首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the ascending cholinergic projection from the laterodorsal tegmental nucleus (LDT) to septum in the production of 22 kHz ultrasonic vocalization was studied in adult rats, using behavioral-pharmacological and anatomical tracing methods. Direct application of carbachol, a muscarinic agonist, into the lateral septal region induced species-typical 22 kHz alarm calls. The septum receives cholinergic input from LDT, thus, activation with glutamate of predominantly cholinergic neurons of the LDT induced comparable 22 kHz alarm calls in the same animals. This glutamate-induced response from LDT was significantly reduced when the lateral septum was pretreated with scopolamine, a cholinergic antagonist. To investigate the localization of the cell groups projecting to septum, the fluorescent retrograde tracer, fluorogold, was pressure injected into the lateral septum and sections from these brains were also immunostained against choline acetyltransferase (ChAT) to visualize cholinergic cell bodies. Several ChAT-fluorogold double-labeled cells within the boundaries of the LDT were found, while other fluorogold-labeled regions did not contain double-labeled cells. These results provide both direct and indirect evidence that at least a part of the mesolimbic ascending cholinergic projection from LDT to septum is involved in the initiation of the 22 kHz vocalization. It is concluded that the septum is an integral part of the medial cholinoceptive vocalization strip and the 22 kHz alarm vocalization is triggered from septum by the cholinergic input from the LDT.  相似文献   

2.
The present review is focused on the neural mechanisms and acoustic features of 22 kHz alarm calls emitted by adult rats as a defensive measure in numerous behavioral situations. The alarm calls are initiated by activity of the cholinergic neurons of the laterodorsal tegmental nucleus (LDT) and a subsequent release of acetylcholine at the target areas, collectively termed as the medial cholinoceptive vocalization strip. Injection of carbachol, a predominantly muscarinic agent, into any portion of the cholinoceptive strip, or direct stimulation of the LDT, induced species-typical 22 kHz calls comparable to those emitted in natural situations. The pharmacologically induced 22 kHz calls contained their alarming properties for naïve rats. The 22 kHz calls induced either by carbachol or by stimulation of the LDT could be antagonized by atropine, or scopolamine applied into the cholinoceptive strip. Our recent behavioral studies have shown that the combination of long call duration and constant sound frequency (20–30 kHz) convey the alarming message. Anatomical and neurochemical organization of the vocalization strip and acoustic properties of the calls lead to the conclusion that 22 kHz calls indicate a fundamental, negative affective state common for many behavioral situations.  相似文献   

3.
Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 μl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline- and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA.  相似文献   

4.
The brain cholinergic system comprises two main recognized subdivisions, the basal forebrain and the brainstem cholinergic systems. The effects of chronic alcohol consumption on the basal forebrain cholinergic nuclei have been investigated extensively, but there is only one study that has examined those effects on the brainstem cholinergic nuclei. The last one comprises the pedunculopontine tegmental (PPT) and the laterodorsal tegmental (LDT) nuclei, which are known to give origin to the main cholinergic projection to the ventral tegmental area, a key brain region of the neural circuit, the mesocorticolimbic system, that mediates several behavioral and physiological processes, including reward. In the present study, we have examined, using stereological methods, the effects of chronic alcohol consumption (6 months) and subsequent withdrawal (2 months) on the total number and size of PPT and LDT choline acetyltransferase (ChAT)-immunoreactive neurons. The total number of PPT and LDT ChAT-immunoreactive neurons was unchanged in ethanol-treated and withdrawn rats. However, ChAT-immunoreactive neurons were significantly hypertrophied in ethanol-treated rats, an alteration that did not revert 2 months after ethanol withdrawal. These results show that prolonged exposure to ethanol leads to long-lasting, and potentially irreversible, cytoarchitectonic and neurochemical alterations in the brainstem cholinergic nuclei. These alterations suggest that the alcohol-induced changes in the brainstem cholinergic nuclei might play a role in the mechanisms underlying the development of addictive behavior to alcohol.  相似文献   

