首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cortical anatomy of 6 patients with semantic dementia (the temporal lobe variant of frontotemporal dementia) was contrasted with that of a group of age-matched normal subjects by using voxel-based morphometry, a technique that identifies changes in gray matter volume on a voxel-by-voxel basis. Among the circumscribed regions of neuronal loss, the left temporal pole (Brodmann area 38) was the most significantly and consistently affected region. Cortical atrophy in the left hemisphere also involved the inferolateral temporal lobe (Brodmann area 20/21) and fusiform gyrus. In addition, the right temporal pole (Brodmann area 38), the ventromedial frontal cortex (Brodmann area 11/32) bilaterally, and the amygdaloid complex were affected, but no significant atrophy was measured in the hippocampus, entorhinal, or caudal perirhinal cortex. The degree of semantic memory impairment across the 6 cases correlated significantly with the extent of atrophy of the left anterior temporal lobe but not with atrophy in the adjacent ventromedial frontal cortex. These results confirm that the anterior temporal lobe is critically involved in semantic processing, and dissociate its function from that of the adjacent frontal region.  相似文献   

2.
Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease   总被引:11,自引:0,他引:11  
Volumetric magnetic resonance imaging analyses of 30 subjects were undertaken to quantify the global and temporal lobe atrophy in semantic dementia and Alzheimer's disease. Three groups of 10 subjects were studied: semantic dementia patients, Alzheimer's disease patients, and control subjects. The temporal lobe structures measured were the amygdala, hippocampus, entorhinal cortex, parahippocampal gyrus, fusiform gyrus, and superior, middle, and inferior temporal gyri. Semantic dementia and Alzheimer's disease groups did not differ significantly on global atrophy measures. In semantic dementia, there was asymmetrical temporal lobe atrophy, with greater left-sided damage. There was an anteroposterior gradient in the distribution of temporal lobe atrophy, with more marked atrophy anteriorly. All left anterior temporal lobe structures were affected in semantic dementia, with the entorhinal cortex, amygdala, middle and inferior temporal gyri, and fusiform gyrus the most severely damaged. Asymmetrical, predominantly anterior hippocampal atrophy was also present. In Alzheimer's disease, there was symmetrical atrophy of the entorhinal cortex, hippocampus, and amygdala, with no evidence of an anteroposterior gradient in the distribution of temporal lobe or hippocampal atrophy. These data demonstrate that there is a marked difference in the distribution of temporal lobe atrophy in semantic dementia and Alzheimer's disease. In addition, the pattern of atrophy in semantic dementia suggests that semantic memory is subserved by anterior temporal lobe structures, within which the middle and inferior temporal gyri may play a key role.  相似文献   

3.
Semantic dementia (SD) is a clinical variant of frontotemporal lobar degeneration (FTLD) characterized by progressive deterioration of semantic memory with relative sparing of other cognitive functions. It is associated with mainly left anterior temporal atrophy, and is also referred to as “left-temporal lobe variant” of FTLD. Recently, patients with mainly right-sided atrophy, or “right-temporal lobe variant”(RTLV), have been described. While some authors have reported that the initial and most significant deficit in these right-sided cases is a difficulty in recognizing famous people, others have observed that major behavioral abnormalities are the presenting symptoms. Here we report a detailed neuropsychological, language, behavioral and neuroimaging assessment of JT, a case of right temporal lobe variant of FTLD. JT showed early and prominent behavioral changes accompanied by a severe impairment in recognizing foods by their look, flavor or name. Later she also developed a difficulty in recognizing familiar people and objects. Standardized caregiver questionnaires of JT's pre- and post-morbid personality and interpersonal functioning showed that she went from being a flexible, dominant, extraverted, person to showing rigid, submissive and introverted behaviors. Her levels of neuroticism significantly increased, while her scores on agreeableness and cognitive and emotional empathy dropped. Voxel-based morphometry (VBM) showed most significant atrophy in the right amygdala/anterior hippocampal complex and collateral sulcus, extending to the right insula. We discuss the atypical cognitive and behavioral features of this case of RTLV of FTLD and stress the importance of behavioral changes and atypical semantic deficits for early diagnosis.  相似文献   

