首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMPA receptor potentiators for the treatment of CNS disorders   总被引:3,自引:0,他引:3  
Glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate most of the excitatory neurotransmission in the mammalian central nervous system and also participate in forms of synaptic plasticity thought to underlie memory and learning, and the formation of neural networks during development. Molecular cloning techniques have shown that the AMPA receptor family is composed of four different subunits named GluR1-4 or GluRA-D (newly termed as Glu(A1)-Glu(A4)) and native AMPA receptors are most likely tetramers generated by the assembly of one or more of these subunits, yielding homomeric or heteromeric receptors. Additional complexity among AMPA receptors is conferred by alternative splicing of RNA for each subunit giving rise to flip and flop variants. Clinical and experimental data have suggested that positive modulation of AMPA receptors may be therapeutically effective in the treatment of cognitive deficits. Several classes of AMPA receptor potentiators have been reported, including pyrroliddones (piracetam, aniracetam), benzothiazides (cyclothiazide), benzylpiperidines (CX-516, CX-546) and more recently biarylpropylsulfonamides (LY392098, LY404187 and LY503430). These molecules enhance cognitive function in rodents, which appears to correlate with increased hippocampal activity. In addition, clinical studies have suggested that AMPA receptor modulators enhance cognitive function in elderly subjects, as well as patients suffering from neurological and psychiatric disorders. Several independent studies have suggested that AMPA receptors can increase BDNF expression by both calcium-dependent and independent pathways. For example, recent studies have shown that AMPA receptors interact with the protein tyrosine kinase, Lyn. Activation of Lyn can recruit the mitogen-activated protein kinase (MAPK) signalling pathway and increase the expression of BDNF. Therefore, in addition to directly enhancing glutamatergic synaptic transmission, AMPA receptor activation can increase the expression of BDNF in vitro and in vivo. This may account for activity of AMPA receptor potentiators in rodent models predictive of antidepressant activity (forced swim and tail suspension tests). The increase in neurotrophin expression also may contribute to the functional, neuroprotective and neurotrophic actions of LY404187 and LY503430 after infusion of 6-OHDA into the substantia nigra. In conclusion, several potent, selective and systemically active AMPA receptor potentiators have been reported. Data indicate that these molecules modulate glutamatergic transmission, enhance synaptic transmission, long-term potentiation (LTP) and increase neurotrophin expression. Therefore, these AMPA receptor potentiators offer an exciting new class of drugs with potential for treating (1) cognitive impairment associated with Alzheimer's disease and schizophrenia, (2) depression, (3) slowing the progression and potentially enhancing recovery from Parkinson's disease.  相似文献   

2.
LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time-dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage-dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long-term modifications in synaptic function (e.g., long-term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA receptor function, secondary mobilization of intracellular signaling cascades, and prolonged modulation of gene expression.  相似文献   

3.
Recent developments in the molecular biology and pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors has led to the discovery of selective, potent and systemically active AMPA receptor potentiators. These molecules enhance synaptic transmission and evidence suggests that they play important roles in plasticity and cognitive processes. Activation of AMPA receptors also increases neuronal activation and activity-dependent signalling, which may increase brain-derived neurotrophic factor (BDNF) expression and enhance cell proliferation in the brain. We therefore hypothesised that an AMPA receptor potentiator may provide neurotrophic effects in rodent models of Parkinson's disease. In the present studies we report that the potent and selective AMPA receptor potentiator, R,S-N-2-(4-(4-Cyanophenyl)phenyl)propyl 2-propanesulfonamide (LY404187), provides both functional, neurochemical and histological protection against unilateral infusion of 6-hydroxydopamine into the substantia nigra or striatum of rats. The compound also reduced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity in mice. Interestingly, we were also able to observe large functional and histological effects when we delayed treatment until after cell death had occurred (3 or 6 days after 6-hydroxydopamine infusion), supporting a neurotrophic mechanism of action. In addition, LY404187 provided a dose-dependent increase in growth-associated protein-43 expression in the striatum. Therefore, we propose that AMPA receptor potentiators offer the potential of a new therapy to halt the progression and perhaps repair the degeneration in Parkinson's disease.  相似文献   

