首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Our aim was to develop a working isolated murine heart model, as the extensive use of genetically engineered mice in cardiovascular research requires development of new miniaturized technology. Left ventricular (LV) function was assessed in the isolated working mouse heart perfused with recirculated oxygenated Krebs-Henseleit bicarbonate buffer (37 °C pH 7.4) containing 11.1 mM glucose and 0.4 mM palmitate bound to 3% albumin. The hearts worked against an afterload reservoir at a height equivalent to 50 mmHg, and heart rate was controlled by electrical pacing of the right atrium. LV pressure was measured with a micromanometer connected to a small steel cannula inserted through the apex of the heart. The experimental protocol consisted of two interventions. First, following instrumentation and stabilization, the preload reservoir was raised from a pressure equivalent of 7 to 22.5 mmHg, while pacing at 390 beats·min–1. Thereafter the height of the preload reservoir was set to 10 mmHg, and the pacing rate was varied from 260 to 600 beats·min–1. Aortic and coronary flows were measured by timed collections of effluent from the afterload line and that dripping from the heart, respectively [aortic+coronary flow=cardiac output (CO)]. Elevation of LV end-diastolic pressure (LVEDP) from approximately 5 to 10 mmHg resulted in a twofold increase in average cardiac power [product of LV developed pressure (LVDevP) and CO], whereas myocardial contractility (first derivative of LV pressure, dP/dt) and LVDevP (LV systolic pressure–LVEDP) increased only minimally (5–10%). Measured LVEDP was lower than the equivalent height of the preload reservoir by an amount that was related to the heart rate. Cardiac power, LVDevP and dP/dt were stable at heart rates up to 400 beats·min–1, but declined markedly with higher rates, consistent with the decrease in LVEDP. Thus, cardiac power was reduced to 50% of its maximum value when stimulated at approximately 500 beats·min–1, and at even higher rates there was little ejection. By systematic manipulation of the height of the preload reservoir and heart rate, we conclude that LV afterload and preload can be assessed only by high-fidelity measurement of intraventricular pressures. The heights of the afterload column and the preload reservoir are unreliable and potentially misleading indicators of LV afterload and preload. Received: 28 September 1998 / Accepted: 25 January 1999  相似文献   

2.
Heat shock (HS) pretreatment of the heart is effective in mitigating the deleterious effects of ischaemia/reperfusion. The main objective of this study was to determine whether the beneficial effect of HS is associated with the preservation of intracellular Ca2+ handling in the ischaemic/reperfused, isolated rat heart. Twenty-four hours after raising body core temperature to 42 °C for 15 min, rat hearts were perfused according to Langendorff and subjected to 30 min ischaemia followed by 20 min reperfusion. Cyclic changes of cytoplasmic calcium ion [Ca2+i] levels were measured by surface fluorometry using Indo-1 AM. Reperfused HS hearts showed improved recovery of contractile function compared with control hearts: end-diastolic pressure: 45±11 vs. 64±22 mm Hg; developed pressure: 72±12 vs. 41±20 mm Hg; maximum rate of pressure increase (+dP/dtmax): 1,513±305 vs. 938±500 mm Hg/s; maximum rate of pressure decrease (–dP/dtmax): –1,354±304 vs. –806±403 mm Hg/s. HS hearts displayed a significantly lower end-diastolic cytosolic [Ca2+] ([Ca2+]i) after reinstallation of flow. The dynamic parameters of the Ca2+i transients, i.e. the maximum rate of increase/decrease (±dCa2+i/dtmax) and amplitude, did not differ between reperfused control and HS hearts. The novel finding of this study is that improved performance of the HS-preconditioned heart after an ischaemic insult is associated with a reduced end-diastolic Ca2+i load, and most likely, preserved Ca2+ sensitivity of the myocardial contractile machinery.  相似文献   

