like cells (MG63) were cultured directly on P558, Ti6Al4V alloy (Ti), and polystyrene (Control) for 72 hours. Osteoblast functions were evaluated by assaying cell proliferation and synthetic activity after 1.25(OH)2D3 stimulation. Results demonstrated that growth of MG63 on P558 was not negatively affected when compared to the Ti and Control groups and showed no alteration in the production of ALP, NO and PICP. Moreover, IL-6 was lower, whereas OC and TGFbeta1 were significantly higher. SEM images revealed that cells proliferated and differentiated on P558 without any alteration in their morphology. The current findings have demonstrated that P558 promotes osteoblast proliferation, activation and differentiation without negative effects and, thus, its good biocompatibility when used for orthopedic application.  相似文献   

7.
In spite of observed differences at the interface between boon and either commercially pure titanium [Ti(cpi)] or titanium alloy (Ti-6Al-4V), the mechanism of such a response is ill understood. This prompted further investigation of the influence of similar metals on human bone-derived cells (HBDCs). This study investigated the influence of Ti(cpi) and its alloy on osteoblastic proteins formed by HBDCs grown for 5, 7, 10, and 14 days on these metals and compared them to cells grown on tissue culture polystyrene plates. Messenger RNA and translated proteins that form an array of osteogenic parameters were determined: alkaline phosphatase (ALP), thrombospondin, osteopontin, osteocalcin (OC), osteonectin (ON/SPARC), type I collagen (Col I) and bone sialoprotein (BSP). At the four predetermined time points, cells grown on either Ti(cpi) or Ti-6Al-4V generally expressed similar mRNA levels, while levels of their respective proteins differed. Cells on Ti(cpi) had peak levels for most proteins at day 7, whereas those on Ti-6Al-4V peaked at either day 5 and/or day 7. At day 5 cells grown on Ti-6Al-4V had higher levels of ALP, Col I, ON/SPARC, OC, and BSP than those in Ti(cpi); this difference was not maintained at later time points in culture. The differential regulation of proteins occurring between cells from the same patient grown on titanium and its alloy implies that HBDCs respond to small differences in the surface chemistry and/or microcrystallinity.  相似文献   

8.
This work aims to explore the influence of the ionic products of dicalcium silicate coating on osteoblastic proliferation and differentiation, as well as on the expression of BMP2 and its signal transducers Smad1, 6 and 7 in MG-63 osteoblast-like cells. Plasma-sprayed dicalcium silicate coatings were soaked in DMEM to obtain culture media containing the ionic dissolution products of dicalcium silicate coating (Ca2SiO4–DMEM). MG63 osteoblast-like cells were cultured in Ca2SiO4–DMEM (experimental group) for 3–12 days, while those cultured in normal DMEM served as control (control group). MTT assay was used to evaluate cell viability and proliferation. Alkaline phosphatase activity (ALP), osteocalcin (OC) and type I collagen (COLI) were investigated as differentiation markers. Gene expression of BMP2 and Smad1, 6, 7 was also detected. BMP2 protein was examined by ELISA assay. Alizarin Red-S (AR-S) assay was used to detect mineralization. The results demonstrated that Si concentration in Ca2SiO4–DMEM is markedly higher than that in normal DMEM. Compared to the control group, MG63 cells of the experimental group exhibited upregulated proliferation on day 3, and markedly upregulated gene expression of the differentiation markers, especially on days 9 and 12 for OC and on days 3, 6 and 9 for ALP. Gene expression of BMP2 and Smad1, as well as BMP2 protein secreted into culture media, was also upregulated in the experimental group, while gene expression of Smad6 and 7 was not influenced. AR-S assay indicated a higher calcium mineral content deposition in cells of the experimental group. In conclusion, the ionic products of plasma-sprayed dicalcium silicate coating are beneficial to the proliferation and differentiation of MG63 osteoblast-like cells.  相似文献   