4.
Glutamate is the major excitatory transmitter in the brain. Recent developments in the molecular biology and pharmacology of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-subtype of glutamate receptors have led to the discovery of selective, potent and systemically active AMPA receptor potentiators. These molecules enhance synaptic transmission and play important roles in plasticity and cognitive processes. In the present studies we characterized a novel AMPA receptor potentiator, LY503430, on recombinant human GLU(A1-4) and native preparations in vitro, and then evaluated the potential neuroprotective effects of the molecule in rodent models of Parkinson's disease. Results indicated that at submicromolar concentrations LY503430 selectively enhanced glutamate-induced calcium influx into HEK293 cells transfected with human GLU(A1), GLU(A2), GLU(A3), or GLU(A4) AMPA receptors. The molecule also potentiated AMPA-mediated responses in native cortical, hippocampal and substantia nigra neurones. LY503430 had good oral bioavailability in both rats and dogs. We also report here that LY503430 provided dose-dependent functional and histological protection in animal models of Parkinson's disease. The neurotoxicity following unilateral infusion of 6-hyrdoxydopamine (6-OHDA) into either the substantia nigra or the striatum of rats and that following systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice were reduced. Interestingly, LY503430 also had neurotrophic actions on functional and histological outcomes when treatment was delayed until well after (6 or 14 days) the lesion was established. LY503430 also produced some increase in brain derived neurotrophic factor (BDNF) in the substantia nigra and a dose-dependent increase in growth associated protein-43 (GAP-43) expression in the striatum. Therefore, we propose that AMPA receptor potentiators such as LY503430 offer the potential of a new disease modifying therapy for Parkinson's disease.  相似文献   

5.
Major antidepressant agents increase synaptic levels of monoamines. Although the monoamine hypothesis of depression remains a cornerstone of our understanding of the pathophysiology of depression, emerging data has suggested that the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subtype of glutamate receptor may also play a pivotal role in depression. Positive allosteric modulators of AMPA receptors increase brain levels of brain-derived neurotrophic factor (BDNF) that impacts the viability and generation of neurons in key brain structures. AMPA receptor potentiators are active in rodent models predictive of antidepressant efficacy. The mechanisms by which AMPA receptor potentiators produce these biological effects, however, are uncertain. Current evidence points to an antidepressant mechanism that is independent of monoaminergic facilitation that is driven by neurogenesis, a process facilitated by increased BDNF expression. However, alternative hypotheses need to be considered given uncertainties in the relationship between BDNF increases and the effects of conventional antidepressant medications. Electrophysiological and protein conformational data indicate that structural variants of AMPA receptor potentiators can differentially modulate AMPA receptor-mediated currents, although the manner in which this impacts antidepressant efficacy is yet to be understood. Conventional antidepressants such as fluoxetine positively modulate AMPA receptors. This potentiation is engendered by specific phosphorylation pathways activated through the dopamine- and cAMP-regulated phosphoprotein of Mr 32,000 (DARPP-32). Other novel compounds with antidepressant-like effects in rodents may also produce their in vivo effects through potentiation of AMPA receptors. Thus, AMPA receptor potentiation might be a general mechanism through which the clinical outcome of antidepressant efficacy is achieved.  相似文献   