5.
This study demonstrates that the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT) are sources of cholinergic projections to the cat pontine reticular formation gigantocellular tegmental field (PFTG). Neurons of the LDT and PPT were double-labeled utilizing choline acetyltransferase immunohistochemistry combined with retrograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP). In the LDT the percentage of cholinergic neurons retrogradely labeled from PFTG was 10.2% ipsilaterally and 3.7% contralaterally, while in the PPT the percentages were 5.2% ipsilaterally and 1.3% contralaterally. These projections from the LDT and PPT to the PFTG were confirmed and their course delineated with anterograde labeling utilizing Phaseolus vulgaris leucoagglutinin (PHA-L) anterograde transport.  相似文献   

6.
It is not known how the brain modifies its regulatory systems in response to the application of a drug, especially over the long term of weeks and months. We have developed a model system approach to this question by manipulating cholinergic cell groups of the laterodorsal and pedunculopontine tegmental (LDT/PPT) nuclei in the pontomesencephalic tegmentum (PMT), which are known to be actively involved in the timing and quantity of rapid eye movement (REM) sleep. In a freely moving feline model, a single microinjection of the cholinergic agonist carbachol conjugated to a latex nanosphere delivery system into the caudolateral PMT elicits a long-term enhancement of one distinguishing phasic event of REM sleep, ponto-geniculo-occipital (PGO) waves, lasting 5 days but without any significant change in REM sleep or other behavioral state. Here, we test the hypothesis that cholinergic activation within the caudolateral PMT alters the postsynaptic excitability of the PGO network, stimulating the prolonged expression of c-fos that underlies this long-term PGO enhancement (LTPE) effect. Using quantitative Fos immunohistochemistry, we found that the number of Fos-immunoreactive (Fos-IR) neurons surrounding the caudolateral PMT injection site decreased sharply by postcarbachol day 03, while the number of Fos-IR neurons in the more rostral LDT/PPT increased >30-fold and remained at a high level following the course of LTPE. These results demonstrate a sustained c-fos expression in response to pharmacological stimulation of the brain and suggest that carbachol's acute effects induce LTPE via cholinergic receptors, with subsequent transsynaptic activation of the LDT/PPT maintaining the LTPE effect.  相似文献   

7.
Ascending projections from the pedunculopontine tegmental nucleus (PPT) and the surrounding mesopontine tegmentum to the forebrain in the rat are here examined by using both retrograde and anterograde tracing techniques combined with choline acetyltransferase (ChAT) immunohistochemistry. The anterogradely transported lectin Phaseolus vulgaris-leukoagglutinin (PHA-L) was iontophoretically injected into the PPT in 12 rats. Anterogradely labelled fibers and varicosities were observed in the thalamic nuclei, confirming the findings of our previous retrograde studies (Hallanger et al: J. Comp. Neurol. 262:105-124, '87). In addition, PHA-L-labelled fibers and varicosities suggestive of terminal fields were observed in the anterior, tuberal, and posterior lateral hypothalamic regions, the ventral pallidum in the region of the nucleus basalis of Meynert, the dorsal and intermediate lateral septal nuclei, and in the central and medial nuclei of the amygdala. To determine whether these were cholinergic projections, the retrograde tracer WGA-HRP was injected into terminal fields in the hypothalamus, septum, ventral pallidum, and amygdala. Numerous ChAT-immunoreactive neurons in the PPT and laterodorsal tegmental nucleus (LDT) were retrogradely labelled from the lateral hypothalamus. These cholinergic neurons constituted over 20% of those retrogradely labelled in the dorsolateral mesopontine tegmentum; the balance consisted of noncholinergic neurons of the central tegmental field, retrorubral field, and cuneiform nucleus. Following placement of WGA-HRP into dorsal and intermediate lateral septal regions, the vast majority (greater than 90%) of retrogradely labelled neurons were cholinergic neurons of the PPT and LDT, with few noncholinergic retrogradely labelled neurons in the adjacent tegmentum. In contrast, fewer cholinergic neurons were retrogradely labelled following placement of tracer into the nucleus basalis of Meynert or into the central, medial, and basolateral nuclei of the amygdala, while numerous noncholinergic neurons of the central tegmental field rostral to the PPT and of the retrorubral field adjacent to the PPT were retrogradely labelled in these cases. These anterograde and retrograde studies demonstrate that cholinergic PPT and LDT neurons provide a substantial proportion of mesopontine tegmental afferents to the hypothalamus and lateral septum, while projections to the nucleus basalis and the amygdala are minimal.  相似文献   

