首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
背景:近年来,两亲性聚合物胶束作为难溶性药物载体和叶酸介导的肿瘤细胞靶向给药系统在药剂学研究领域受到极大的关注。目的:制备包载9-硝基喜树碱的叶酸聚合物胶束并进行理化表征及体外药效评价。方法:采用薄膜-水化法制得载药胶束,利用激光粒度分析仪检测胶束粒径大小,反相高效液相层析法检测载药量,透析法进行体外释放试验;利用肿瘤细胞摄取及体外生长抑制试验,对叶酸聚合物胶束作体外药效评价。结果与结论:制得的9-硝基喜树碱叶酸聚合物胶束粒径为24~26nm,载药量为3.24%,24h累积释放百分率约90%。叶酸修饰的聚合物胶束对肿瘤细胞的亲和性及抗肿瘤活性显著高于普通胶束。提示叶酸修饰的聚合物胶束可为难溶性药物提供一种具有良好应用前景的肿瘤主动靶向纳米载药系统。  相似文献   

2.
背景:聚合物胶束具有对难溶性药物的增溶作用,是抗肿瘤药物的良好载体,在聚合物胶束表面修饰以靶识别分子叶酸,可以促进叶酸受体阳性的肿瘤细胞对载药聚合物胶束的摄取.目的:制备载疏水性小分子的叶酸偶联胶束并对其进行表征.方法:利用膜水化法制备载香豆素6的聚合物胶束,即将香豆素6的氯仿/甲醇溶液、甲氧基聚乙二醇-磷脂酰乙醇胺的氯仿/甲醇溶液和叶酸-聚乙二醇-磷脂酰乙醇胺的氯仿/甲醇溶液混合,旋蒸除去有机溶剂,形成药膜,真空干燥过夜,然后在 50 ℃水浴下加入Hepes缓冲液并磁力搅拌30 min,载药胶束即形成;同时制备不含叶酸-聚乙二醇-磷脂酰乙醇胺的普通载药胶束.对获得的普通胶束和叶酸偶联胶束利用透射电镜观察形态及粒径、动态光散射法检测粒径分布和高效液相色谱法分析载药量与包封率.结果与结论:载药的叶酸偶联胶束及普通胶束在透射电镜下粒径约为60 nm,粒径分布较均匀;动态光散射法检测到溶液中的胶束平均粒径约100 nm;利用高效液相色谱法检测得到胶束载药量和包封率分别在0.7%和15%左右.结果显示叶酸偶联载药胶束对于难溶性药物具有明显的增溶作用,可用于细胞及肿瘤模型评价其叶酸受体靶向性.  相似文献   

3.
背景:包含普朗尼克P123的载紫杉醇聚合物胶束能够有效的延长药物体内循环时间,并且能够改变紫杉醇的作用靶位.但是,这种紫杉醇聚合物胶束在溶液中的稳定性以及载药能力仍有待提高. 目的:观察载紫杉醇聚氰基丙烯酸正丁酯-普朗尼克P123/F68胶束的药剂学特性和体外抗肿瘤能力.方法:采用薄膜水化法,以聚氰基丙烯酸正丁酯为交联剂,普朗尼克P123/F68为载体材料,制备载疏水性药物-紫杉醇纳米胶束.应用透射电镜观察胶束形态;电位粒度分析仪测定胶束电位和粒径;高效液相色谱分析方法测定胶束载药量和包封率;荧光探针法测定胶束临界胶束浓度;体外试验考察胶束的释药情况、稳定性以及抗肿瘤情况. 结果与结论:实验制备的载药胶束为圆形,粒径和电位分别在100 nm和-10 mV左右,包封率和载药量为(93.3±2.15)%和(1.82±0.04)%,临界胶束浓度为0.067 g/L.药物体外释放试验和稳定性试验显示,该载药胶束具有一定的缓释功能和抗稀释能力.MTT试验结果表明,与游离药物相比,载药胶束具有更强的杀伤乳腺癌细胞MCF-7的能力.可见,载紫杉醇聚氰基丙烯酸正丁酯-普朗尼克P123/F68胶束具有明显的控制药物释放的能力和良好的稳定性,抗肿瘤能力强.  相似文献   