9.
A biomaterial named P558 is a new austenitic stainless steel (SS) with a negligible amount of Ni (<0.20%). In previous in vitro and in vivo studies it was compared with conventional SS and Ti6Al4V and shown to be a promising material in orthopedics. Because osteoporosis is a type of pathology very often encountered in implanted patients and can be studied with in vitro models, the purpose of the present study was to evaluate P558 in vitro through comparison of normal (nOB) with osteopenic (oOB) bone-derived primary rat osteoblasts. Osteoblasts were cultured directly on P558 and polystyrene as controls for 72 h. Osteoblast proliferation, adhesion, and activity (ALP, OC, TGF-beta1, and IL-6) were evaluated at 24 and 72 h. Results demonstrated that the growth of nOB and oOB cultured on P558 was not affected negatively when compared to control. Cells on P558 did not show any alteration in terms of adhesion, proliferation, and metabolic marker production in nOB and oOB cultures, and a significant increase in ALP, OC, and TGF-beta1 production was observed. SEM images revealed no alteration in cell morphology. The current findings demonstrate that P558 promotes osteoblast proliferation, activation, and differentiation not only in normal bone, but also in osteopenic bone-derived osteoblasts.  相似文献   

10.
A double-layered coating, consisting of a hydroxyapatite (HA) outer film and a fluor-hydroxyapatite (FHA) inner film, was produced on a Ti substrate by a sol-gel route to improve the biocompatibility and functionality of the system. Dissolution behavior of and in vitro cellular responses to the layered film were investigated. Calcium nitrate and triethyl phosphite were used for calcium and phosphate precursors, respectively, and ammonium fluoride was added as a fluorine-ion source for FHA. The FHA layer was deposited on Ti by spin coating and subsequent heat treatment at 550 degrees C for 30 min in air, and then the HA layer was laid down over the FHA-coated Ti under the same conditions. After heat treatment, characteristic apatite structures and phases were developed on both FHA and HA films. The cross-section view of the HA/FHA film clearly showed a double-layered structure on Ti with each layer approximately 0.6-0.8-microm thickness. The coating layer was highly uniform and dense, and adhered to Ti substrate strongly with an adhesion strength of about 40 MPa. The in vitro solubility of the HA/FHA layered film in a physiological solution was between that of HA and FHA pure film, and the dissolution profile was quite biphasic, that is, an initial rapid period and a slowdown with increasing time, reflecting the gradient solubility of the fast HA outer structure/slow FHA inner structure. The human osteoblast-like HOS TE85 cells cultured on the HA/FHA layered film attached, spread, and grew favorably. The proliferation rate of the cells on the layered film was significantly higher (considered at p < 0.05 for n = 6) than that on Ti substrate and was similar to that on pure HA film. The alkaline phosphatase (ALP) activity and osteocalcin (OC) produced by the cells on the layered film were significantly higher (considered at p < 0.05 for n = 6) than those on Ti substrate. Moreover, the ALP and OC levels of cells on the layered film showed the trends of HA outer/FHA inner structure with respect to culture period, that is, HA initially and FHA later. These observations suggest that the HA/FHA layered film on Ti obtained by a sol-gel route possesses gradient functionality in terms of solubility and cellular responses, and find that those parameters can be tailored for specific use in hard-tissue implants.  相似文献   

11.
Hydroxyapatite (HA) composites with titania (TiO2) up to 30 mol % were coated on a titanium (Ti) substrate by a sol-gel route, and the mechanical and biological properties of the coating systems were evaluated. Using polymeric precursors, highly stable HA and TiO2 sols were prepared prior to making composite sols and coatings. Coatings were produced under a controlled spinning and heat treatment process. Pure phases of HA and TiO2 were well developed on the composites after heat treatment above 450 degrees C. The HA-TiO2 composite coating layers were homogeneous and highly dense with a thickness of about 800-900 nm. The adhesion strength of the coating layers with respect to Ti substrate increased with increasing the TiO2 addition. The highest strength obtained was as high as 56 MPa, with an improvement of about 50% when compared to pure HA (37 MPa). The osteoblast-like cells grew and spread actively on all the composite coatings. The proliferation and alkaline phosphatase (ALP) activity of the cells grown on the composite coatings were much higher than those on bare Ti, and even comparable to those on pure HA coating. Notably, the HA-20% TiO2 composite coating showed a significantly higher proliferation and ALP expression compared to bare Ti (p < 0.05). These findings suggest that the sol-gel-derived HA-TiO2 composite coatings possess excellent properties for hard tissue applications from the mechanical and biological perspective.  相似文献   