3.
Receptor sites, specific for guanosine 5′-triphosphate (GTP) were characterised in myoblasts and myotubes of C2C12 mouse skeletal muscle cells, using binding experiments and measurements of intracellular Ca2+ concentration ([Ca2+]i). We identified two GTP binding sites in myoblasts membranes: a high affinity site (K d = 15.4 ± 4.6 μM; B max = 1.7 ± 0.5 nmol mg−1 protein); and a low affinity site (K d = 170 ± 94.5 μM; B max = 14.2 ± 3.9 nmol mg−1 protein). In myotube membranes only a low affinity binding site for GTP (K d = 169 ± 39 μM; B max = 12.3 ± 1.4 nmol mg−1 protein) was detected. In myoblasts GTP binding was not displaced by ATP or UTP, even at high concentrations (up to of 1 mM), but it was affected by treatments with suramin or Reactive Blue 2 (RB2), the non-selective purine receptor antagonists. In contrast, in myotubes GTP binding was partially displaced by high concentrations of ATP, but treatments with the non-selective purine receptor antagonists, suramin or RB2, and with UTP had no effect on GTP binding. The addition of GTP to myoblasts, and to myotubes, resulted in elevations of [Ca2+]i. The patterns of Ca2+ response however, were different in the two cell phenotypes. In myoblasts the addition of GTP induced two types of Ca2+ responses: (1) a fast increase in [Ca2+]i, followed by a sustained [Ca2+]i elevation, and (2) a slow raising and steady prolonged increase in [Ca2+]i. In myotubes, however only fast Ca2+ responses were observed following the addition of 500 μM GTP. In the myoblasts and myotubes GTP-stimulated [Ca2+]i increases were abolished by treatments with suramin or RB2 at concentrations which had no effect on the ATP-induced Ca2+ responses. We conclude, that C2C12 cells express two distinct binding sites for GTP before differentiation, but only one after, the low affinity binding site. These results suggest a possible role of the high affinity GTP binding site in early stage of development of skeletal muscle. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The effects of 4-aminopyridine (4-AP) and tetraethylammonium (TEA) on the outward potassium currents in the rapidly and slowly adapting stretch receptor neurons (SRNs) of the crayfish (Pacifastacus leniusculus) were studied using a two micro-electrode voltage-clamp technique. The leakage current was not affected by either 4-AP or TEA. External 4-AP blocked the peak outward current in a dose-dependent manner (1:1 stoichiometry) with an apparent dissociation constant (Kd) of 2.3 ± 0.2 mm (mean ± SEM) in the slowly and 1.4 ± 0.2 mm in the rapidly adapting SRN, the block being voltage dependent. External application of TEA resulted in a block of the steady state current enhancing the transient characteristics of the current response. The block appeared to deviate from a 1: 1 stoichiometry and the apparent Kd for TEA was 9.6 ± 3.4 mm with a cooperativity factor n= 0.43 ± 0.03 in the slowly adapting SRN and 34.5 ± 9.2 mm and 0.37 ± 0.03 respectively in the rapidly adapting SRN. Low Ca2+, apamin and charybdotoxin, which are known to block Ca2+-dependent K-currents, had no effects on the outward current as was also the case with catechol. It is concluded that the different effects of TEA and 4-AP on the outward current in the two types of SRNs can be explained by the presence of at least two, probably heteromultimeric, channel populations having similar sensitivity to 4-AP but different sensitivity to TEA. One channel has a high affinity (Kd= 0.8–1.6 mm) for TEA and the other a low affinity (Kd= 173–213 mm) for TEA. The low-affinity channel seems to dominate in the slowly adapting SRN while both channels are equally common in the rapidly adapting SRN. Further, the present results do not support the existence of a macroscopic Ca2+-dependent K+ current in the SRNs.  相似文献   