8.
In aged cats, light microscopic studies revealed significant decrease in the soma size of choline acetyltransferase (ChAT)-positive neurons in the laterodorsal and pedunculo-pontine tegmental nuclei (LDT and PPT), compared with adult control animals. In addition, a significant reduction of the total dendritic length and total dendritic segment number of ChAT-positive neurons was detected in both the LDT and PPT of aged cats. However, in contrast to the changes of soma and dendrites, no significant changes in the number of ChAT-positive neurons in aged were found comparing to that in the control cats in both the LDT and PPT; nor were there differences in the staining intensity of the somata of neurons in the adult and aged cats. Electron microscopic analysis highlighted degenerative changes in cholinergic neurons in the LDT and PPT of aged cats which included somata with intracytoplasmic vacuoles, darkened mitochondria, depletion of dendritic microtubules and severe demyelination of axons. These data indicate that profound atrophic changes occur in cholinergic systems of the LDT and PPT as a consequence of the aging process. These alterations likely reflect the cellular bases for the age-related changes in REM sleep that occur in old animals.  相似文献   

9.
Cholinergic neurons in the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT) play a role in the regulation of several kinds of behavior. Some of them, such as locomotion, motor inhibition or sleep, show dramatic changes at a certain period of postnatal development. To understand the neural substrate for the development of these physiological functions, we studied the development of cholinergic neurons in the LDT and PPT of postnatal and adult rats using histochemical staining of NADPH-diaphorase (NADPH-d) and immunohistochemical staining of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT). At postnatal day 1 (P1), ChAT- and VAChT-stained cells localized more dorsally than those of NADPH-d-stained cells, and at P7 their distributions became similar to those of NADPH-d-stained cells. The number of NADPH-d-stained cells increased rapidly after birth, reaching the adult level by P7. In contrast, the number of ChAT- and VAChT-stained cells and the intensity of their staining decreased from P1 to P3 and then increased through P21. The volume of the LDT increased during the second postnatal week. These findings indicate that cholinergic neurons in the LDT develop their cholinergic properties during the second postnatal week and mature functionally thereafter. We discuss these results in light of the several physiological functions regulated by the cholinergic neurons in the mesopontine tegmentum.  相似文献   

10.
The lateral dorsal tegmental nucleus (LDT) provides ascending cholinergic projections to forebrain structures such as prefrontal cortex, septum, habenula, and thalamus, but relatively little is known of the physiology of LDT neurons. Intracellular recordings from LDT neurons in guinea pig brain slices found that most neurons fired action potentials either tonically or in bursts. The voltage dependent characteristics of the neurons suggest that a prolonged afterhyperpolarization due to an outward potassium current and a low-threshold calcium conductance contributed to these two modes of firing. Intracellular injections of Lucifer Yellow and subsequent staining for NADPH-diaphorase activity permitted positive identification of cholinergic neurons.  相似文献   

11.
Wave A in the cat appears to be analogous to P1 in the human. Both are positive middle-latency auditory-evoked potentials, present at slow click rates during wakefulness and REM sleep but absent during slow-wave sleep. Wave A has been recorded in the parabrachial and medial tegmental areas of the midbrain and in thalamic target projections of the reticular activating system. Two nuclei in this system, the pedunculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei, contain cholinergic cells; the cholinergic antagonist scopolamine eliminates Wave A. To test whether PPT and LDT were important in Wave A generation, we attempted to lesion these nuclei bilaterally in 11 cats. Wave A was markedly diminished or absent in all but 2 cats, in which the lesions did not include PPT. Loss of choline acetyltransferase-positive cells in PPT, but not LDT, was correlated with effects on Wave A, i.e. greatest cell loss occurred in cats in which Wave A disappeared, and least cell loss in cats with no change in Wave A. We conclude that the PPT nucleus, and particularly its cholinergic cell component, is essential for Wave A generation and suggests that a similar substrate may be significant for generation of the human P1.  相似文献   