4.
The study of patients with semantic dementia, a variant of frontotemporal lobar degeneration, has emerged over the last two decades as an important lesion model for studying human semantic memory. Although it is well-known that semantic dementia is associated with temporal lobe degeneration, controversy remains over whether the semantic deficit is due to diffuse temporal lobe damage, damage to only a sub-region of the temporal lobe or even less severe damage elsewhere in the brain. The manner in which the right and left temporal lobes contribute to semantic knowledge is also not fully elucidated. In this study we used unbiased imaging analyses to correlate resting cerebral glucose metabolism and behavioural scores in tests of verbal and non-verbal semantic memory. In addition, a region of interest analysis was performed to evaluate the role of severely hypometabolic areas. The best, indeed the only, strong predictor of semantic scores across a set of 21 patients with frontotemporal lobar degeneration with semantic impairment was degree of hypometabolism in the anterior fusiform region subjacent to the head and body of the hippocampus. As hypometabolism in the patients' rostral fusiform was even more extreme than the abnormality in other regions with putative semantic relevance, such as the temporal poles, the significant fusiform correlations cannot be attributed to floor-level function in these other regions. More detailed analysis demonstrated more selective correlations: left anterior fusiform function predicted performance on two expressive verbal tasks, whereas right anterior fusiform metabolism predicted performance on a non-verbal test of associative semantic knowledge. This pattern was further supported by an additional behavioural study performed on a wider cohort of patients with semantic dementia, in which the patients with more extensive right-temporal atrophy (when matched on degree of naming deficit to a set of cases with more extensive left temporal atrophy) were significantly more impaired on the test of non-verbal semantics. Our preferred interpretation of this laterality effect involves differential strength of connectivity between different regions of a widespread semantic network in the human brain.  相似文献   

5.
The recognition of facial expressions of emotion is impaired in semantic dementia (SD) and is associated with right-sided brain atrophy in areas known to be involved in emotion processing, notably the amygdala. Whether patients with SD also experience difficulty recognizing emotions conveyed by other media, such as music, is unclear. Prior studies have used excerpts of known music from classical or film repertoire but not unfamiliar melodies designed to convey distinct emotions. Patients with SD (n = 11), Alzheimer's disease (n = 12) and healthy control participants (n = 20) underwent tests of emotion recognition in two modalities: unfamiliar musical tunes and unknown faces as well as volumetric MRI. Patients with SD were most impaired with the recognition of facial and musical emotions, particularly for negative emotions. Voxel-based morphometry showed that the labelling of emotions, regardless of modality, correlated with the degree of atrophy in the right temporal pole, amygdala and insula. The recognition of musical (but not facial) emotions was also associated with atrophy of the left anterior and inferior temporal lobe, which overlapped with regions correlating with standardized measures of verbal semantic memory. These findings highlight the common neural substrates supporting the processing of emotions by facial and musical stimuli but also indicate that the recognition of emotions from music draws upon brain regions that are associated with semantics in language.  相似文献   

6.
Gainotti G 《Neuropsychologia》2007,45(8):1591-1607
Selective disorders in recognition of familiar people have been described in patients with right and left anterior temporal lesions, but the exact nature of these cognitive impairments remains controversial. A clarification of this issue could have theoretical implications, because, according to Snowden et al. [Snowden, J. S., Thompson, J. C., & Neary, D. (2004). Knowledge of famous faces and names in semantic dementia. Brain, 127, 860-872], the pattern of impairment shown by patients with right and left anterior temporal atrophy is inconsistent with unitary, abstract, amodal models of semantic memory. This pattern could, on the contrary suggest a multimodal network, in which the right and left temporal lobes would mainly process and store visual and, respectively, verbal information. I tried to clarify this issue by systematically reviewing: (a) all published individual cases of patients showing a prevalent damage of the anterior parts of the right or left temporal lobes and a selective disorder of famous people recognition; (b) all group studies of patients with right or left temporal lobe epilepsy, which had investigated aspects of famous people recognition impairment. Results of these reviews consistently showed that different patterns of impaired recognition of familiar people can be observed in patients with right and left anterior temporal pathology. These patterns consist of a loss of familiarity feelings and of person specific information retrieval from face stimuli, when the right temporal lobe is damaged and of a prevalent impairment in finding their names when the anterior parts of the left temporal lobe are selectively damaged.  相似文献   