6.
LY395153 is a member of a newly described class of arylpropylsulfonamide AMPA receptor potentiators. Here, we characterize and compare [(3)H]LY395153 binding to native AMPA receptors from rat cerebral cortex and recombinant human GluR4(flip) receptors expressed in HEK293 cells. L-Glutamate and AMPA increased [(3)H]LY395153 binding to both native and recombinant AMPA receptors in a concentration dependent and stereoselective manner; this effect of AMPA receptor agonists reflects an apparent increase in ligand affinity. In the presence of L-glutamate (500 microM), [(3)H]LY395153 binding is saturable; the affinity of this radioligand is slightly, albeit statistically significantly higher at human GluR4(flip) (K(d)=55.6+/-5.3nM) than rat cortical receptors (K(d)=110+/-15.1nM). NBQX competitively inhibited L-glutamate-induced increases in [(3)H]LY395153 binding in both native and recombinant receptors, whilst LY303070 (the active isomer of GYKI53655) noncompetitively inhibited this effect in native, but not recombinant receptors. The prototypic AMPA receptor potentiator cyclothiazide competitively inhibited [(3)H]LY395153 binding with a potency (K(i) approximately 7 microM) comparable to EC(50) values reported in electrophysiological studies. In contrast, the structurally unrelated AMPA receptor potentiator CX 516 did not inhibit [(3)H]LY395153 binding at concentrations of up to 600 microM. Further, at concentrations reported to facilitate AMPA receptor desensitization, thiocyanate acts as a competitive inhibitor of [(3)H]LY395153 binding. [(3)H]LY395153 binding was unaffected by a variety of structurally (and mechanistically) diverse compounds tested at a concentration of 10 microM. These data indicate [(3)H]LY395153 is a useful probe for labeling a unique modulatory site on both native and recombinant AMPA receptors.  相似文献   

7.
Many studies have demonstrated that intoxicating concentrations of ethanol (10-100 mM) can selectively inhibit the component of glutamatergic synaptic transmission mediated by N-methyl-D-aspartate (NMDA) receptors while having little or no effect on excitatory synaptic transmission mediated by non-NMDA receptors [i.e., alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and/or kainate (KA) receptors]. However, until the recent development of highly selective AMPA receptor antagonists, it was not possible to assess the relative contribution of AMPA and KA receptors to non-NMDA receptor-mediated synaptic transmission or to determine whether these glutamate receptor subtypes differed in their sensitivity to ethanol. In the present experiments, we used the highly selective AMPA receptor antagonist LY 303070 to pharmacologically isolate KA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal CA3 pyramidal neurons and tested their sensitivity to ethanol. Concentrations of ethanol as low as 20 mM significantly and reversibly depressed KA EPSCs. Ethanol also inhibited KA currents evoked by direct pressure application of KA in the presence of LY 303070, suggesting that this inhibition was mediated by a postsynaptic action. In contrast, ethanol had no effect on AMPA EPSCs in these cells, even at the highest concentration tested (80 mM). Ethanol significantly inhibited NMDA EPSCs in these neurons, but these responses were less sensitive to ethanol than KA EPSCs. These results suggest that in addition to its well-described depressant effect on NMDA receptor-mediated synaptic transmission, ethanol has an even greater inhibitory effect on glutamatergic synaptic transmission mediated by KA receptors in rat hippocampal CA3 pyramidal neurons.  相似文献   

8.
AMPA receptor activation has been demonstrated to increase the neuronal expression of brain derived neurotrophic factor (BDNF). In the present study, we investigated the effect of a novel AMPA receptor potentiator (LY404187) and its active isomer (LY451646) on the expression of BDNF protein and mRNA, as well as TrkB mRNA in rat hippocampus. LY404187 administered for 7 days (1 mg/kg) significantly increased the number of BDNF immunopositive cells in the dentate gyrus, but not other hippocampal subfields. Chronic treatment (7 days) with LY451646 (0.5 mg/kg, comparable to 1 mg/kg of LY404187) increased the level of both BDNF and TrkB mRNA expression in the dentate gyrus, CA3 and CA4 of the hippocampus. However, chronic treatment with lower doses of LY451646 (0.125 and 0.25 mg/kg) decreased the level of BDNF and TrkB mRNA in hippocampus, whilst the highest used dose of LY451646 (1 mg/kg) had no effect on BDNF and TrkB mRNA in hippocampus. In contrast, acute treatment with LY451646 produced an increase in BDNF mRNA levels at doses of 0.125 and 0.25 mg/kg in the hippocampus (CA4, CA3 and dentate gyrus, but not in CA1). LY451646 at 0.5 mg/kg had no effect, but at 1.0 mg/kg decreased the level of BDNF mRNA in hippocampus. Acute treatment with LY451646 did not affect the TrkB receptor mRNA levels in hippocampus. Our results demonstrate that biarylpropylsulfonamide AMPA receptor potentiators are capable of modulating the expression of BDNF and TrkB mRNA in a dose- and time-dependent manner. The increase in both BDNF protein and mRNA expression in the dentate gyrus but not in CA1 indicates a specific role of AMPA receptors in the regulation of BDNF expression in this hippocampal subfield. The regulation of BDNF expression by biarylpropylsulfonamids such as LY451646 may have important therapeutical implications for this class of molecule in the treatment of depression and other CNS disorders.  相似文献   