12.
Increasingly strong evidence suggests that cholinergic neurons in the mesopontine tegmentum play important roles in the control of wakefulness and sleep. To understand better how the activity of these neurons is regulated, the potential afferent connections of the laterodorsal (LDT) and pedunculopontine tegmental nuclei (PPT) were investigated in the rat. This was accomplished by using retrograde and anterograde axonal transport methods and NADPH-diaphorase histochemistry. Immunohistochemistry was also used to identify the transmitter content of some of the retrogradely identified afferents. Following injections of the retrograde tracer wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) into either the LDT or the PPT, labelled neurons were seen in a number of limbic forebrain structures. The medial prefrontal cortex and lateral habenula contained more retrogradely labelled neurons from the LDT, whereas in the bed nucleus of the stria terminalis and central nucleus of the amygdala, more cells were labelled from the PPT. Moderate numbers of neurons were seen in the magnocellular regions of the basal forebrain, and many labelled neurons were observed in the lateral hypothalamus, the zona incerta, and the midbrain central gray from both the LDT and the PPT. Accessory oculomotor nuclei in the midbrain as well as eye movement-related structures in the lower brainstem contained some neurons labelled from the LDT, and fewer neurons from the PPT. A few labelled neurons were seen in somatosensory and other sensory relay nuclei in the brainstem and the spinal cord. Retrograde labelling was seen in a number of extrapyramidal structures, including the globus pallidus, entopenduncular and subthalamic nuclei, and substantia nigra following PPT injections; with LDT injections, labelling was similar in density in the substantia nigra but virtually absent in the entopeduncular and subthalamic nuclei. Data with the fluorescent retrograde tracer fluorogold combined with immunofluorescence indicated that many neurons in the zona incerta-lateral hypothalamic region that were retrogradely labelled from the LDT contained alpha-melanocyte-stimulating hormone. Numerous neurons were labelled throughout the reticular formation of the brainstem following either LDT or PPT injections. Many neurons retrogradely labelled in the LDT and PPT, the dorsal and median raphe nuclei, and the locus ceruleus contained choline acetyltransferase, serotonin, and tyrosine hydroxylase, respectively. The anterograde tracers WGA-HRP and phaseolus vulgaris leucoagglutinin were used to confirm some of the projections indicated by the retrograde labelling data; anterograde labelling was seen in the LDT and PPT following injections of one of these tracers into the medial prefrontal cortex, lateral hypothalamus, and the contralateral LDT.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Accumulating evidence indicates that the laterodorsal tegmental nucleus (LDT) is associated with reward processing and addiction. The cholinergic projection from the LDT to the ventral tegmental area is essential for a large dopamine release in the nucleus accumbens, which is critically involved in the reinforcing effects of addictive drugs, including cocaine. In contrast to the large number of studies on plasticity induced after cocaine exposure in the mesocorticolimbic dopaminergic system, it remains unknown whether LDT cholinergic neurons exhibit plastic changes following cocaine administration. To address this issue, we performed ex vivo whole‐cell recordings in LDT cholinergic neurons obtained from rats following cocaine administration. Neurons obtained from 1 day after 5‐day cocaine‐treated rats showed significantly smaller paired‐pulse ratios of evoked EPSCs and higher miniature EPSC frequencies than those from saline‐treated rats, indicating an induction of presynaptic plasticity of increased glutamate release. This plasticity seemed to recover after a 5‐day withdrawal from repeated cocaine exposure, and required NMDA receptor stimulation and nitric oxide production. Additionally, pharmacological suppression of activity of the medial prefrontal cortex inhibited the presynaptic plasticity in the LDT. On the other hand, AMPA/NMDA ratios were not different between saline‐ and cocaine‐treated groups, revealing an absence of postsynaptic plasticity. These findings provide the first direct evidence of cocaine‐induced synaptic plasticity in LDT cholinergic neurons and suggest that the presynaptic plasticity enhances the activity of LDT cholinergic neurons, contributing to the expression of cocaine‐induced addictive behaviors through the dysregulation of the mesocorticolimbic system.  相似文献   