7.
Studies in macaque monkeys indicate that the perirhinal cortex in the temporal lobe participates in object memory. This function may be analogous to aspects of human semantic memory (knowledge of objects, concepts, faces and words). To date, the status of perirhinal cortex has not specifically been investigated in patients with semantic deficits as seen in semantic dementia, the temporal lobe variant of frontotemporal dementia. High-resolution three-dimensional magnetic resonance imaging was performed in subjects with semantic dementia and Alzheimer's disease (characterized in its early stages by selective episodic memory impairment) and in healthy age-matched controls. Hippocampal, perirhinal, temporopolar and entorhinal cortex volumes were measured by outlining areas on successive scan slices according to recognized landmarks. The entorhinal and hippocampal regions were further subdivided into anterior and posterior parts. In keeping with the hypothesized contribution of the perirhinal cortex to semantic memory function, we found greater involvement of this region, together with the temporopolar and anterior entorhinal cortices, in semantic dementia than in either Alzheimer's disease patients or control subjects. Performance on a range of semantic tests also correlated with perirhinal volume. Bilateral reduction in hippocampal volume compared with controls was seen in Alzheimer's disease. In conclusion, atrophy of the human perirhinal cortex, and of directly connected areas, was associated with semantic memory impairment but not episodic memory impairment, as predicted from the primate work.  相似文献   

8.
OBJECTIVE: To characterize and quantify the patterns of temporal lobe atrophy in AD vs semantic dementia and to relate the findings to the cognitive profiles. Medial temporal lobe atrophy is well described in AD. In temporal variant frontotemporal dementia (semantic dementia), clinical studies suggest polar and inferolateral temporal atrophy with hippocampal sparing, but quantification is largely lacking. METHODS: A volumetric method for quantifying multiple temporal structures was applied to 26 patients with probable AD, 18 patients with semantic dementia, and 21 matched control subjects. RESULTS: The authors confirmed the expected bilateral hippocampal atrophy in AD relative to controls, with involvement of the amygdala bilaterally and the right parahippocampal gyrus. Contrary to expectations, patients with semantic dementia had asymmetric hippocampal atrophy, more extensive than AD on the left. As predicted, the semantic dementia group showed more severe involvement of the temporal pole bilaterally and the left amygdala, parahippocampal gyrus (including the entorhinal cortex), fusiform gyrus, and the inferior and middle temporal gyri. Performance on semantic association tasks correlated with the size of the left fusiform gyrus, whereas naming appeared to depend upon a wider left temporal network. Episodic memory measures, with the exception of recognition memory for faces, did not correlate with temporal measures. CONCLUSIONS: Hippocampal atrophy is not specific for AD but is also seen in semantic dementia. Distinguishing the patients with semantic dementia was the severe global but asymmetric (left > right) atrophy of the amygdala, temporal pole, and fusiform and inferolateral temporal gyri. These findings have implications for diagnosis and understanding of the cognitive deficits in AD and semantic dementia.  相似文献   

9.
In temporal lobe epilepsy and lobectomy, deficits in emotion identification have been found consistently, but there is limited evidence for complex social inference skills such as theory of mind. Furthermore, risk factors and the specific neural underpinnings of these deficits in this population are unclear. We investigated these issues using a comprehensive range of social inference tasks (emotion identification and comprehension of sincere, deceitful and sarcastic social exchanges) in individuals with temporal lobe epilepsy or lobectomy (n = 87). We observed deficits across patient groups which were partly related to the presence of mesial temporal lobe sclerosis, early age of seizure onset and left lobectomy. A voxel-based morphometry analysis conducted in the pre-operative group confirmed the importance of the temporal lobe by showing a relationship between left hippocampal atrophy and overall social inference abilities, and between left anterior neocortex atrophy and sarcasm comprehension. These findings are in keeping with theoretical proposals that the hippocampus is critical for binding diverse elements in cognitive domains beyond canonical episodic memory operations, and that the anterior temporal cortex is a convergence zone of higher-order perceptual and emotional processes, and of stored representations. As impairments were frequent, we require further investigation of this behavioural domain and its impact on the lives of people with epilepsy.  相似文献   

10.
The valence model of emotion, which posits cerebral lateralization for positive and negative emotional processing, was investigated in patients with unilateral mesial temporal lobe epilepsy (TLE) and controls by measuring skin conductance levels (SCLs) and heart rate (HR) while positive and negative emotional photographs were viewed. Left TLEs exhibited selective SCL hyperarousal when viewing negative emotional slides relative to controls and right TLEs. In contrast, right TLEs showed no significant differences compared with the other groups. Results are consistent with left hemispheric specialization for positive emotional expression. Dysfunction of left mesial temporal lobe structures may result in autonomic hyperarousal and a release of the unrestrained negative emotional tendencies of the right hemisphere.  相似文献   