5.
 Eleven Beagle dogs were studied to elucidate the possible role of L-arginine-derived nitric oxide on local blood flow distribution in left and right ventricular myocardium. Local blood flow was determined in 256 samples from the left and 64 samples from the right ventricle per heart using the tracer microsphere technique (mean sample mass 319 ± 131 mg). Nitric oxide production was effectively inhibited by intravenous infusion of 20 mg/kg nitro-L-arginine methylester (L-NAME) as evidenced by a shift of the dose/response curve for the effect of intracoronary administration of bradykinin (0.004–4.0 nmol/min) on coronary blood flow. L-NAME enhanced left and right ventricular systolic pressures from 132 ± 18 to 155 ± 15 mm Hg and from 26 ± 3 to 29 ± 3 mm Hg respectively (both P = 0.043). Mean left ventricular blood flow was 1.14 ± 0.38 before and 0.99 ± 0.28 ml min–1 g–1 after L-NAME (P = 0.068), while right ventricular blood flow fell from 0.72 ± 0.28 to 0.53 ± 0.20 ml min–1 g–1 (P = 0.043). Coronary conductance of left and right ventricular myocardium fell by 31 and 43% respectively (both P = 0.043). The coefficient of variation of left ventricular blood flow was 0.26 ± 0.07 before and 0.29 ± 0.07 after L-NAME (P = 0.068), that of right ventricular blood flow was 0.27 before and after L-NAME. Skewness (0.51) and kurtosis (4.23) of left ventricular blood flow distribution were unchanged after L-NAME, while in the right ventricle skewness decreased from 0.54 to 0.09 (P = 0.043) and kurtosis (3.68) tended to decrease after L-NAME (P = 0.080). The fractal dimension (D = 1.20–1.27) and the corresponding nearest-neighbor correlation coefficient (r n = 0.37–0.53) of left and right ventricular myocardium remained unchanged after infusion of L-NAME. From these results it is concluded that firstly, local nitric oxide release does not explain the higher perfusion of physiological high flow samples and secondly, that spatial myocardial blood flow coordination is not dependent on nitric oxide. Received: 11 July 1996 / Received after revision: 29 October 1996 / Accepted: 17 December 1996  相似文献   

6.
The present study was carried out to investigate the contribution of the Ca2+-transport ATPase of the sarcoplasmic reticulum (SR) to caffeine-induced Ca2+ release in skinned skeletal muscle fibres. Chemically skinned fibres of balb-C-mouse EDL (extensor digitorum longus) were exposed for 1 min to a free Ca2+ concentration of 0.36 μM to load the SR with Ca2+. Release of Ca2+ from the SR was induced by 30 mM caffeine and recorded as an isometric force transient. For every preparation a pCa/force relationship was constructed, where pCa = −log10 [Ca2+]. In a new experimental approach, we used the pCa/force relationship to transform each force transient directly into a Ca2+ transient. The calculated Ca2+ transients were fitted by a double exponential function: Y 0 + A 1⋅exp (−t/t 1) + A 2⋅exp(t/t 2), with A 1 < 0 < A 2, t 1 < t 2 and Y 0, A 1, A 2 in micromolar. Ca2+ transients in the presence of the SR Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) were compared to those obtained in the absence of the drug. We found that inhibition of the SR Ca2+-ATPase during caffeine-induced Ca2+ release causes an increase in the peak Ca2+ concentration in comparison to the control transients. Increasing CPA concentrations prolonged the time-to-peak in a dose-dependent manner, following a Hill curve with a half-maximal value of 6.5 ± 3 μM CPA and a Hill slope of 1.1 ± 0.2, saturating at 100 μM. The effects of CPA could be simulated by an extended three-compartment model representing the SR, the myofilament space and the external bathing solution. In terms of this model, the SR Ca2+-ATPase influences the Ca2+ gradient across the SR membrane in particular during the early stages of the Ca2+ transient, whereas the subsequent relaxation is governed by diffusional loss of Ca2+ into the bathing solution. Received: 2 February 1996/Accepted: 1 April 1996  相似文献   