12.
For bone morphogenetic protein (BMP) gene therapy to be a viable approach for enhancing implant osseointegration clinically, requires the development of efficient nonviral delivery vectors that can coat the implant. This study evaluated a multilayer cationic liposome-DNA complex (LDc) coating as a delivery vehicle for recombinant human BMP-2 (rhBMP-2). Multilayered coatings, comprising hyaluronic acid (HA) and LDc, were fabricated onto titanium using a layer-by-layer (LBL) assembly technique. Preosteoblastic MC3T3-E1 cells were cultured on the roughened titanium surfaces coated with multilayers of HA/LDc, or on uncoated or HA/liposome only surfaces as controls. The amount of rhBMP-2 secreted by the MC3T3-E1 cells and the effect of the various surfaces on cell viability, proliferation, alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and calcium deposition were evaluated. Messenger RNA levels of OC, ALP, Runx2, and Osx were also investigated. The results demonstrated that rhBMP-2 protein secreted into culture medium at 3 days was significantly higher than control groups. MC3T3-E1 cells cultured on the HA/LDc coating displayed significantly higher ALP activity and OC secretion at 7 days and 14 days culture, respectively. MC3T3-E1 cells cultured on HA/LDc upregulated expression of the osteoblast differentiation markers, especially on days 12 for OC and on days 6 and 12 for ALP and Osx. In conclusion, MC3T3-E1 cell cultured on the multilayer HA/LDc coating surface can secret rhBMP-2 protein and the protein levels were effective in inducing early osteogenic differentiation. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A: 2766-2774, 2012.  相似文献   

13.
Nanocrystalline diamond (NCD) has a great potential for prosthetic implants coating. Nevertheless, its biocompatibility still has to be better understood. To do so, we employed several materials characterization techniques (SEM, AFM, micro-Raman spectroscopy) and cell culture assays using MG63 osteoblast-like and human bone marrow cells. Biochemical routines (MTT assays, Lowry's method, ALP activity) supported by SEM and confocal microscopy characterization were carried out. We used silicon nitride (Si3N4) substrates for NCD coatings based on a previous demonstration of the superior adhesion and tribological performance of these NCD coated ceramics. Results demonstrate an improved human osteoblast proliferation and the stimulation of differentiated markers, like ALP activity and matrix mineralization, compared with standard polystyrene tissue culture plates. The nanometric featuring of NCD, associated to its chemical affinity are key points for bone regeneration purposes.  相似文献   

14.
Biomimetic coating of compound titania and hydroxyapatite on titanium   总被引:1,自引:0,他引:1  
The modification on the titanium implant surface is an effective method to improve the biocompatibility of titanium. This article describes efforts to improve implant biocompatibility by applying titania and hydroxyapatite to form a three-layer coating on the titanium surface. This three-layer coating is made up of HA as the top layer (formed by hydrothermal treatment), porous TiO2 as the middle layer (formed by micro-arc oxidation) and a dense TiO2 film as the inner layer (formed by preanodic oxidation). The physicochemical characteristics, cell behavior and in vivo studies were assessed. The physicochemical characteristics were investigated using scanning electron micoscopy observation, fibronectin and laminin adsorption, corrosion test and X-ray diffraction analysis. Cell behavior included morphology observation with scanning electron microscopy (SEM), number count with methylthiazol tetrazolium (MTT) assay and Alkaline phosphatase (ALP, a representative enzyme of osteoblastic differentiation) activity of osteoblast-like MC3T3-E1 cells. In study in vivo the specimens were embedded in skull wound for repair. By the analysis of experiments, the titanium coated with this three-layer coating has been proved to have excellent corrosion resistance and good biocompatibility, which can promote cell proliferation and bone formation. So this modified titanium is an improved alternative to untreated titanium for bone repair applications.  相似文献   