4.
背景:壳聚糖进行化学改性以制备性能优良且细胞毒性低、生物相容性高、可降解的聚合物纳米胶束,在药物控释、组织工程等领域获得普遍应用.目的:将强疏水链十八烷氧基接枝到N-琥珀酰壳聚糖分子中,制备结构稳定、粒径较小的聚合物胶束,以获得可适用于药物传递载体或医学生物材料领域的聚合物纳米胶束.方法:用N-琥珀酰壳聚糖和十八烷基缩水甘油醚反应,在壳聚糖衍生物中引入长链疏水基.结果与讨论:成功制备出聚合物纳米胶束,通过红外光谱和1H核磁波谱表征,证实壳聚糖分子中成功引入了琥珀酰基和十八烷氧基.通过动态激光散射测量出其粒径在136~166 nm,其临界胶束溶度在1.67×10-3~3.35×10-3 g/L,反映出胶束具有非常好的稳定性,而且其临界胶束浓度值和粒径随着疏水链接枝率的增加而减少.MTT法检测说明该胶束对细胞毒性极低.  相似文献   

5.
背景:聚乳酸及其共聚物是一类具有良好生物相容性的可降解高分子材料,已被广泛用于可生物降解型药物缓释或靶向给药系统中.目的:探索载药纳米粒制备条件对包封率和载药量的影响,确定最佳制备工艺条件.方法:以维生素E1000 聚乙二醇琥珀酸酯(TPGS)为乳化剂、姜黄素为模型药物、聚乳酸为载体材料,采用O/W 型乳化-溶剂挥发法制备聚乳酸-姜黄素纳米粒,以包封率和载药量为主要指标,单因素实验探索影响两指标的主要因素,再正交试验设计优化制备工艺.结果与结论:通过正交试验设计制备聚乳酸-姜黄素纳米粒的最佳工艺为:水油相比10∶1,聚合物浓度15g/L,药物浓度3g/L,乳化剂TPGS 浓度0.03%.以此工艺制备的载药纳米粒外形圆整光滑,粒度分布较为均匀,平均粒径为167.5 nm,包封率为89.52%,载药量为13.72%,纳米粒前期突释不明显具有良好的缓释作用.该工艺稳定、简单可行,优化制备工艺得到的聚乳酸-姜黄素纳米粒粒径适中、包封率和载药量较高.  相似文献   

6.
溶剂挥发法制备磷脂-聚乳酸纳米粒子及其性质   总被引:1,自引:0,他引:1  
背景:含磷脂胆碱的聚乳酸具有优良的生物相容性和降解性能,而且是两性分子.课题前期研究表明用成膜水化法可以自组装成胶束来作为药物载体,但随着疏水链段的增加,成膜水化法很难形成胶束,对于疏水链段较长的磷脂胆碱聚合物能否形成胶束来作为药物载体,目前尚不清楚.目的:采用溶剂挥发法制备磷脂胆碱聚乳酸[phosphorylcholine-containing poly(L-lactide),PLLA-PC]自组装纳米粒子,探讨影响纳米粒子形成和稳定性的因素.方法:①制备PLLA-PC纳米粒子:将PLLA-PC的丙酮溶液滴加到二蒸水中,在室温下磁力搅拌至丙酮挥发完全.F-7000FL220-240V荧光,磷光分光光度计测试胶束溶液的临界胶束浓度,芘为荧光探针,发射波长为395 nm,激发波长为300 nm.JEM-100CX透射电子显微镜观察纳米粒子形态;NANOZSZEN 3600纳米粒度分析仪测其粒径及粒径分布,测试温度为25℃.②凝胶渗透色谱仪GPC测定相对分子质量,色谱仪为Waters 717,流动相为THF,流速1.0 mL/min,聚苯乙烯为标样.每次进样时注入50 μL质量浓度为1 g/L样品溶液.结果与结论:透射电镜显示,PLLA-PC自组装纳米粒子呈壳/核结构.荧光探针检测临界胶束浓度表明,PLLA-PC有很强的表面活性,临界胶束浓度均低于10~(-3)g/L,且随LLA比例变化.动态光散射结果表明,聚合物的亲,疏水链段比例、有机溶剂以及水的用量在纳米粒子形成过程中对粒径有影响,纳米粒子用水稀释时粒径变化不大,且37℃可发生降解.提示溶剂挥发法可以制备粒径可控的PLLA-PC纳米粒子,有望用作新型的纳米药物载体.  相似文献   