9.
The development of GluR5-selective kainate receptor ligands is helping to elucidate the functions of kainate receptors in the CNS. Here we have further characterised the actions of a GluR5 selective agonist, ATPA, and a GluR5 selective antagonist, LY382884, in the CA3 region of rat hippocampal slices. In addition, we have used LY382884 to study a novel synaptic mechanism. This antagonist substantially reduces frequency facilitation of mossy fibre synaptic transmission, monitored as either AMPA or NMDA receptor-mediated EPSCs. This suggests that GluR5-containing kainate receptors on mossy fibres function as autoreceptors to facilitate the synaptic release of L-glutamate, in a frequency-dependent manner.  相似文献   

10.
We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication.  相似文献   

11.
Interactions between AMPA receptors and intracellular proteins   总被引:6,自引:0,他引:6  
alpha-Amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) receptors mediate most fast excitatory synaptic transmission in the mammalian CNS. They play a central role in synapse stabilisation and plasticity and their prolonged activation is potently neurotoxic. Developmental and activity-dependent changes in the functional synaptic expression of these receptors are subject to tight cellular regulation. The molecular and cellular mechanisms which control the postsynaptic insertion and arrangement of individual AMPA receptor variants are therefore the subject of intense investigation and in the last two years there has been significant progress towards elucidating some of the processes involved. Much of the new information has come from the application of the yeast two-hybrid assay, which has led to the discovery of a hitherto unexpected complexity of proteins which selectively interact with individual AMPA receptor subunits. These proteins have been implicated in the regulation of AMPA receptor post-translational modification, targeting and trafficking, surface expression and anchoring. The aim of this article is to present an overview of the major interacting proteins described so far and to place these in the context of how they may participate in the well ordered series of events controlling the cell biology of AMPA receptors.  相似文献   

12.
Previous studies have shown that a single point mutation (S(750)Q) in the splice variant region of rat Glu(1) subunits can eliminate positive allosteric modulation by cyclothiazide. The present study investigated the effects of mutating the equivalent residue (S(776)Q) in the human Glu(4) subunit on the activity and binding of a novel AMPA receptor potentiator, LY395153 (N-2-(4-benzamidophenylpropyl-2-propanesulfonamide)). The mutation markedly attenuated, but did not eliminate, potentiation by LY395153 and cyclothiazide. In addition, binding of [3H]LY395153 was significantly reduced by this mutation. These effects occurred in the absence of any change in the response to glutamate or the binding of a competitive AMPA receptor antagonist, [3H]Ro 48-8587 ([2,4,5-3H]9-imidazol-1-yl-8-nitro-2,3,5,6-tetrahydro[1,2,4]-triazolo[1,5-c]quinazoline-2,5-dione triethylammonium salt). Collectively, these results demonstrate that structurally diverse classes of potentiators are sensitive to mutations of this single Ser residue, suggesting that binding to this residue may be necessary for positive allosteric modulation of AMPA receptors.  相似文献   

13.
Positive allosteric modulation of AMPA receptor function has therapeutic potential in a number of psychiatric disorders and neurodegenerative diseases. AMPA receptor potentiators can induce neurite sprouting in vivo. Using a strategy of combined morphological and biochemical analyses, we investigated the effect of the AMPA receptor potentiator LY404187 on neurite growth in the SH-SY5Y human neuroblastoma cell line. LY404187 (0.1-10 microM) increased average neurite length and neurofilament expression when co-administered with s-AMPA. Co-incubation with s-AMPA and LY404187 also increased Trk receptor expression. All actions of LY404187 were sensitive to AMPA receptor blockade by the selective antagonist CNQX (10 microM). Antibody sequestration of BDNF attenuated neurite growth following AMPA receptor potentiator administration, suggesting that LY404187 increases neurite length in vitro by a BDNF mediated mechanism. AMPA receptor potentiation activates multiple intracellular neurochemical cascades and the present report identifies BDNF as one key mediator of the neurotrophic effects of AMPA receptor potentiation.  相似文献   

