首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that has an extracellular bilobed venus flytrap domain (VFTD) predicted to contain five calcium (Ca(2+))-binding sites. To elucidate the structure-function relationships of the VFTD, we investigated 294 unrelated probands with familial hypocalciuric hypercalcaemia (FHH), neonatal severe primary hyperparathyroidism (NSHPT) or autosomal dominant hypocalcaemic hypercalciuria (ADHH) for CaSR mutations and performed in vitro functional expression studies and three-dimensional modelling of mutations involving the VFTD. A total of 70 different CaSR mutations were identified: 35 in FHH, 10 in NSHPT and 25 in ADHH patients. Furthermore, a CaSR variant (Glu250Lys) was identified in FHH and ADHH probands and demonstrated to represent a functionally neutral polymorphism. NSHPT was associated with a large proportion of truncating CaSR mutations that occurred in the homozygous or compound heterozygous state. Thirty-four VFTD missense mutations were identified, and 18 mutations were located within 10 ? of one or more of the predicted Ca(2+)-binding sites, particularly at the VFTD cleft, which is the principal site of Ca(2+) binding. Mutations of residues 173 and 221, which are located at the entrance to the VFTD cleft binding site, were associated with both receptor activation (Leu173Phe and Pro221Leu) and inactivation (Leu173Pro and Pro221Gln), thereby highlighting the importance of these residues for entry and binding of Ca(2+) by the CaSR. Thus, these studies of disease-associated CaSR mutations have further elucidated the role of the VFTD cleft region in Ca(2+) binding and the function of the CaSR.  相似文献   

2.
Mutations in the gene for Claudin-16 (CLDN16) are linked to familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), a renal Mg2+ and Ca2+ wasting disorder that leads to progressive kidney failure. More than 20 mutations have been identified in CLDN16, which, with a single exception, affect one of two extracellular loops or one of four transmembrane domains of the encoded protein. Here, we describe a novel missense mutation, Cldn16 L203X, which deletes the entire C-terminal cytosolic domain of the protein. Surface expression of Cldn16 L203X is strongly reduced and the protein is instead found in the endoplasmic reticulum (ER) and lysosomes. ER-retained Cldn16 L203X is subject to proteasomal degradation. Cldn16 L203X present in lysosomes reaches this compartment following transport to the plasma membrane and endocytosis. Blocking clathrin-mediated endocytosis increases surface expression of Cldn16 L203X. Thus, endocytosis inhibitors may provide a novel therapeutic approach for FHHNC patients carrying particular Cldn16 mutations.  相似文献   

3.
Autosomal dominant hypocalcemia can be caused by activating mutations of the calcium-sensing receptor (CaSR) gene. We experienced two patients (proband and her daughter) with hypocalcemia caused by a missense mutation of the CaSR gene. The proband, aged 25, showed hypocalcemia and hypoparathyroidism from infancy. She had been diagnosed as having idiopathic hypoparathyroidism and had been treated with calcitriol. She gave birth to a female infant at age 24 years. Her daughter was found to have hypocalcemia (Ca, 6.6 mg/dl), without seizure or tetany, when she was 7 months old. DNA analysis of their CaSR genes showed a novel heterozygous mutation at codon 129 (TGC-to-AGC) with substitution of cysteine for serine (C129S). Familial examination revealed that this mutation had occurred de-novo in the proband. Wild-type and mutant (C129S) CaSR cDNA were transfected into HEK293 cells, and intracellular calcium concentrations were measured with a fluorescent calcium indicator. HEK cells transfected with the C129S mutant CaSR gene showed a larger increase in intracellular calcium concentration in response to the change in the extracellular calcium concentration than HEK cells transfected with the wild-type receptor. We conclude that the C129S mutation in the CaSR gene observed in these patients causes autosomal dominant hypocalcemia. Received: August 3, 2000 / Accepted: October 17, 2000  相似文献   