7.
背景:盐酸表阿霉素是一种广谱抗生素,目前临床使用的不足多为药物释放快、目标组织药物浓度低,静脉给药后广泛分布于体内各种组织器官,不良反应明显.目的:针对盐酸表阿霉素临床应用的不足,制备盐酸表阿霉素纳米靶向注射制剂.方法:以叶酸偶联牛血清白蛋白为载体,采用乳化-高压匀质法,制备盐酸表阿霉素纳米靶向注射制剂,以激光粒度分析仪测定纳米颗粒的粒径大小、粒径分布及 Zeta 电位,扫描电镜观察纳米颗粒的表面形态,高效液相色谱法分析白蛋白负载盐酸表阿霉素纳米制剂的包封率、载药量和释药性能.结果与结论:制备的盐酸表阿霉素纳米粒外观呈均匀球型,粒径分布较窄,平均粒径为(157.73±0.40) nm,平均 Zeta 电位为(-30.85±0.43) mV,载药量22.78%,包封率可达96.24%.体外模拟释药结果表明药物释放曲线分为两个阶段,突释阶段微球释药量在24 h内达42.6%,缓释阶段纳米粒释药持续时间长,在112 h 时释药量达84.1%,载药纳米粒的药物释放速率持续稳定.结果表明乳化结合高压匀质法制备的盐酸表阿霉素纳米靶向制剂粒径均匀,粒径范围分布窄,载药量和包封率高,具有一定的缓释作用.  相似文献   

8.
背景:壳聚糖进行化学改性以制备性能优良且细胞毒性低、生物相容性高、可降解的聚合物纳米胶束,在药物控释、组织工程等领域获得普遍应用。目的:将强疏水链十八烷氧基接枝到N-琥珀酰壳聚糖分子中,制备结构稳定、粒径较小的聚合物胶束,以获得可适用于药物传递载体或医学生物材料领域的聚合物纳米胶束。方法:用N-琥珀酰壳聚糖和十八烷基缩水甘油醚反应,在壳聚糖衍生物中引入长链疏水基。结果与讨论:成功制备出聚合物纳米胶束,通过红外光谱和1H核磁波谱表征,证实壳聚糖分子中成功引入了琥珀酰基和十八烷氧基。通过动态激光散射测量出其粒径在136~166nm,其临界胶束溶度在1.67×10-3~3.35×10-3g/L,反映出胶束具有非常好的稳定性,而且其临界胶束浓度值和粒径随着疏水链接枝率的增加而减少。MTT法检测说明该胶束对细胞毒性极低。  相似文献   