15.
A thin hydroxyapatite (HA) layer was coated on a microarc oxidized titanium (MAO-Ti) substrate by means of the sol-gel method. The microarc oxidation (anodizing) enhanced the biocompatibility of the Ti, and the bioactivity was improved further by the sol-gel HA coating on the anodized Ti. The HA sol was aged fully to obtain a stable and phase-pure HA, and the sol concentration was varied to alter the coating thickness. Through the sol-gel HA coating, the Ca and P concentrations in the coating layer increased significantly. However, the porous morphology and roughness of the MAO-Ti was altered very little by the sol-gel treatment. The proliferation and alkaline phosphatase (ALP) activity of the osteoblast-like cells on the MAO/HA sol-gel-treated Ti were significantly higher than those on the MAO-Ti without the HA sol-gel treatment.  相似文献   

16.
Titanium (Ti) surface was coated with hydroxyapatite (HA) films via the sol-gel method. The coating properties, such as crystallinity and surface roughness, were controlled and their effects on the osteoblast-like cell responses were investigated. The film crystallinity was controlled with different heat treatment temperatures (400, 500, and 600 degrees C): Also the surface roughness was changed by using different heating rates (1 and 50 degrees C/min). The obtained sol-gel films had a dense and homogeneous structure with a thickness about 1 mum. The film heat-treated at higher temperature had enhanced crystallinity (600>500>400 degrees C), while retaining similar surface roughness. When heat-treated rapidly (50 degrees C/min), the film became quite rough, with roughness parameters being much higher (4-6 times) than that obtained at a low heating rate (1 degrees C/min). The dissolution rate of the film decreased with increasing crystallinity (400>500>600 degrees C), and the rougher film had slightly higher dissolution rate. The attachment, proliferation, and differentiation behaviors of human osteosarcoma HOS TE85 cells were affected by the properties of the films. On the films with higher crystallinity (heat treated over 500 degrees C), the cells attached and proliferated well and expressed alkaline phosphatase (ALP) and osteocalcin (OC) to a higher degree as compared to the poorly crystallized film (heat treated at 400 degrees C). On the rough film, the cell attachment was enhanced, but the ALP and OC expression levels were similar as compared to the smooth films.  相似文献   

17.
Pulsed electromagnetic fields (PEMFs) are known to be effective in the stimulation of cultured osteoblasts and in vivo healing of delayed and nonunion fractures. In the present in vitro study the effects of PEMFs on osteoblastic cell cultures (MG63 human osteoblast-like cells) grown in the presence of poly-methylmethacrylate (PMMA) and of a biomimetic bone substitute made of a PMMA matrix added with alfa-tricalcium phosphate (PMMA+alpha-TCP) were evaluated, to assess the biological response at the cell-biomaterial interaction. Cultures were stimulated with PEMFs (75 Hz, 2.3 mT, 1.3-ms pulse duration) 12 h/day for 3 days and evaluations (MTT, ALP, OC, PICP, TGFbeta-1, IL-6) were performed at 3 and 6 days. PMMA had a negative effect on osteoblasts, whereas PMMA+alpha-TCP enhanced production of ALP, PICP, OC and TGFbeta-1, and reduced IL-6 levels. Cells responded positively to PEMF stimulation even when cultured with a poorly biocompatible material, such as PMMA. This effect was more evident in the presence of PMMA+alpha-TCP (further improvement in proliferation and synthetic activity) both at 3 and at 6 days. The properties of PMMA+alpha-TCP look promising, and the present results support the use of PEMFs to improve tissue response to biomaterials implanted as bone substitutes.  相似文献   