7.
The molecular mechanism(s) involved in mediating Ca2+ entry into rat parotid acinar and other non-excitable cells is not known. In this study we have examined the kinetics of Ca2+ entry in fura-2-loaded parotid acinar cells, which were treated with thapsigargin to deplete internal Ca2+ pools (Ca2+-pool-depleted cells). The rate of Ca2+ entry was determined by measuring the initial increase in free cytosolic [Ca2+] ([Ca2+]i) in Ca2+-pool-depleted, and control (untreated), cells upon addition of various [Ca2+] to the medium. In untreated cells, a low-affinity component was detected with K Ca = 3.4 ± 0.7 mM (where K Ca denotes affinity for Ca2+) and V max = 9.8 ± 0.4 nM [Ca2+]i /s. In thapsigargin-treated cells, two Ca2+ influx components were detected with K Ca values of 152 ±  79 μM (V max = 5.1 ± 1.9 nM [Ca2+]i/s) and 2.4 ±  0.9 mM (V max = 37.6 ± 13.6 nM [Ca2+]i/s), respectively. We have also examined the effect of Ca2+ and depolarization on these two putative Ca2+ influx components. When cells were treated with thapsigargin in a Ca2+-free medium, Ca2+ influx was higher than into cells treated in a Ca2+-containing medium and, while there was a 46% increase in the V max of the low-affinity component (no change in K Ca), the high-affinity component was not clearly detected. In depolarized Ca2+-pool-depleted cells (with 50 mM KCl in the medium) the high-affinity component was considerably decreased while there was an apparent increase in the K Ca of the low-affinity component, without any change in the V max. These results demonstrate that Ca2+ influx into parotid acinar cells (1) is increased (four- to five-fold) upon internal Ca2+ pool depletion, and (2) is mediated via at least two components, with low and high affinities for Ca2+. Received: 30 October 1995/Received after revisionand accepted: 13 December 1995  相似文献   

8.
Employing microfluorometric system and patch clamp technique in rabbit basilar arterial myocytes, regulation mechanisms of vascular excitability were investigated by applying intracellular pH (pHi) changers such as sodium acetate (SA) and NH4Cl. Applications of caffeine produced transient phasic contractions in a reversible manner. These caffeine-induced contractions were significantly enhanced by SA and suppressed by NH4Cl. Intracellular Ca2+ concentration ([Ca2+]i) was monitored in a single isolated myocyte and based the ratio of fluorescence using Fura-2 AM (R 340/380). SA (20 mM) increased and NH4Cl (20 mM) decreased R 340/380 by 0.2 ± 0.03 and 0.1 ± 0.02, respectively, in a reversible manner. Caffeine (10 mM) transiently increased R 340/380 by 0.9 ± 0.07, and the ratio increment was significantly enhanced by SA and suppressed by NH4Cl, implying that SA and NH4Cl may affect [Ca2+]i (p < 0.05). Accordingly, we studied the effects of SA and NH4Cl on Ca2+-activated K+ current (IKCa) under patch clamp technique. Caffeine produced transient outward current at holding potential (V h) of 0 mV, caffeine induced transient outward K+ current, and the spontaneous transient outward currents were significantly enhanced by SA and suppressed by NH4Cl. In addition, IKCa was significantly increased by acidotic condition when pHi was lowered by altering the NH4Cl gradient across the cell membrane. Finally, the effects of SA and NH4Cl on the membrane excitability and basal tension were studied: Under current clamp mode, resting membrane potential (RMP) was −28 ± 2.3 mV in a single cell level and was depolarized by 13 ± 2.4 mV with 2 mM tetraethylammonium (TEA). SA hyperpolarized and NH4Cl depolarized RMP by 10 ± 1.9 and 16 ± 4.7 mV, respectively. SA-induced hyperpolarization and relaxation of basal tension was significantly inhibited by TEA. These results suggest that SA and NH4Cl might regulate vascular tone by altering membrane excitability through modulation of [Ca2+]i and Ca2+-activated K channels in rabbit basilar artery.  相似文献   