4.
5.
The skeletal muscle ryanodine receptor gene (RYR1; OMIM 180901) on chromosome 19q13.1 encodes the skeletal muscle calcium release channel. To date, more than 25 missense mutations have been identified in RYR1 and are associated with central core disease (CCD; OMIM 117000) and/or the malignant hyperthermia susceptibility phenotype (MHS1; OMIM 145600). The majority of RYR1 mutations are clustered in the N-terminal hydrophilic domain of the protein. Only four mutations have been identified so far in the highly conserved C-terminal region encoding the luminal/transmembrane domain of the protein which forms the ion pore. Three of these mutations have been found to segregate with pure or mixed forms of CCD. We have screened the C-terminal domain of the RYR1 gene for mutations in 50 European patients, diagnosed clinically and/or histologically as having CCD. We have identified five missense mutations (four of them novel) in 13 index patients. The mutations cluster in exons 101 and 102 and replace amino acids which are conserved in all known vertebrate RYR genes. In order to study the functional effect of these mutations, we have immortalized B-lymphocytes from some of the patients and studied their [Ca(2+)](i) homeostasis. We show that lymphoblasts carrying the newly identified RYR1 mutations exhibit: (i) a release of calcium from intracellular stores in the absence of any pharmacological activators of RYR; (ii) significantly smaller thapsigargin-sensitive intracellular calcium stores, compared to lymphoblasts from control individuals; and (iii) a normal sensitivity of the calcium release to the RYR inhibitor dantrolene. Our data suggest the C-terminal domain of RYR1 as a hot spot for mutations leading to the CCD phenotype. If the functional alterations of mutated RYR channels observed in lymphoblastoid cells are also present in skeletal muscles this could explain the predominant symptom of CCD, i.e. chronic muscle weakness. Finally, the study of calcium homeostasis in lymphoblastoid cells naturally expressing RYR1 mutations offers a novel non-invasive approach to gain insights into the pathogenesis of MH and CCD.  相似文献   

6.
Darier's disease (DD) is an autosomal dominant skin disorder characterized clinically by multiple keratotic papules, and histologically by focal loss of adhesion between epidermal cells (acantholysis) and by abnormal keratinization. Variant forms of cutaneous phenotype, sometimes familial, have been described. Associated neuropsychiatric features, including mental handicap, schizophrenia, bipolar disorder and epilepsy, have also been reported. The cause of DD was shown recently to be mutation in the ATP2A2 gene at 12q24.1, which encodes the sarco-endoplasmic reticulum calcium ATPase type 2 (SERCA2). Here, we show that while both common isoforms of SERCA2 are expressed in the cytoplasm of cultured keratinocytes and fibroblasts, in adult skin sections only the longer isoform, SERCA2b, was expressed abundantly in epidermal structures. Extended mutation analysis in European DD patients using single-strand conformation polymorphism and/or direct sequencing identified 40 different patient-specific mutations in 47 families. The majority (23/40) were likely to result in nonsense-mediated RNA decay. The remaining 17 were missense mutations distributed throughout the protein and were associated significantly with atypical clinical features. The clearest association was with the familial haemorrhagic variant where all four families tested had a missense mutation. Three of the families (one Scottish family and two unrelated Italian families) exhibited the same N767S substitution in the M5 transmembrane domain, and a fourth family, from Sweden, had a C268F substitution in the M3 transmembrane domain. Neuropsychiatric features did not appear to be associated with a specific class of mutation and may be an intrinsic, but inconsistent, effect of defective ATP2A2 expression.  相似文献   

7.
Hailey-Hailey disease (HHD) is an autosomal dominant skin disorder characterized by suprabasal cell separation (acantholysis) of the epidermis. Previous genetic linkage studies localized the gene to a 5 cM interval on human chromosome 3q21. After reducing the disease critical region to <1 cM, we used a positional cloning strategy to identify the gene ATP2C1, which is mutated in HHD. ATP2C1 encodes a new class of P-type Ca(2+)-transport ATPase, which is the homologue for the rat SPLA and the yeast PMR1 medial Golgi Ca(2+)pumps and is related to the sarco(endo)plasmic calcium ATPase (SERCA) and plasma membrane calcium ATPase (PCMA) families of Ca(2+)pumps. The predicted protein has the same apparent transmembrane organization and contains all of the conserved domains present in other P-type ATPases. ATP2C1 produces two alternative splice variants of approximately 4.5 kb encoding predicted proteins of 903 and 923 amino acids. We identified 13 different mutations, including nonsense, frameshift insertion and deletions, splice-site mutations, and non-conservative missense mutations. This study demonstrates that defects in ATP2C1 cause HHD and together with the recent identification of ATP2A2 as the defective gene in Darier's disease, provide further evidence of the critical role of Ca(2+)signaling in maintaining epidermal integrity.  相似文献   