9.
背景:聚乳酸-羟基乙酸纳米粒或纳米微球用于制备生物降解型缓释或定向给药体系已经研究了近30年,是国内外研究的热点.该体系能够控制粒径大小、延缓药物降解、延长药物释放时间、靶向释放、降低药物毒性和刺激性等.目的:以紫杉醇为模型药物、聚乳酸-羟基乙酸为包裹材料,探索载药纳米粒的制备条件对粒径、包封率等的影响,确定最佳制备工艺条件.方法:采用乳化-溶剂挥发法制备聚乳酸-羟基乙酸纳米粒,以粒径、包封率和载药量等为观察指标,通过正交设计法优化纳米粒制备工艺条件.结果与结论:通过正交实验设计,优化了制备工艺条件,其最佳条件是超声乳化时间为15 min,乳化剂浓度为1%,油水相比为1:25,合成温度为25℃.在此条件下进行实验,制备出的载药纳米粒粒径为217.6 nm,载药量1.79%,包封率85%.该制备工艺简单、稳定,优化制备条件,可制备出包封率高、粒径适宜的紫杉醇-聚乳酸-羟基乙酸纳米粒.  相似文献   

10.
背景:含RGD序列的多肽是多种整合素的识别位点,以其相对分子质量小、稳定、易于制备,且无免疫原性等优点被广泛用于纳米靶向药物传递系统的设计.目的:制备以RGD环五肽为配基的整合素αvβ3载药脂质体,通过体外细胞学实验证实其受体靶向性.方法:使用人工合成的RGD环五肽作为靶向分子探针,通过高压均质法制备靶向整合素αvβ3载药脂质体,采用扫描电镜和激光粒度分析仪检测纳米颗粒形态和粒径;以流式细胞分析观察其对血管平滑肌细胞的特异性标记,并考察荷载药物的离体缓释能力以及体外靶向能力.结果与结论:合成的靶向载药脂质体粒径为(175±6) nm,包封率为(96.33±1.02)%,体外溶出时间超过5 d.靶向载药脂质体对整合素αvβ3具有较高的特异性亲和力,可通过受体介导的内吞作用进入细胞内.提示制备的靶向整合素αvβ3载药脂质体,具有较高的药物包封率及缓释性,能与整合素αvβ3受体特异性结合,是一种新型的受体介导靶向制剂.  相似文献   

11.
Structure and design of polymeric surfactant-based drug delivery systems.   总被引:27,自引:0,他引:27  
The review concentrates on the use of polymeric micelles as pharmaceutical carriers. Micellization of biologically active substances is a general phenomenon that increases the bioavailability of lipophilic drugs and nutrients. Currently used low-molecular-weight pharmaceutical surfactants have low toxicity and high solubilization power towards poorly soluble pharmaceuticals. However, micelles made of such surfactants usually have relatively high critical micelle concentration (CMC) and are unstable upon strong dilution (for example, with the blood volume upon intravenous administration). On the other hand, amphiphilic block co-polymers are also known to form spherical micelles in solution. These micelles have very high solubilization capacity and rather low CMC value that makes them very stable in vivo. Amphiphilic block co-polymers suitable for micelle preparation are described and various types of polymeric micelles are considered as well as mechanisms of their formation, factors influencing their stability and disintegration, their loading capacity towards various poorly soluble pharmaceuticals, and their therapeutic potential. The basic mechanisms underlying micelle longevity and steric protection in vivo are considered with a special emphasis on long circulating drug delivery systems. Advantages and disadvantages of micelles when compared with other drug delivery systems are considered. New polymer-lipid amphiphilic compounds such as diacyillipid-polyethylene glycol, are described and discussed. These compounds are very attractive from a practical point of view, since they easily micellize yielding extremely stable micelles with very high loading capacity. Micelle passive accumulation in the areas with leaky vasculature (tumors, infarct zones) is discussed as an important physiology-based mechanism of drug delivery into certain target zones. Targeted polymeric micelles prepared by using thermo- or pH-sensitive components or by attaching specific targeted moieties (such as antibodies) to their outer surface are described as well as their preparation and some in vivo properties. The fast growing field of diagnostic micelles is analyzed. Polymeric micelles are considered loaded with various agents for gamma, magnetic resonance, and computed tomography imaging. Their in vitro and in vivo properties are discussed and the results of the initial animal experiments are presented.  相似文献   