14.
LY395153 is a member of a newly described class of arylpropylsulfonamide AMPA receptor potentiators. Here, we characterize and compare [3H]LY395153 binding to native AMPA receptors from rat cerebral cortex and recombinant human GluR4flip receptors expressed in HEK293 cells. -Glutamate and AMPA increased [3H]LY395153 binding to both native and recombinant AMPA receptors in a concentration dependent and stereoselective manner; this effect of AMPA receptor agonists reflects an apparent increase in ligand affinity. In the presence of -glutamate (500 μM), [3H]LY395153 binding is saturable; the affinity of this radioligand is slightly, albeit statistically significantly higher at human GluR4flip (Kd=55.6±5.3 nM) than rat cortical receptors (Kd=110±15.1 nM). NBQX competitively inhibited -glutamate-induced increases in [3H]LY395153 binding in both native and recombinant receptors, whilst LY303070 (the active isomer of GYKI53655) noncompetitively inhibited this effect in native, but not recombinant receptors. The prototypic AMPA receptor potentiator cyclothiazide competitively inhibited [3H]LY395153 binding with a potency (Ki7 μM) comparable to EC50 values reported in electrophysiological studies. In contrast, the structurally unrelated AMPA receptor potentiator CX 516 did not inhibit [3H]LY395153 binding at concentrations of up to 600 μM. Further, at concentrations reported to facilitate AMPA receptor desensitization, thiocyanate acts as a competitive inhibitor of [3H]LY395153 binding. [3H]LY395153 binding was unaffected by a variety of structurally (and mechanistically) diverse compounds tested at a concentration of 10 μM. These data indicate [3H]LY395153 is a useful probe for labeling a unique modulatory site on both native and recombinant AMPA receptors.  相似文献   

15.
Excitatory neurotransmission in the CNS depends heavily upon alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-type glutamate receptors. Derangements in AMPA receptor mediated synaptic transmission may be a contributing factor in neurological and neurodegenerative diseases and could be a target for therapeutic intervention. Recently, drugs that positively modulate AMPA receptors have been identified, having differential effects upon certain AMPA receptor subunits and different effects upon physiological properties of AMPA receptors. These drugs facilitate AMPA receptor mediated processes and may have beneficial therapeutic effects. For example, certain AMPA modulators facilitate long-term potentiation, which is considered a cellular mechanism that may be important for memory storage and they also facilitate memory encoding in behavioural experiments. Thus, AMPA modulators might ameliorate memory deficits that occur in dementia, such as Alzheimer's disease (AD). However, AMPA receptor mediated excitotoxicity may occur with excessive AMPA receptor activation which occurs in seizures or ischaemia and positive AMPA modulators could promote neuronal injury in those conditions. Ultimately, the clinical utility of positive AMPA modulators will be dependent upon understanding the role of AMPA receptors in certain neurological disorders, identifying receptor subtypes involved in specific neurological disorders and developing drugs with selective actions upon specific AMPA receptor properties that also possess receptor subtype specificity. Currently available drugs have provided significant insight into the physiology and structural determinants of important AMPA receptor properties and some insight into potential clinical uses as well as potential dangers of such drugs.  相似文献   