11.
The perception of and memory for faces, with or without emotional content, were studied in 43 patients with temporal lobe epilepsy who had undergone unilateral resection of the hippocampus and the amygdala and in 43 healthy participants for comparison. Each participant performed four tasks from the Florida Affect Battery (Facial Discrimination, Affect Discrimination, Affect Naming, Affect Selection) and two memory tasks (in one case of a face and in the other of a facial expression). Findings indicated that, although patients with unilateral temporal lobectomy (right or left) showed no difficulty in discriminating faces, they were not as good at remembering faces. Also, patients who had had a left temporal lobectomy showed impairment in discriminating facial expressions, in the memory of a facial expression and/or in naming facial expressions.  相似文献   

12.
We describe a patient with semantic variant of frontotemporal dementia who received longitudinal clinical evaluations and structural MRI scans and subsequently came to autopsy. She presented with early behavior changes and semantic loss for foods and people and ultimately developed a pervasive semantic impairment affecting social-emotional as well as linguistic domains. Imaging revealed predominant atrophy of the right temporal lobe, with later involvement of the left, and pathology confirmed bilateral temporal involvement. Findings support the view that left and right anterior temporal lobes serve as semantic hubs that may be affected differentially in semantic variant by early, relatively unilateral damage.  相似文献   

13.
We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.  相似文献   

14.
BACKGROUND: The human amygdala is implicated in the formation of emotional memories and the perception of emotional stimuli--particularly fear--across various modalities. OBJECTIVES: To discern the extent to which these functions are related. METHODS: 28 patients who had anterior temporal lobectomy (13 left and 15 right) for intractable epilepsy were recruited. Structural magnetic resonance imaging showed that three of them had atrophy of their remaining amygdala. All participants were given tests of affect perception from facial and vocal expressions and of emotional memory, using a standard narrative test and a novel test of word recognition. The results were standardised against matched healthy controls. RESULTS: Performance on all emotion tasks in patients with unilateral lobectomy ranged from unimpaired to moderately impaired. Perception of emotions in faces and voices was (with exceptions) significantly positively correlated, indicating multimodal emotional processing. However, there was no correlation between the subjects' performance on tests of emotional memory and perception. Several subjects showed strong emotional memory enhancement but poor fear perception. Patients with bilateral amygdala damage had greater impairment, particularly on the narrative test of emotional memory, one showing superior fear recognition but absent memory enhancement. CONCLUSIONS: Bilateral amygdala damage is particularly disruptive of emotional memory processes in comparison with unilateral temporal lobectomy. On a cognitive level, the pattern of results implies that perception of emotional expressions and emotional memory are supported by separate processing systems or streams.  相似文献   

15.
This study used functional magnetic resonance imaging to investigate brain activation during preparatory and regulatory control while participants (N = 24) were instructed either to simply view or decrease their emotional response to, pleasant, neutral or unpleasant pictures. A main effect of emotional valence on brain activity was found in the right precentral gyrus, with greater activation during positive than negative emotion regulation. A main effect of regulation phase was evident in the bilateral anterior prefrontal cortex (PFC), precuneus, posterior cingulate cortex, right putamen and temporal and occipital lobes, with greater activity in these regions during preparatory than regulatory control. A valence X regulation interaction was evident in regions of ventromedial PFC and anterior cingulate cortex, reflecting greater activation while regulating negative than positive emotion, but only during active emotion regulation (not preparation). Conjunction analyses revealed common brain regions involved in differing types of emotion regulation including selected areas of left lateral PFC, inferior parietal lobe, temporal lobe, right cerebellum and bilateral dorsomedial PFC. The right lateral PFC was additionally activated during the modulation of both positive and negative valence. Findings demonstrate significant modulation of brain activity during both preparation for, and active regulation of positive and negative emotional states.  相似文献   

16.
We report a patient who showed a dissociation between impaired semantic memory and preserved autobiographic memory. M.N., a 56-year-old right-handed woman, developed a supra sellar meningioma and underwent multiple operations. Following Lineac radiation, necrosis occurred in the left temporal lobe. Magnetic Resonance Imaging revealed bilateral lesions in the temporal lobes and in the right basal frontal lobe.