8.
The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases, our series seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is the first, and to date only, idiopathic epilepsy for which a specific mutation has been found. A missense mutation in the critical M2 domain of the alpha4 subunit of the neuronal nicotinic acetylcholine receptor (CHRNA4) has been recently identified in one large Australian pedigree. Here we describe a novel mutation in the M2 domain of the CHRNA4 gene in a Norwegian family. Three nucleotides (GCT) were inserted at nucleotide position 776 into the coding region for the C-terminal end of the M2 domain. Physiological investigations of the receptor reconstituted with the mutated CHRNA4 subunit reveal that this insertion does not prevent the receptor function but increases its apparent affinity for ACh. In addition, this mutant receptor shows a significantly lower calcium permeability that, at the cellular level, may correspond to a loss of function. Comparison of the two mutations identified so far in families with ADNFLE illustrates that different mutations can result in similar phenotypes.   相似文献   

10.
Hereditary hemmorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by multisystemic vascular dyplasia and recurrent hemorrhage. One of the causative genes is the activin receptor-like kinase-1 (ALK-1) gene located on chromosome 12q13. ALK-1 is an endothelial cell type I receptor for the TGF-beta superfamily of ligands. As a number of mutations have been identified in the kinase domain of ALK-1, we initiated a mutation analysis specifically targeting the first four coding exons of ALK-1 in order to determine if mutations in the extracellular and transmembrane domains are also present in HHT. Six new mutations have been identified. Three frameshift mutations were identified in exons encoding the extracellular and transmembrane domains. These mutations would grossly truncate the ALK-1 protein and are thus classic null alleles. Three new missense mutations within the exons encoding the extracellular domain, in addition to two previously described missense mutations, are located at or near highly conserved cysteines. These mutations may disrupt intra- or inter-molecular disulfide bridges required for ligand binding. The combined data suggest that both severe and subtle changes in the ALK-1 amino acid sequence can lead to receptor dysfunction and result in the HHT disease phenotype.  相似文献   

11.
Mutations in the insulin receptor gene have been reported in cases of type A insulin resistance. We report herein two cases of type A insulin resistance, which involve some novel mutations. Case 1 is a heterozygote of the C253Y missense mutation and case 2 is a heterozygote of the Y864X nonsense mutation. In the C253Y missense mutation in exon 3, a cysteine residue is replaced with tyrosine in the cysteine-rich domain of the alpha subunit. The Y864X in exon 13 results in a truncated receptor, which is devoid of most of the beta subunit. This mutant receptor could not be expressed on a cell membrane since the transmembrane domain is missing. Other significant mutations were not found for the entire coding regions and splice/donor sites.  相似文献   

12.
Changes in extracellular calcium (Ca(2+)o) concentration ([Ca2+]o) affect kidney function both under basal and hormone-stimulated conditions. The molecular identification of an extracellular Ca(2+)-sensing receptor (CaR) has confirmed a direct role of Ca(2+)o on parathyroid and kidney function (i.e. independent of calciotropic hormones) as a modulator of Ca2+ homeostasis. In addition, evidence accumulated over the last 10 years has shown that CaR is also expressed in regions outside the calcium homeostatic system where its role is largely undefined but seems to be linked to regulation of local ionic homeostasis. The parathyroid and kidney CaRs are 1081 and 1079 amino acids long, respectively, and belong to the type III family of G protein-coupled receptors (GPCRs), which includes other CaRs, metabotropic glutamate receptors and putative vomeronasal organ receptors. For the CaR, its low (millimolar) affinity for Ca2+, its positive cooperativity and its large ion-sensing extracellular domain, indicate that the receptor is more sensitive to changes in net cationic charge rather than to a specific ligand. Mg2+, trivalent cations of the lanthanide series and polyvalent cations such as spermine and aminoglycoside antibiotics can all activate the receptor in vitro with EC50 values in the micromolar range for trivalent and polyvalent cations or in the millimolar range for Ca2+ and Mg2+. In addition to true CaR agonists, CaR sensitivity to Ca(2+)o is also susceptible to allosteric modulation by ionic strength, L-amino acids and by pharmacological agents. This review will address endogenous and exogenous CaR agonists, the role of the receptor in the calcium homeostatic system and some speculation on possible role(s) of the CaR in regions not involved in mineral ion homeostasis.  相似文献   