16.
With an aging population, cognitive decline as a result of aging, Alzheimer's disease and other neurological conditions has become a major problem. Many of the current medications (eg, acetylcholinesterase inhibitors) for cognitive disorders show limited efficacy and are effective only in certain populations. Several other pharmacological pathways are therefore being explored in an attempt to develop superior medications. Glutamate and glutamate receptors are well recognized to play a key role in long-term potentiation (LTP), a process that is believed to underlie memory formation. Glutamate antagonists have been demonstrated to block LTP and to disrupt memory in both rodents and humans. Based on these data, it is not surprising that boosting glutamatergic transmission has been explored as a means of enhancing cognition. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors have been demonstrated to control fast synaptic transmission. Several classes of AMPA receptor potentiators have been described in the last decade. These molecules bind to allosteric sites on AMPA receptors, slow desensitization and thereby enhance signaling through the receptors. Some AMPA receptor potentiator agents have been explored in rodent models and are now entering clinical trials. Research complexity for these agents arises from the multiple AMPA receptor subtypes on which the molecules can act differentially, as well as from the distribution of AMPA receptors and the difficulty in studying cognition in na?ve rodents. Nevertheless, boosting Ca(2+) flux through the AMPA receptor, and enhancing LTP and downstream pathways may provide a novel approach to the treatment of cognitive deficits.  相似文献   

17.
The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABA(A) receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABA(A) receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca(2+) concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABA(A) receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABA(A) receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves.  相似文献   

18.
The present study describes the pharmacological activity of two novel positive allosteric modulators at AMPA receptors in acutely isolated rat cerebellar Purkinje neurons and cultured rat hippocampal neurons. Currents elicited by application of glutamate (100 μM) to isolated cerebellar Purkinje neurons were potentiated by LY392098, LY404187, cyclothiazide, CX516 and aniracetam. The rank order of potency was LY404187> LY392098> cyclothiazide > CX516> aniracetam. LY392098 displayed a higher maximal efficacy than the other compounds examined. AMPA-activated inward currents in cultured rat hippocampal neurons were potentiated by LY392098, LY404187 and cyclothiazide in a reversible and concentration-dependent manner although considerable heterogeneity in the magnitude of response from cell to cell was observed. LY392098 was ineffective in potentiating AMPA receptor responses when dialyzed via the intracellular solution. The selectivity profiles of the two novel AMPA receptor potentiators were examined. LY392098 or LY404187 had minimal activity on NMDA receptor responses, on voltage-gated calcium channel currents in cultured hippocampal neurons and on GluR5 kainate receptor currents in acutely isolated rat dorsal root ganglion neurons.  相似文献   

19.
Excitatory neurotransmission in the CNS depends heavily upon α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-type glutamate receptors. Derangements in AMPA receptor mediated synaptic transmission may be a contributing factor in neurological and neurodegenerative diseases and could be a target for therapeutic intervention. Recently, drugs that positively modulate AMPA receptors have been identified, having differential effects upon certain AMPA receptor subunits and different effects upon physiological properties of AMPA receptors. These drugs facilitate AMPA receptor mediated processes and may have beneficial therapeutic effects. For example, certain AMPA modulators facilitate long-term potentiation, which is considered a cellular mechanism that may be important for memory storage and they also facilitate memory encoding in behavioural experiments. Thus, AMPA modulators might ameliorate memory deficits that occur in dementia, such as Alzheimer’s disease (AD). However, AMPA receptor mediated excitotoxicity may occur with excessive AMPA receptor activation which occurs in seizures or ischaemia and positive AMPA modulators could promote neuronal injury in those conditions. Ultimately, the clinical utility of positive AMPA modulators will be dependent upon understanding the role of AMPA receptors in certain neurological disorders, identifying receptor subtypes involved in specific neurological disorders and developing drugs with selective actions upon specific AMPA receptor properties that also possess receptor subtype specificity. Currently available drugs have provided significant insight into the physiology and structural determinants of important AMPA receptor properties and some insight into potential clinical uses as well as potential dangers of such drugs.  相似文献   

20.
It is now generally recognised that glutamate is the major excitatory neurotransmitter in vertebrate central nervous system (CNS). It acts at ionotropic and metabotropic receptors which appear to play important roles in all aspects of CNS functions. The ionotropic receptors, which are involved in fast synaptic transmission, belong to three subtypes named after three relatively selective agonists: NMDA (N-methyl-D-aspartate, AMPA [2- amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)-propionate] and KA (kainate) receptors. The compounds acting as AMPA antagonists are potentially useful for the prevention and treatment of a broad range of acute and chronic neurological disorders. This article describes the development of recent AMPA receptor antagonists, reviewing both the primary and patent literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号