14.
Cholinergic and gamma-aminobutyric acid (GABA) mechanisms in the dorsolateral pontomesencephalic tegmentum have been implicated in the control of active (REM) sleep and wakefulness. To determine the relationships between neurons that contain these neurotransmitters in this region of the brainstem in adult cats, combined light and electron microscopic immunocytochemical procedures were employed. Light microscopic analyses revealed that choline acetyltransferase (ChAT) and GABA immunoreactive neurons were distributed throughout the laterodorsal and pedunculopontine tegmental nuclei (LDT and PPT). Surprisingly, approximately 50% of the ChAT immunoreactive neurons in these nuclei also contained GABA. Using electron microscopic pre-embedding immunocytochemistry, GABA immunoreactivity was observed in somas, dendrites and axon terminals in both the LDT and PPT. Most of the GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites. Electron microscopic double-immunolabeling techniques revealed that ChAT and GABA were colocalized in axon terminals in the LDT/PPT. Approximately 30% of the ChAT immunoreactive terminals were also GABA immunoreactive, whereas only 6-8% of the GABA immunoreactive terminals were ChAT immunoreactive. Most of the ChAT/GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites; however, ChAT/GABA immunoreactive terminals were also observed that contacted ChAT immunoreactive dendrites. With respect to ChAT immunoreactive postsynaptic profiles, approximately 40% of the somas and 50% of the dendrites received synaptic contact from GABA immunoreactive terminals in both the LDT and PPT. These findings (a) indicate that there are fundamental interactions between cholinergic and GABAergic neurons within the LDT/PPT that play an important role in the control of active sleep and wakefulness and (b) provide an anatomical basis for the intriguing possibility that a mechanism of acetylcholine and GABA co-release from the terminals of LDT/PPT neurons is involved in the regulation of behavioral states.  相似文献   

15.
The laterodorsal tegmental nucleus (LDT), which sends cholinergic efferent connections to dopaminergic (DA) neurons in the ventral tegmental area (VTA), plays a critical role in the development of addictive behavior and the reinstatement of cocaine‐seeking behavior. Although repeated cocaine exposure elicits plastic changes in excitatory synaptic transmission and intrinsic membrane excitability in LDT cholinergic neurons, it remains unclear whether inhibitory synaptic transmission is modulated by cocaine exposure. The LDT receives fibers containing noradrenaline (NA), a neurotransmitter whose extracellular levels increase with cocaine exposure. Therefore, it is hypothesized that repeated cocaine exposure induces plastic changes in LDT cholinergic neurons via NA. Ex vivo electrophysiological recordings in LDT cholinergic neurons were obtained from rats repeatedly exposed to cocaine. Bath‐application of NA induced similar levels of hyperpolarization in both saline‐ and cocaine‐treated neurons. However, NA attenuated the amplitude of inhibitory postsynaptic currents (IPSCs) in cocaine‐ but not saline‐treated neurons through α2 adrenoceptors. This NA‐induced IPSC attenuation was observed in the presence of strychnine, but not gabazine, indicating that NA modulated GABAergic but not glycinergic neurotransmission. NA increased the paired‐pulse ratios of evoked IPSCs and decreased the frequencies of miniature IPSCs (mIPSCs) without affecting their amplitudes, suggesting a presynaptic mechanism. These findings suggest that repeated cocaine exposure induces neuroplasticity in GABAergic synaptic transmission onto LDT cholinergic neurons by probably modulating presynaptic α2 adrenoceptors. This potentially increases the activity of LDT cholinergic neurons, which might contribute to the development of addictive behavior by enhancing VTA DA neuronal activity.  相似文献   

16.
The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus implicated in reward processing and is one of the main sources of cholinergic afferents to the ventral tegmental area (VTA). Neuroplasticity in this structure may affect the excitability of VTA dopamine neurons and mesocorticolimbic circuitry. Here, we provide evidence that cocaine‐induced intrinsic membrane plasticity in LDT cholinergic neurons is involved in addictive behaviors. After repeated experimenter‐delivered cocaine exposure, ex vivo whole‐cell recordings obtained from LDT cholinergic neurons revealed an induction of intrinsic membrane plasticity in regular‐ but not burst‐type neurons, resulting in increased firing activity. Pharmacological examinations showed that increased riluzole‐sensitive persistent sodium currents, but not changes in Ca2+‐activated BK, SK or voltage‐dependent A‐type potassium conductance, mediated this plasticity. In addition, bilateral microinjection of riluzole into the LDT immediately before the test session in a cocaine‐induced conditioned place preference (CPP) paradigm inhibited the expression of cocaine‐induced CPP. These findings suggest that intrinsic membrane plasticity in LDT cholinergic neurons is causally involved in the development of cocaine‐induced addictive behaviors.  相似文献   