12.
The poly(ethylene oxide)-poly(lactide) (PEO-PLA) block copolymers containing a small quantity of carboxylic acid in the PLA block were synthesized. The microscopic characteristics of nanoparticles with carboxylic acid content in the copolymer were analyzed, and the effect of specific interactions between the copolymer and the model drug on the drug loading capacity and the release behavior were investigated systematically. The sizes of nanoparticles prepared by a dialysis method are within the range of 30-40 nm. The nanoparticles prepared from functionalized block copolymers have a very low critical micelle concentration (CMC) value as low as approximately 10(-3) mg/ml, which indicates a good stability of the nanoparticles in spite of the presence of carboxylic acid. The drug loading efficiency of nanoparticles dramatically increased when carboxylic acid content was increased in the block copolymer. This result may be attributed to the increase of interactions between the copolymer and the drug. The release rate of the drug was much slower from nanoparticles containing higher amounts of carboxylic acid in the copolymer, which might be associated with the enhanced interaction between the carboxylic group of copolymers and the drug. These experimental results suggest that the nanoparticles prepared from functionalized PEO-PLA block copolymers could be a good candidate for an injectable drug delivery carrier.  相似文献   

13.
Heparin conjugated amphiphilic block copolymer, Tetronic-PCL-heparin (TCH), was developed and its polymeric micelles (PMs) were prepared as an injectable vehicle for long-term delivery of bFGF, which is one of the heparin-binding growth factors (HBGF). TCH PMs were fabricated by a single emulsion and solvent evaporation method. The structural properties of TCH were confirmed by (1)H NMR, FT-IR and GPC. The contents of bound heparin were 0.44 micro g/micro g and the heparin activity by APTT assay was 43.6% when compared to free heparin. The critical micelle concentration (CMC) of TCH PMs was approximately 0.11 g/l. The diameter of TC micelle was approximately 25 nm and its size after conjugation of heparin was increased to 114 nm due to the heparin molecules on the shell of the micelle. The bFGF loading amount of TCH PMs was considerably higher than that of TC, caused by specific interactions between heparin and bFGF. In vitro study, bFGF was released from TCH PMs in a controlled manner over 2 months. The results demonstrated that TCH PMs become a novel candidate for the long-term delivery of various growth factors with heparin-binding domain in tissue engineering.  相似文献   

14.
To achieve a combination of spatial specificity in a passive manner with a stimuli-responsive targeting mechanism, a temperature-responsive polymeric micelle is prepared using block copolymers of (poly(N-isopropylacrylamide-b-butylmethacrylate) (PIPAAm-PBMA)). The micelle inner core formed by self-aggregates of PBMA segments successfully loaded with a drug (adriamycin), and the outer shell of PIPAAm chains played a role of stabilization and initiation of micellar thermo-response. Optimum conditions were investigated for the micelle formation and drug loading into the inner cores in a view of micellar stability and function as drug carriers. Outer shell hydrophilicity that prevents inner core interaction with biocomponents and other micelles can be suddenly switched to hydrophobic at a specific site by local temperature increase beyond the LCST (lower critical solution temperature) (32.5 degrees C). These micelles showed reversible structural changes allowing drug release upon heating/cooling thermal fluctuations through the LCST. Polymeric micelles incorporated with adriamycin showed a dramatic thermo-responsive on/off switching behavior for both drug release and in vitro cytotoxicity according to the temperature responsive structural changes of a micellar shell structure. The reversible and sensitive thermo-response of the micelle opens up opportunities to construct a novel drug delivery system in conjunction with localized hyperthermia.  相似文献   