13.
Mutations of bone morphogenetic protein receptor type II (BMPR-II) have been associated with familial and idiopathic pulmonary arterial hypertension (PAH). BMPR-II is a member of the transforming growth factor-beta receptor superfamily. It consists of extracellular, transmembrane, and kinase domains, and a unique C-terminus with mostly unknown function. However, a number of PAH-causing mutations are predicted to truncate the C-terminus, suggesting that this domain plays an important role in the homeostasis of pulmonary vessels. In this study, we sought to elucidate the functional role of this C-terminus by seeking its interacting partners. Using yeast two-hybrid screening, we identified c-Src tyrosine kinase as a binding partner of this C-terminus. In vitro co-immunoprecipitation confirmed their interaction. Mutations truncating the C-terminus disrupted their interaction, while missense mutation within kinase domain reduced their interaction. In addition, BMPR-II and c-Src tyrosine kinase colocalized within intracellular aggregates when overexpressed in HEK293 cells. Moreover, mutations truncating the C-terminus disrupted their colocalization, whereas missense mutation within kinase domain had no effect on their colocalization. Furthermore, BMP ligand stimulation decreased c-Src-activating phosphorylation at Tyrosine 418 in pulmonary smooth muscle cells in both time- and concentration-dependent manners. Mutations that truncated the C-terminus abolished this response. Taken together, these results suggest a model in which proliferative effect of c-Src by vasoactive molecules is balanced by opposing effect of BMP signaling in basal state, and the loss of this balance due to BMPR2 mutations leads to increased c-Src activity and subsequently cell growth.  相似文献   

14.
Congenital stationary night blindess-2 (incomplete congenital stationary night blindness (iCSNB) or CSNB-2) is a nonprogressive, X-linked retinal disease which can lead to clinical symptoms such as myopia, hyperopia, nystagmus, strabismus, decreased visual acuity, and impaired scotopic vision. These clinical manifestations are linked to mutations found in the CACNA1F gene which encodes for the Ca(v)1.4 voltage-gated calcium channel. To better understand the physiological effects of these mutations, three missense mutants, F742C, G1007R and R1049W, previously shown to be mutated in patients with CSNB-2, were transiently expressed in human embryonic kidney (HEK) tsA-201 cells and characterized using whole-cell patch clamp. The G1007R mutation is located in transmembrane segment 5 (S5) of domain III and R1049W is located in the extracellular linker between S5 and the P-loop of domain III. Both mutants produced full length proteins that targeted to the membrane but did not support ionic currents. In 20 mM Ba(2+), F742C (S6 domain II) produced a approximately 21 mV hyperpolarizing shift in half activation potential (V(a[1/2])) and a approximately 23 mV hyperpolarizing shift in half inactivation potential (V(h[1/2])). Additionally, F742C displayed slower inactivation kinetics and a smaller whole cell conductance (G(max)). In physiological 2 mM Ca(2+), F742C produced a approximately 19 mV hyperpolarizing shift in V(a[1/2]). These findings suggest that the pathology of CSNB-2 in patients with these missense mutations in the Ca(v)1.4 calcium channel is the result in either a gain of function (F742C) or a loss of function (G1007R, R1049W).  相似文献   

15.
We report three novel activating mutations in the calcium-sensing receptor (CASR) that are responsible for autosomal dominant hypocalcemia (ADH) in three unrelated families. Each mutation involves a missense substitution resulting in a nonconservative amino acid alteration, P221L, E228Q, and Q245R. These mutations were observed in affected family members, but not in unaffected family members or in unrelated control samples. All three mutations are clustered in the extracellular domain of the CASR in a region dominated by negatively charged amino acids. Each mutant and wild-type receptor was expressed in Cos-1 cells. A luciferase reporter gene assay was utilized to detect the level of receptor activity by utilizing a protein kinase C-activated promoter to drive the production of luciferin, the reporter gene product. All three mutant receptors exhibited an increased sensitivity to calcium at all concentrations tested when compared to the wild-type receptor, supporting the hypothesis that these are activating mutations and are responsible for the ADH phenotype in these families. The data presented in this study suggest the importance of this highly negatively charged region of the extracellular domain in normal CASR function.  相似文献   

16.
We investigated the molecular basis of hyperekplexia (STHE), an inherited neurological disorder characterised by neonatal hypertonia and an exaggerated startle response, in a kindred and identified a novel missense mutation in the pore-lining M2 domain of the alpha1 subunit of the glycine receptor (GLRA1). Sequencing analysis of all exons of the GLRA1 gene revealed a G1158A base transition in affected, heterozygous patients. The base transition results in a valine to methionine substitution at codon 260 in the middle of the M2 transmembrane domain. The location within the M2 domain suggests for this substitution a likely role in altering ion channel properties.  相似文献   

