首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We showed recently that activation of Valpha14(+) natural killer T cells (NKT cells) by alpha-galactosylceramide (alpha-GalCer) resulted in increased gamma interferon (IFN-gamma) production and host resistance to intravenous infection with Cryptococcus neoformans. In other studies, interleukin-18 (IL-18) activated NKT cells in collaboration with IL-12, suggesting the possible contribution of this cytokine to alpha-GalCer-induced IFN-gamma synthesis. Here we examined the role of IL-18 in alpha-GalCer-induced Th1 response by using IL-18KO mice with this infection. In these mice, levels of IFN-gamma in serum and its synthesis in vitro by spleen cells stimulated with live organisms were not reduced, but rather enhanced, compared to those in wild-type (WT) mice, while such production was completely absent in IL-12KO mice. The enhanced production of IFN-gamma correlated with increased IL-12 synthesis but not with reduced production of IL-4, which was rather increased. IFN-gamma synthesis in IL-18KO mice was abolished by neutralizing anti-IL-12 antibody and significantly inhibited by neutralization of endogenous IL-4 with a specific monoclonal antibody. In addition, administration of recombinant IL-4 significantly enhanced the production of IFN-gamma in WT mice. Finally, the enhanced production of IFN-gamma in IL-18KO mice correlated with increased host defense against cryptococcal infection, as indicated by enhancement in alpha-GalCer-related clearance of microorganisms. Our results indicated that in IL-18KO mice, IFN-gamma synthesis was enhanced through overproduction of IL-12 and IL-4 after intravenous infection with C. neoformans and a ligand-specific activation of Valpha14(+) NKT cells.  相似文献   

2.
A subset of CD161 (NK1) T cells express an invariant Valpha14Jalpha281 TCR-alpha chain (Valpha(invt) T cells) and produce Th2 and Th1 cytokines rapidly in response to CD1d, but their physiological function(s) remain unclear. We have found that CD1d-reactive T cells mediate to resistance against the acute, cytopathic virus diabetogenic encephalomyocarditis virus (EMCV-D) in relatively Th1-biased, C57BL/6-based backgrounds. We show now that these results generalize to Th2-biased, hypersensitive BALB/c mice. CD1d-KO BALB/c mice were more susceptible to EMCV-D. Furthermore, alpha-galactosylceramide (alpha-GalCer), a CD1d-presented lipid antigen that specifically activates Valpha(invt) T cells, protected wild-type (WT) mice against EMCV-D-induced encephalitis, myocarditis, and diabetes. In contrast, neither CD1d-KO nor Jalpha281-KO mice were protected by alpha-GALCER: Finally, disease in Jalpha281-KO mice was comparable to WT, indicating for the first time equivalent roles for CD1d-reactive Valpha(invt) and noninvariant T cells in resistance to acute viral infection. A model for how CD1d-reactive T cells can initiate immune responses, which synthesizes current results, is presented.  相似文献   

3.
NK1.1(+) alpha beta T cells (NKT cells) regulate the Th1/Th2 balance in response to dietary Ag, which may be involved in regulation of oral tolerance. OVA-specific IgE and IgG(1) Ab levels were significantly lower following an i.p. injection of OVA (in CFA) in C57BL/6 mice orally given a single, high dose (25 mg) of OVA than in those orally given PBS. The oral tolerance was normally induced in Jalpha281(-/-) mice which lack Valpha14(+) NKT cells, suggesting that NKT cells are dispensable for induction of oral tolerance. Treatment with PGE(1) or PGE(2 )abrogated the oral tolerance in Jalpha281(+/+) mice; this abrogation was accompanied by an OVA-specific Th2-dominant response. The abrogation of oral tolerance by PGE(1 )was not evident in Jalpha281(-/-) mice. Treatment with PGE(1) induced an early increase in IL-4 production by liver NKT cells in normal mice and neutralization of the early IL-4 by administration of anti-IL-4 mAb abolished PGE(1)-induced abrogation of oral tolerance. These results suggest that liver NKT cells producing IL-4 are responsible for the down-regulation of oral tolerance that is caused by the PGE molecules.  相似文献   