15.
In the present study, camptothecin grafted poly amino ester-methyl ether polyethylene glycol (CPT-PEA-MPEG) as a novel copolymer was synthesized by Michael reaction at different ratios of MPEG and CPT (60 : 40 and 80 : 20). The microemulsion was used to prepare nanomicelles, and in vitro cytotoxicity was performed on the HT29 cell line, and cell survival was measured by MTT assay. The syntheses were confirmed by 1H NMR and FT-IR. Several characterization methods including CMC, particle size, size distribution, and transmission electron microscopy were performed to evaluate features of prepared nanomicelles. Low critical micelle concentration, small particle size and IC50 of 0.1 mg ml−1 at MPEG to CPT ratio of 60 : 40 make this micelle a promising drug delivery carrier. CPT-PAE-MPEG nanomicelles at a MPEG : CPT ratio of 60 : 40 can be a suitable choice to improve the physiochemical properties of CPT and its therapeutic effect, while it can be potentially used as a nano-carrier for other anticancer drugs to purpose a dual drug delivery.

In the present study, camptothecin grafted poly amino ester-methyl ether polyethylene glycol (CPT-PEA-MPEG) as a novel copolymer was synthesized by Michael reaction at different ratios of MPEG and CPT (60 : 40 and 80 : 20).  相似文献   

16.
To understand the influence of the construction of pH-responsive glycopolymer carriers on loading and release behaviors of the drug, three types of block glycopolymers with similar compositions but different constructions, PEG-b-P(DEA-co-GAMA), PEG-b-PDEA-b-PGAMA and PEG-b-PGAMA-b-PDEA, were successfully synthesized via atom transfer radical polymerization (ATRP) method. The compositions and structures of the three glycopolymers were characterized using 1H NMR (nuclear magnetic resonance) and GPC (gel permeation chromatography), while the morphology and size of aggregates from pH-sensitive block glycopolymers were measured using TEM (transmission electron microscopy) and DLS (dynamic light scattering). The results indicated that the micelles prepared from PEG-b-PGAMA-b-PDEA had a more compact shell structure. The drug-loaded micelles were prepared using the diafiltration method at pH 10, and the loading content and loading efficiency were analyzed using a UV-visible spectrophotometer. DOX-loaded micelles formed by PEG-b-PGAMA-b-PDEA with the more compact shell construction showed the highest loading content and loading efficiency (12.0 wt% and 58.0%) compared with the other two micelles. Moreover, the DOX release tests of these micelles were carried out under two PBS conditions (pH 7.4 and pH 5.5), and the DOX release amount in a certain time was analyzed using a UV-visible spectrophotometer. The results showed that the more compact shell construction of the three layered micelle obstructed the diffusion of a proton into the PDEA core at pH 5.5 and delayed the drug from releasing under both conditions. Moreover the two-layered micelle with a PDEA and PGAMA mixed core showed a relatively high release amount owing to the porous core permitting unimpeded releasing at pH 7.4 and promoted the protonation of PDEA at pH 5.5. Insights gained from this study show that the structure of block copolymers, leading to different constructions of micelles, could adjust the drug loading and release behavior to certain extent, thus it may contribute to improving the design of desirable drug delivery systems.

Synthesized a pH-responsive block glycopolymers micelles, for the DOX loading and release behavior enhancing the design of drug delivery systems.  相似文献   

17.
The in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties of PLGA-mPEG nanoparticles of cisplatin were investigated. The nanoparticles were prepared by a double emulsion method and characterized with regard to their morphology, size, zeta potential and drug loading. The rate of in vitro degradation of the PLGA-mPEG nanoparticles in PBS (pH 7.4) depended on their composition, increasing when the mPEG content (mPEG:PLGA ratio) of the nanoparticles increased. Sustained cisplatin release over several hours from the PLGA-mPEG nanoparticles in vitro (PBS) was observed. The composition of the nanoparticles affected drug release: the rate of release increased when the mPEG content of the nanoparticles increased. Within the range of drug loadings investigated, the drug loading of the nanoparticles did not have any significant effect on drug release. The loading efficiency was low and needs improvement in order to obtain PLGA-mPEG nanoparticles with a satisfactory cisplatin content for therapeutic application. The i.v. administration of PLGA-mPEG nanoparticles of cisplatin in BALB/c mice resulted in prolonged cisplatin residence in systemic blood circulation. The results appear to justify further investigation of the suitability of the PLGA-mPEG nanoparticles for the controlled i.v. delivery and/or targeting of cisplatin.  相似文献   