18.
In the search for methods to improve the biocompatibility of prosthetic materials, attention has recently been directed toward the potential use of surface chemical modification and its influence on cellular behavior. This in vitro study investigates the effect of surface chemistry modification of bioceramics on human bone-derived cells (HBDCs) grown on biomaterial surfaces for 2 weeks. Cells were cultured on either alumina (Al2O3), alumina doped with magnesium ions ([Mg]-Al2O3), or hydroxyapatite (HAP), as well as tissue culture polystyrene (TCPS). Expression of alkaline phosphatase (ALP), thrombospondin (Tsp), osteopontin (OP), osteocalcin (OC), osteonectin (ON/SPARC), type I collagen (Col I), and bone sialoprotein (BSP) were determined in terms of mRNAs and proteins. Protein levels for ALP, OP, OC, and BSP were significantly (p < 0. 05) greater at day 5 in HBDCs cultured on [Mg]-Al2O3 compared to those cells grown on Al2O3. At day 14 the levels of ALP, Tsp, Col I, OP, ON/SPARC, and BSP rose significantly (p < 0.05) above those occurring in HBDCs grown on Al2O3, HAP, and TCPS. This suggests that HBDCs from the same patient respond to differences in the surface chemical groups. This study confirms that the chemistry of a substratum, which facilitates cellular adhesion, will enhance cellular differentiation.  相似文献   

19.
New nickel (Ni)-reduced stainless-steel metals have recently been developed to avoid sensitivity to Ni. In the present study, an austenitic Ni-reduced SSt named P558 (P558, B?hler, Milan, Italy) was studied in vitro on primary osteoblasts and in vivo after bone implantation in the sheep tibia, and was compared to ISO 5832-9 SSt (SSt) and Ti6Al4V. Cells were cultured directly on P558 and Ti6Al4V. Cells cultured on polystyrene were used as controls. Osteoblast proliferation, viability and synthetic activity were evaluated at 72 h by assaying WST1, alkaline phosphatase activity (ALP), nitric oxide, pro-collagen I (PICP), osteocalcin (OC), transforming growth factor-beta1 (TGFbeta-1) and interleukin-6 (IL-6) after 1.25(OH)2D3 stimulation. Under general anaesthesia, four sheep were submitted for bilateral tibial implantation of P558, SSt and Ti6Al4V rods. In vitro results demonstrated that the effect of P558 on osteoblast viability, PICP, TGF beta-1, tumor necrosis factor-alpha production did not significantly differ from that exerted by Ti6Al4V and controls. Furthermore, P558 enhanced osteoblast differentiation, as confirmed by ALP and OC levels, and reduced IL-6 production. At 26 weeks, the bone-to-implant contact was higher in P558 than in SSt (28%, p<0.005) and Ti6Al4V (4%, p<0.05), and was higher in Ti6Al4V than in SSt (22%, p<0.005). The tested materials did not affect bone microhardness in pre-existing host bone as evidenced by the measurements taken at 1000 microm from the bone-biomaterial interface (F=1.89, ns). At the bone-biomaterial interface the lowest HV value was found for SSt, whereas no differences in HV were observed between materials (F=1.55, ns). The current findings demonstrate P558 biocompatibility both in vitro and in vivo, and osteointegration processes are shown to be significantly improved by P558 as compared to the other materials tested.  相似文献   

20.
The biocompatibility of titania/hydroxyapatite (TiO2 /HA) composite coatings, at different ratio obtained by sol-gel process, were investigated studying the behaviour of human MG63 osteoblast-like cells. The biocompatibility was evaluated by means of cytotoxicity and cytocompatibility tests. Cytotoxicity tests, i.e., neutral red (NR), MTT and kenacid blue (KB) assays, were performed to assess the influence of the material extracts on lysosomes, mitochondria and cell proliferation, respectively. Cell proliferation, some preliminary indications of cell morphology, alkaline phosphatase activity, collagen and osteocalcin production of MG63 cells, cultured directly onto TiO2/HA substrates, were evaluated. The results showed that these materials have no toxic effects. Cell growth and morphology were similar on all the materials tested: on the contrary, alkaline-phosphatase-specific activity and collagen production of osteoblasts cultured on TiO2/HA coatings were significantly higher than uncoated titanium and polystyrene of culture plate and were influenced by chemical composition of the coatings. In particular, TiO2/HA coating at 1:1 ratio (w/w) seems to stimulate more than others the expression of some differentiation markers of osteoblastic phenotype. TiO2/HA coatings resulted to be bioactive owing to the presence of hydroxyl groups detected on their surface that promote the calcium and phosphate precipitation and improve the interactions with osteoblastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号