17.
18.
Canine narcolepsy is a unique experimental model of a human sleep disorder characterized by excessive daytime sleepiness and cataplexy. There is a consensus recognition of an imbalance between cholinergic and catecholaminergic systems in narcolepsy although the underlying mechanisms remain poorly understood. Possible substrates could be an abnormal organization, numbers and/or ratio of cholinergic to catecholaminergic cells in the brain of narcoleptic dogs. Therefore, we sought to characterize the corresponding neuronal populations in normal and narcoleptic dogs (Doberman Pinscher) by using choline acetyltransferase (ChAT), nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase, tyrosine hydroxylase (TH), and dopamine β-hydroxylase (DBH). Cholinergic cell groups were found in an area extending from the central to the gigantocellular tegmental field and the periventricular gray corresponding to the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT), and the parabrachial nucleus. An almost perfect co-localization of ChAT and NADPH-diaphorase was also observed. Catecholaminergic cell groups detected included the ventral tegmental area, the substantia nigra, and the locus coeruleus nucleus (LC). The anatomical distribution of catecholaminergic neurons was unusual in the dog in two important aspects: i) TH- and/or DBH-immunoreactive neurons of the LC were found almost exclusively in the reticular formation and not within the periventricular gray, ii) very few, if any TH-positive neurons were found in the central gray and dorsal raphe. Quantitative analysis did not reveal any significant differences in the organization and the number of cells identified in the LDT, PPT, and LC of normal and narcoleptic dogs. Moreover, the cholinergic to catecholaminergic ratio was found identical in the two groups. In conclusion, the present results do not support the hypothesis that the neurochemical imbalance in narcolepsy could result from abnormal organization, numbers, or ratio of the corresponding neuronal populations. J. Comp. Neurol. 379:185–197, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Y Kayama  M Ohta  E Jodo 《Brain research》1992,569(2):210-220
To clarify functional roles of mesopontine cholinergic neurons as a component of an activating system, single neuronal activity in the laterodorsal tegmental nucleus (LDT) of undrugged rats, whose head was fixed painlessly, was recorded along with cortical EEG and neck EMG. Activity of some dorsal raphe (DR) neurons was also recorded for comparison. Most of the animals had been sleep-deprived for 24 h. Observation was made only on neurons generating broad spikes, presumed from previous studies to be cholinergic or monoaminergic. The position of recorded neurons was marked by Pontamine sky blue ejected from the glass pipette microelectrode, and was identified on sections processed for NADPH diaphorase histochemistry which specifically stained cholinergic neurons. According to their firing rates during wakefulness (AW), slow-wave sleep (SWS) and paradoxical sleep (PS), 46 broad-spike neurons in the LDT were classified into 4 groups: (1) neurons most active during AW and silent during PS (some of these neurons might be serotonergic rather than cholinergic, as all the 9 neurons in the DR); (2) neurons most active during PS and silent during AW; (3) neurons equally more active during AW and PS than SWS; and (4) others mainly characterized by transiently facilitated activity at awakening and/or onset of PS. Neurons of groups 2 and 3 were the major constituents of the LDT. In most neurons change in firing preceded EEG change, except at awakening from PS. These results suggest that: (1) the LDT is composed of cholinergic neurons with heterogenous characteristics in relation to sleep/wakefulness; and (2) some tegmental cholinergic neurons play a privotal role in induction and maintenance of PS.  相似文献   

20.
The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus that sends cholinergic, glutamatergic, and gamma‐aminobutyric acid (GABA)‐ergic projections to the ventral tegmental area (VTA), a key brain region associated with reward information processing and reinforcement learning, and thus, with addiction induced by drugs of abuse, including cocaine. Recent studies have revealed that the LDT, in addition to the VTA, plays important roles in the development and expression of cocaine‐induced addiction and stress‐induced enhancement of addictive behaviors. Additionally, neuroplasticity induced in LDT cholinergic neurons by repeated cocaine administration critically contributes to these behaviors. Elucidation of the underlying mechanisms of cocaine‐induced neuroplasticity in the LDT that influences reward circuit activity may lead to the development of therapeutic strategies to treat cocaine addiction and stress‐induced reinstatement of cocaine use. This review summarizes recent progress in the study of the LDT, specifically neuroplasticity in LDT cholinergic neurons induced by cocaine and its functional roles in the development and modulation of addictive behaviors associated with cocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号