9.
 Ca2+ paradox damage has been suggested to be determined by Na+ entry during Ca2+ depletion and exchange of Na+ for Ca2+ during Ca2+ repletion. Since previously a Ca2+ paradox without prior increase of total intracellular [Na+] ([Na+]i) has been observed, we investigated whether local accumulation of Na+ close to the inner side of the sarcolemma during Ca2+ depletion plays a role in the Ca2+ paradox by replacing all extracellular Na+ by Li+ 5 min before and during 10 min Ca2+-free perfusion (37°C) in isolated rat hearts (group I). Subsequently, hearts were perfused with a standard, Na+- and Ca2+-containing solution. Verapamil was used to prevent contracture due to the absence of Na+/Ca2+ exchange during Na+-free perfusion in the presence of Ca2+. In group II, the Ca2+-free period was omitted, and in group III normal extracellular [Na+] was used throughout. 23Na-NMR was used to monitor intra- and extracellular Na+ signals. Total creatine kinase release was 2,977±413, 36±24 and 3170±297 IU/g dry weight in groups I, II and III respectively, indicating a full Ca2+ paradox in groups I and III. [Na+]i decreased from 11.3±0.6 mM during control perfusion to 1.2±0.4 mM after 10 min Ca2+ depletion in group I, whereas in group III [Na+]i was 10.9±2.2 mM during control perfusion and did not change significantly after 10 min Ca2+-free perfusion. It is concluded that accumulation of Na+ close to the inner side of the sarcolemma during Ca2+ depletion is not a prerequisite for the Ca2+ paradox. Received: 2 February 1998 / Received after revision: 31 March 1998 / Accepted: 9 April 1998  相似文献   

10.
This study was designed to investigate whether atrial natriuretic factor (ANF) administered over the physiological, pathological and pharmacological range has a negative inotropic action on the heart. Anesthetized rabbits were infused with increasing doses of ANF (0.05, 0.25 and 0.5g kg–1min–1), while measuring hemodynamic variables including the maximum rate of change of left ventricular pressure (dP/dt max) as an index of inotropic state. Plasma levels of immunoreactive ANF (iANF) were measured to relate the hemodynamic changes to actual plasma levels of the peptide. Administration of ANF was associated with decreases in blood pressure, left ventricular pressure and dP/dt max so that after 0.5 g kg–1 min–1 infusion, these variables had decreased by 21±2 mmHg, 21±5.3 mmHg and 925±175 mmHg/s, respectively (P<0.01). There were no significant changes in right atrial pressure, left ventricular end-diastolic pressure or heart rate. Since dP/dt max can be influenced by changing hemodynamic variables and baroreflex changes, a second group of rabbits was studied in which afterload and heart rate were held artificially constant. Again, in this group of rabbits, infusions of ANF led to decreasing inotropic state, so that at the highest infusion rate, a 14% decrease in dP/dt max was observed (P<0.05). By comparison, hydralazine, a drug which causes active vasodilatation but no direct inotropic action, significantly (P<0.01) decreased blood pressure, left ventricular pressure and dP/dt max when infused at a rate of 10 g kg–1 min–1. However, in animals in which afterload was controlled, hydralazine did not affect any of the variables measured. The results indicate that ANF does have a negative inotropic action in the anesthetized rabbit.  相似文献   

11.
 This paper outlines a simple method of estimating both the Ca-buffering properties of the cytoplasm and the time-course of changes of sarcoplasmic reticulum (s.r.) Ca concentration during systole. The experiments were performed on voltage-clamped ferret single ventricular myocytes loaded with the free acid of fluo-3 through a patch pipette. The application of caffeine (10 mM) resulted in a Na-Ca exchange current and a transient increase of the free intracellular Ca concentration ([Ca2+]i). The time-course of change of total Ca in the cell was obtained by integrating the current and this was compared with the measurements of [Ca2+]i to obtain a buffering curve. This could be fit with a maximum capacity for the intrinsic buffers of 114±18 μmol l–1 and K d of 0.59±0.17 μM (n=8). During the systolic rise of [Ca2+]i, the measured changes of [Ca2+]i and the buffering curve were used to calculate the magnitude and time-course of the change of total cytoplasmic Ca and thence of both s.r. Ca content and Ca release flux. This method provides a simple and reversible mechanism to measure Ca buffering and the time-course of both total cytoplasmic and s.r. Ca. Received: 14 October 1998 / Accepted: 6 November 1998  相似文献   