18.
背景:普通滴眼液由于泪液冲刷与鼻泪管吸收等因素,在眼表停留时间短,生物利用度低.目的:以壳聚糖、明胶为载体材料,左氧氟沙星为模型药物,制备应用于眼表的缓控释微球并考察其理化性质与体外释放.方法:采用喷雾干燥法制备左氧氟沙星壳聚糖/明胶微球,通过扫描电镜观察微球的表面形态,激光粒度仪测量微球粒径分布与zeta电位,高效液相色谱法检测微球的载药率与包封率,动态透析法研究微球体外药物释放情况.结果与结论:所得微球形态良好,粒径分布窄,平均粒径为(1 267.4±115.3) nm,zeta电位为+(32.19±0.85) mV,载药量为(18.31±0.22)%,包封率为(91.53±1.12)%.载药微球体外释放符合一级释药方程Ln(1-Q)=-0.699 1t-0.086 4,r2=0.945 1.说明壳聚糖/明胶载药微球对左氧氟沙星具有缓释作用.实验采用喷雾干燥法成功制备了粒径及分布适宜、释放周期较理想、药物稳定性好的载左氧氟沙星壳聚糖明胶缓释微球.  相似文献   

19.
Doxorubicin (DOX) was physically loaded into micelles prepared from poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) block copolymer (PEG-PBLA) by an o/w emulsion method with a substantial drug loading level (15 to 20 w/w%). DOX-loaded micelles were narrowly distributed in size with diameters of approximately 50-70 nm. Dimer derivatives of DOX as well as DOX itself were revealed to be entrapped in the micelle, the former seems to improve micelle stability due to its low water solubility and possible interaction with benzyl residues of PBLA segments through pi-pi stacking. Release of DOX compounds from the micelles proceeded in two stages: an initial rapid release was followed by a stage of slow and long-lasting release of DOX. Acceleration of DOX release can be obtained by lowering the surrounding pH from 7.4 to 5.0, suggesting a pH-sensitive release of DOX from the micelles. A remarkable improvement in blood circulation of DOX was achieved by use of PEG-PBLA micelle as a carrier presumably due to the reduced reticuloendothelial system uptake of the micelles through a steric stabilization mechanism. Finally, DOX loaded in the micelle showed a considerably higher antitumor activity compared to free DOX against mouse C26 tumor by i.v. injection, indicating a promising feature for PEG-PBLA micelle as a long-circulating carrier system useful in modulated drug delivery.  相似文献   

20.
背景:医用纳米粒作为药物传递的新型载体,目前已经成为医药领域研究的重点。目的:构建以生物可降解材料乳酸-羟基乙酸共聚物为载体,负载抗肿瘤药物5-氟尿嘧啶的载药纳米粒。方法:利用复乳-溶剂挥发法制备乳酸-羟基乙酸共聚物载药纳米粒。场发射扫描电子显微镜观察纳米粒表面形态;激光粒度分析仪测定粒径分布并计算成球率;紫外分光光度计测定5-氟尿嘧啶载药量、包封率,并对体外释药进行评估。结果与结论:纳米粒呈球性,平均粒径为(186±14)nm,成球率、载药量和包封率分别为70.8%、6.6%、28.1%,体外释药有突释现象,24h内5-氟尿嘧啶累积释药量达36.2%,10d达83.6%。提示成功制备乳酸-羟基乙酸共聚物载药纳米粒,其具有缓释效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号