17.
Rippling muscle disease is caused by mutations in the gene encoding caveolin-3 (CAV3), the muscle-specific isoform of the scaffolding protein caveolin, a protein involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible for the formation of caveolae, which are highly organized sarcolemmal clusters influencing early muscle differentiation, signalling and Ca(2+) homeostasis. In the present study we examined Ca(2+) homeostasis and excitation-contraction (E-C) coupling in cultured myotubes derived from two patients with Rippling muscle disease with severe reduction in caveolin-3 expression; one patient harboured the heterozygous c.84C>A mutation while the other patient harbored a homozygous splice-site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the CAV3 gene. Our results show that cells from control and rippling muscle disease patients had similar resting [Ca(2+) ](i) and 4-chloro-m-cresol-induced Ca(2+) release but reduced KCl-induced Ca(2+) influx. Detailed analysis of the voltage-dependence of Ca(2+) transients revealed a significant shift of Ca(2+) release activation to higher depolarization levels in CAV3 mutated cells. High resolution immunofluorescence analysis by Total Internal Fluorescence microscopy supports the hypothesis that loss of caveolin-3 leads to microscopic disarrays in the colocalization of the voltage-sensing dihydropyridine receptor and the ryanodine receptor, thereby reducing the efficiency of excitation-contraction coupling.  相似文献   

18.
19.
《Human molecular genetics》1998,7(7):1185-1192
X-linked retinoschisis (XLRS) is the most common cause of juvenile macular degeneration in males, resulting in vision loss early in life. The gene involved in XLRS was identified recently. It encodes a protein with a disoidin domain, suggested to be involved in cell-cell interactions. We have screened the gene for mutations in 234 familial and sporadic retinoschisis cases and identified 82 different mutations in 214 (91%). Thirty one mutations were found more than once, i.e. 2-10 times, with the exception of the 214G-->A mutation which was found in 34 apparently unrelated cases. The origin of the patients, the linkage data and the site of the mutations (mainly CG dinucleotides) indicate that most recurrent mutations had independent origins and thus suggest the existence of a significant new mutation rate in XLRS1. The mutations identified cover the entire spectrum, from small intra-genic deletions (7%), to nonsense (6%), missense (75%), small frameshifting insertions/deletions (6%) and splice site mutations (6%). Since, regardless of the mutation type, no females with a typical RS phenotype were identified, RS seems to be caused by loss-of-function mutations only. Mutations occurred non-randomly, with hotspots at several CG dinucleotides and a C6stretch. Exons 1-3 contained few, mainly translation-truncating mutations, arguing against an important functional role for this segment of the protein. Exons 4-6, encoding the discoidin domain, contained most, mainly missense mutations. An alignment of 32 discoidin domain proteins was constructed to reveal the consensus sequence and to deduce the functional importance of the missense mutations identified. The mutation analysis revealed a high preponderance of mutations involving or creating cysteine residues, pointing to sites important for the tertiary folding and/or protein function, and highlights several amino acids which may be involved in XLRS1-specific protein-protein interactions. Despite the enormous mutation heterogeneity, patients have relatively uniform clinical manifestations although with great intra-familial variation in age at onset and progression.   相似文献   

20.
Cowden syndrome (CS), also known as multiple hamartoma syndrome, is an autosomal dominant cancer syndrome associated with a high risk of breast and thyroid cancers. The phosphatase and tensin homolog gene (PTEN) encodes a lipid phosphatase that contains a PTPase domain and a C2 domain and plays a role as a tumor suppressor that negatively regulates the cell-survival signaling pathway initiated by phosphatidylinositol 3-kinase (PI3K). PTEN inhibits angiogenesis, and germline mutations of the PTEN gene are associated with CS. We screened for mutations in the PTEN gene in two unrelated Japanese patients with CS. In one patient, who suffered from bilateral breast cancer, thyroid adenoma, and gastric malignant lymphoma, we found a single-base substitution in exon 2 (115G>C) of the PTEN gene. This transversion results in a germline missense mutation (A39P). To date, nine different mutations have been identified in exon 2 of the PTEN gene in patients with CS and variant CS; however, the A39P missense mutation has not been reported previously. We also detected a previously reported nonsense mutation, 697C>T, resulting in R233X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号