12.
 The effects of removing extracellular Ca2+ and Mg2+ on the membrane potential, membrane current and intracellular Na+ activity (a i Na) were investigated in guinea-pig and rat ventricular myocytes. Membrane potential was recorded with a patch pipette and whole-cell membrane currents using a single-electrode voltage clamp. Both guinea-pig and rat cells depolarize when the bathing Ca2+ and Mg2+ are removed and the steady-state a i Na increases rapidly from a resting value of 6.4± 0.6 mM to 33±3.8 mM in guinea-pig (n=9) and from 8.9±0.8 mM to 29.3±3.0 mM (n=5) in rat ventricular myocytes. Guinea-pig myocytes partially repolarized when, in addition to removal of the bathing Ca2+ and Mg2+, K+ was also removed, however rat cells remained depolarized. A large diltiazem-sensitive inward current was recorded in guinea-pig and rat myocytes, voltage-clamped at –20 mV, when the bathing divalent cations were removed. When the bathing K+ was removed after Ca2+ and Mg2+ depletion, a large outward K+ current developed in guinea-pig, but not in rat myocytes. This current had a reversal potential of –80±0.7 mV and was not inhibited by high Mg2+ or glybenclamide indicating that it is not due to activation of non-selective cation or adenosine triphosphate (ATP)-sensitive K channels. The current was not activated when Li+ replaced the bathing Na+ and was blocked by R-56865, suggesting that it was due to the activation of KNa channels. Received: 15 October 1998 / Received after revision: 22 January 1999 / Accepted: 5 February 1999  相似文献   

13.
 Calcium-activated potassium currents were studied in dissociated smooth muscle cells from human saphenous vein (HSV) using the patch-clamp technique in the whole-cell configuration. The average measured resting membrane potential (V m) was –41±2 mV (n=39), when the cells were dialysed with an intracellular pipette solution (IPS) containing 0.1 mM ethyleneglycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) (IPS-0.1 mM EGTA). When the EGTA concentration was increased to 10 mM (IPS-10 mM EGTA) V m became significantly less negative: –13±2 mV (n=23, P<0.05). These results suggest that 10 mM EGTA reduces a calcium-dependent current involved in the maintenance of V m. Depolarizing voltage steps up to +60 mV from holding potentials of –60 mV resulted in large (1–10 nA) time- and voltage-dependent outward currents. The amplitudes of total whole-cell current densities measured at voltages above –20 mV were significantly greater in the cells dialysed with IPS-0.1 mM EGTA than in those dialysed with IPS-10 mM EGTA. In the cells dialysed with IPS-0.1 mM EGTA, 0.1 mM tetraethylammonium chloride (TEA) and 50 nM iberiotoxin (IBTX), which selectively block large conductance Ca2+-activated potassium channels (BKCa), diminished the total current recorded at +60 mV by 45±14% (P<0.05, n=5) and 50±6% (n=8, P<0.05), respectively. These blockers at the same concentrations did not affect the total current in cells dialysed with IPS-10 mM EGTA. When tested on intact HSV rings, both 0.1 mM TEA and 50 nM IBTX elicited vessel contraction. We conclude that BKCa channels present in HSV smooth muscle cells contribute to the maintenance of the V m and sustain a significant portion of the total voltage-activated, outward current. Finally, BKCa channels appear to play a significant role in the regulation of HSV smooth muscle contractile activity. Received: 3 April 1998 / Received after revision: 23 September 1998 / Accepted: 13 October 1998  相似文献   

14.
The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min−1) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9±2.9 years, 73.9±6.5 kg, 1.79±0.09 m) performed an incremental maximal load test (50 and 100 rev min−1) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min−1) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1±21.2 W vs. 148.2±15.5 W) and MLSSintensity (70.5±5.7% vs. 61.4±5.1%) were significantly higher during cycling at 50 rev min−1 than at 100 rev min−1, respectively. However, there was no significant difference in MLSS between 50 rev min−1 (4.8±1.6 mM) and 100 rev min−1 (4.7±0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min−1) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.  相似文献   