The patient's intellectual deterioration and anterograde amnesia were mild. Language was preserved, but for a subtle anomia. Autobiographic memory remained intact, while semantic memory for public events, historical figures, cultural items, knowledge of low frequency words and technical terms related to her profession was severely impaired. We hypothesize that bilateral lesions of the anterior half of the middle region of the temporal lobe plays a crucial role in causing deficits in semantic memory.  相似文献   


17.
Previous research has shown that emotional information aids conflict resolution in working memory (Levens & Phelps, 2008). Using a Recency-probes working memory (WM) paradigm, Levens and Phelps found that positive and negative emotional stimuli reduced the amount of interference created when information that was once relevant conflicted with currently relevant information, suggesting that emotional information facilitates interference resolution in WM. To determine what regions of the prefrontal cortex (PFC) and temporal lobes are critical to the influence of emotional stimuli on interference resolution, we conducted a Recency-probes emotion paradigm with right and left unilateral frontal and temporal lobe lesion patients. The frontal lobe lesion patient group comprised individuals with unilateral ventral and dorsal PFC lesions. The temporal lobe lesion patient group comprised individuals with lesions of the amygdala and surrounding structures. Results indicate that when the left amygdala is damaged, emotional facilitation of interference resolution is absent (equal emotional and neutral interference levels), when the right orbital frontal cortex (OFC) is damaged, in contrast, emotional interference resolution is impaired (emotional interference levels are higher than neutral levels are). Based on these unique patterns we propose specific contributions for these regions in the emotional facilitation of interference resolution in WM.  相似文献   

18.
We describe a patient with a selective impairment in naming and pointing to emotional facial expressions following damage to the right temporal lobe. His language functions were otherwise intact, and he performed well on a variety of perceptual and associative emotional facial tasks. We propose that his inability to match facial expressions with their names was induced by a disconnection between visual semantic and verbal semantic representations for facial emotions.  相似文献   

19.
Schizophrenia patients exhibit impaired facial affect perception, yet the exact nature of this impairment remains unclear. We investigated neural activity related to processing facial emotional and non-emotional information and complex images in 12 schizophrenia patients and 15 healthy controls using functional magnetic resonance imaging. All subjects performed a facial information processing task with three conditions: matching facial emotion, matching facial identity, and matching complex visual patterns. Patients and controls showed comparable behavioral performance in all task conditions. The neural activation patterns in schizophrenia patients and healthy controls were distinctly different while processing affect-related facial information but not other non-emotional facial features. During emotion matching, orbital frontal cortex and left amydala activations were found in controls but not in patients. When comparing emotion versus identity matching, controls activated the fusiform and middle temporal gyri, left superior temporal gyrus, and right inferior and middle frontal gyrus, whereas schizophrenia patients only activated the middle and inferior frontal gyri, the frontal operculi and the right insular cortex. Our findings suggest that schizophrenia patients and healthy controls may utilize different neural networks when processing facial emotional information.  相似文献   

20.
Background: Damage to left inferior temporal cortex has been associated with naming deficits resulting either from impaired access to phonological word forms (pure anomia) or from degraded semantic knowledge (semantic anomia). Neuropsychological evidence indicates that pure anomia may follow damage to posterior inferior temporal cortex (BA 37), whereas semantic anomia is associated with damage to more anterior temporal lobe regions (BA 20, 21, 38). By contrast, some investigators have suggested that it is the overall severity of anomia, rather than the nature of the underlying cognitive impairment, that is affected by the anterior extent of the lesion. Aims: To examine the naming performance of patients with left inferior temporal lobe damage and determine whether anterior extension of the lesion influences the nature and/or the severity of the naming impairment. Methods & Procedures: Eight participants with focal damage to left inferior temporal cortex completed a battery of language measures that included confrontation naming, semantic processing, and single‐word reading and spelling. Degree and type of anomia was examined relative to anterior lesion extension using both visual inspection and statistical analyses. Outcomes & Results: Naming performance ranged from unimpaired to severely defective, with only two participants demonstrating an additional mild impairment of semantic knowledge. The underlying mechanism of anomia seemed to be degraded access to phonological word forms in all participants, regardless of lesion configuration. The severity of the naming impairment was positively correlated with anterior extension of the lesion towards the temporal pole, although additional analyses suggested that these findings were significantly influenced by participant age. Naming was not correlated with performance on the nonverbal semantic task or any other demographic variable. Conclusions: The behavioural and neuroanatomical findings provide modest support for the hypothesis that a relationship exists between anterior lesion extension and the severity of concomitant anomia in patients with left inferior temporal lobe damage. The data suggest that such lesions may disconnect relatively preserved semantic knowledge from regions critical for access to phonological word forms. However, additional research is needed to discern to what extent age and individual variability temper these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号