15.
Stroke volume equation for impedance cardiography   总被引:4,自引:1,他引:4  
The study's goal was to determine if cardiac output (CO), obtained by impedance cardiography (ICG), would be improved by a new equation N, implementing a square root transformation for dZ/dtmax/Z0, and a variable magnitude, mass-based volume conductor Vc. Pulmonary artery catheterisation was performed on 106 cardiac surgery patients pre-operatively. Post-operatively, thermodilution cardiac output (TDCO) was simultaneously compared with ICG CO. dZ/dtmax/Z0 and Z0 were obtained from a proprietary bioimpedance device. The impedance variables, in addition to left ventricular ejection time TLVE and patient height and weight, were input using four stroke volume (SV) equations: Kubicek (K), Sramek (S), Sramek-Bernstein (SB), and a new equation N. CO was calculated as SV × heart rate. Data are presented as mean ± SD. One way repeated measures of ANOVA followed by the Tukey test were used for inter-group comparisons. Bland-Altman methods were used to assess bias, precision and limits of agreement. P<0.05 was considered statistically significant. CO implementing N (6.06±1.48 l min−1) was not different from TDCO (5.97±1.41 l min−1). By contrast, CO calculated using K (3.70±1.53 l min−1), S (4.16±1.83 l min−1) and SB (4.37±1.82 l min−1) was significantly less than TDCO. Bland-Altman analysis showed poor agreement between TDCO and K, S and SB, but not between TDCO and N. Compared with TDCO, equation N, using a square-root transformation for dZ/dtmax/Z0, and a mass-based VC was superior to existing transthoracic impedance techniques for SV and CO determination.  相似文献   

16.
It is well known that the rate of intracellular calcium ([Ca2+]i) decline is an important factor governing relaxation in unloaded myocardium. However, it remains unclear to what extent, under near physiological conditions, the intracellular calcium transient amplitude and kinetics contribute to the length-dependent increase in force and increase in duration of relaxation. We hypothesize that myofilament properties rather than calcium transient decline primarily determines the duration of relaxation in adult mammalian myocardium. To test this hypothesis, we simultaneously measured force of contraction and calibrated [Ca2+]i transients in isolated, thin rabbit trabeculae at various lengths at 37°C. Time from peak tension to 50% relaxation (RT50(tension)) increases significantly with length (from 49.8 ± 3.4 to 83.8 ± 7.4 ms at an [Ca2+]o of 2.5 mM), whereas time from peak calcium to 50% decline (RT50(calcium)) was not prolonged (from 124.8 ± 5.3 to 107.7 ± 11.4 ms at an [Ca2+]o of 2.5 mM). Analysis of variance revealed that RT50(tension) is significantly correlated with length (P < 0.0001). At optimal length, varying the extracellular calcium concentration increased both developed force and calcium transient amplitude, but RT50(tension) remained unchanged (P = 0.90), whereas intracellular calcium decline actually accelerated (P < 0.05). Thus, an increase in muscle length will result in an increase in both force and duration of relaxation, whereas the latter is not primarily governed by the rate of [Ca2+]i decline.  相似文献   

17.
 Acute and repeated exposure for 8–13 consecutive days to exercise in humid heat was studied. Twelve fit subjects exercised at 150 W [45% of maximum O2 uptake (V.O2,max)] in ambient conditions of 35°C and 87% relative humidity which resulted in exhaustion after 45 min. Average core temperature reached 39.9 ± 0.1°C, mean skin temperature (T– sk) was 37.9 ± 0.1°C and heart rate (HR) 152 ± 6 beats min–1 at this stage. No effect of the increasing core temperature was seen on cardiac output and leg blood flow (LBF) during acute heat stress. LBF was 5.2 ± 0.3 l min–1 at 10 min and 5.3 ± 0.4 l min–1 at exhaustion (n = 6). After acclimation the subjects reached exhaustion after 52 min with a core temperature of 39.9 ± 0.1°C, T– sk 37.7 ± 0.2°C, HR 146 ± 4 beats min–1. Acclimation induced physiological adaptations, as shown by an increased resting plasma volume (3918 ± 168 to 4256 ± 270 ml), the lower exercise heart rate at exhaustion, a 26% increase in sweating rate, lower sweat sodium concentration and a 6% reduction in exercise V.O2. Neither in acute exposure nor after acclimation did the rise of core temperature to near 40°C affect metabolism and substrate utilization. The physiological adaptations were similar to those induced by dry heat acclimation. However, in humid heat the effect of acclimation on performance was small due to physical limitations for evaporative heat loss. Received: 3 July 1996 / Received after revision: 26 September 1996 / Accepted: 7 January 1997  相似文献   

18.
The interaction of recently characterized cardiodepressant mediators with catecholamines and adenosine after myocardial ischaemia was investigated using a model of sequential perfusion of two isolated guinea-pig hearts. Sequential perfusion was initiated after 10, 20, and 30 min (group I, II, and III) of global ischaemia in the first heart. At the onset of sequential perfusion LVdP/dtmax and min of Heart II decreased by 46 and 44% in group I, by 28 and 34% in group II, and increased by 60 and 24% in group III. Infusion of the β1-receptor antagonist metoprolol (2.8 μmol L–1) into Heart II did not modulate contractile changes after 10 min of ischaemia in Heart I, prevented the attenuation of the cardiodepressant effect after 20 min of ischaemia, and completely reversed the positive inotropic effect after 30 min of ischaemia. The A1- and A2-receptor antagonists DPCPX (2 μmol L–1) and DMPX (20 μmol L–1) enhanced the positive inotropic and lusitropic effects in Heart II (LVdP/dtmax +154%, LVdP/dtmin +71%) during sequential perfusion after 30 min of ischaemia in Heart I. It is concluded that the effects of cardiodepressant mediators released after myocardial ischaemia are counteracted by a time-dependent release of catecholamines. Endogenous cardiac adenosine, in turn, attenuates the modulatory effects of catecholamines.  相似文献   

19.
In earlier studies we have shown that both the pressure (P) of the carotid artery pulse (CAP) and its first derivative (CAP dP/dt) could be recorded during moderate exercise. To establish that the CAP (dP/dt)/P is a noninvasive substitute for the left ventricular (LV) value, LV (dP/dt)/P, an index of cardiac contractility, we studied CAP (dP/dt)/P under various states of activity in the autonomic nervous system in 12 healthy male subjects. Increased sympathetic nerve activities yielded by passive tilting, emotional load, or cold stress increased CAP (dP/dt)/P significantly (P< 0.05). Increased parasympathetic nerve activity by ocular compression, however, did not significantly affect the value. Moderate exercise at a heart rate of approximately 150 beats·min–1 increased it significantly from 16.7 to 25.2·s–1 in a supine position (P<0.001) and from 16.6 to 24.8·s–1 in an upright position (P<0.001). It increased monotonically as heart rate increased, but the slope was steeper when the heart rate was greater than approximately 100 beats·min–1 than it was when the rate was less than 100 beats·min–1. In conclusion, the present study indicated that CAP (dP/dt)/P can be used as a noninvasive index of cardiac contractility even in moderate exercise.  相似文献   

20.
Effects of the naturally occurring polyamine spermine on electrical and contractile properties of the rat portal vein were studied. 1 mM spermine nearly abolished spike activity and spontaneous contractions and decreased the intracellular Ca2+ concentration ([Ca2+],). The phasic force responses to 0.1 and 1 μM phenylephrine were partially inhibited, but not the sustain plateau contraction caused by 5 /IM phenylephrine. The Ca2+-force relation in high-K+ (128 mM)-depolarized veins was shifted to the right, EC50 for Ca2+ increasing from 0.50 ± 0.03 mM (control, n= 8) to 0.65 ± 0.06 and to 0.94 ± 0.03 at 1 (n – 4) and 10 (n = 3) mM spermine, respectively. However, at a Ca2+ concentration of 2.5 mM, giving maximal force, there was no effect of spermine (1 mM) on either force or [Ca2+],. Whereas extracellular spermine thus reduced contractile activity at moderate levels of stimulation, increased intracellular concentration of spermine potentiated the force response to Ca2+. Intracellular loading of spermine by reversible permeabilization increased its concentration by 2–3 times. The spontaneous activity and response to phenylephrine were unchanged. However, the Ca2+-force relation of depolarized veins was shifted to the left, EC50 decreasing from 0.51 ± 0.04 mM in controls (n= 7) to 0.36 ± 0.02 mM in the loaded veins (n= 9). Spermine increased Ca2+-activated force in portal veins permeabilized with β-escin. The degree of potentiation was consistent with observed effects in spermine-loaded intact veins. The results suggest that spermine at physiological intracellular concentration may contribute to the determination of Ca2+ sensitivity in vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号