4.
Valpha14i natural killer T cells (NKT cells) are a CD1-restricted subset of NKT cells that express an invariable Valpha14+ Jalpha281+ alphabeta T-cell receptor. To determine whether the absence of Valpha14i NKT cells from the graft affects the development of acute GVHD, we induced GVH reactions using Jalpha281(-/-) mice as donors in the C57BL/6-->(C57BL/6 x DBA/2)F1-hybrid strain combination. Recipients of grafts from Jalpha281(-/-) donors were not protected from either the morbidity or the severe wasting syndrome associated with the development of acute GVHD, but the concentrations of some T helper 1 (Th1) and Th2 cytokines were different from those seen in recipients of grafts from wild-type donors. Interferon-gamma was seen earlier (day 4) in recipients of grafts from Jalpha281(-/-) donors but did not reach the concentrations seen in recipients of grafts from wild-type donors on day 8 (P < 0.02). On day 8, the amount of tumour necrosis factor-alpha released into the serum following the injection of a small amount of lipopolysaccharide was lower in recipients of grafts from Jalpha281(-/-) donors (P < 0.02). The amount of interleukin (IL)-5 was also lower in recipients of grafts from Jalpha281(-/-) donors, when compared to the concentration seen in recipients of grafts from wild-type donors (P < 0.002). IL-13 was seen in recipients of grafts from Jalpha281(-/-) donors but not in recipients of grafts from wild-type donors. Our findings show that the absence of donor Valpha14i NKT cells is associated with lower concentrations of some Th1 cytokines. We also observed higher IL-13 concentrations and lower IL-5 concentrations in recipients of grafts from Jalpha281(-/-) donors indicating a variable effect on Th2 cytokine production.  相似文献   

5.
Mouse natural killer T cells with invariant Valpha14 rearrangement (Valpha14i NKT cells) can rapidly produce both Th1 and Th2 cytokines and regulate various immune responses, such as autoimmunity and tumor immunity. In this study, we describe the phenotypical and functional characterization of in vitro-expanded mouse Valpha14i NKT cells from spleen using a combination of alpha-galactosylceramide (alpha-GalCer) and IL-2. The expanded Valpha14i NKT cells retained the memory/activated (CD44(+)CD69(+)CD62L(-)) and CD4(+) or CD4(-)8(-) double negative phenotypes but modulated or lost the classical NKT cell marker, NK1.1. The expanded Valpha14i NKT cells continuously released IL-4 and IFNgamma and induced NK cell IFNgamma production in vitro. Furthermore, the expanded Valpha14i NKT cells migrated into the liver and spleen after adoptive transfer into lymphopenic SCID mice, and they were able to rapidly produce IL-4 and IFNgamma after alpha-GalCer injection. Our findings suggest that the intrinsic characteristics of the cytokine secretion of Valpha14i NKT cells were equivalent to that of in vitro-expanded Valpha14i NKT cells. In vitro-expanded Valpha14i NKT cells are considered to be useful for NKT cell defect-related diseases, such as autoimmunity and cancer.  相似文献   

6.
We examined the effect of alpha-galactosylceramide (alpha-GalCer) on the synthesis of gamma interferon (IFN-gamma) and local resistance in mice infected intravenously with Cryptococcus neoformans. The level of IFN-gamma in serum increased on day 3, reached a peak level on day 7, and decreased to the basal level on day 14 postinfection in mice treated with alpha-GalCer, while in vehicle-treated mice, no increase was detected at any time points except for a small increase on day 7. Such effects were not observed in NKT-KO mice. In CD4KO mice, minor synthesis of IFN-gamma was detected on day 3 in sera but was completely abolished by day 7. The alpha-GalCer-induced IFN-gamma production on day 3 was partially reduced in mice depleted of NK cells by treatment with anti-asialo-GM(1) antibody (Ab). Spleen cells obtained from infected and alpha-GalCer-treated mice on day 7 produced a large amount of IFN-gamma upon restimulation with live organisms, while only a marginal level of production was detected in splenocytes from infected and vehicle-treated mice. Such effects were abolished in CD4KO and NKT-KO mice. Finally, the fungal loads in the lungs and spleen on days 7 and 14 were significantly reduced in alpha-GalCer-treated mice compared to those in control mice. In NKT-KO mice, local resistance elicited by alpha-GalCer was completely abolished, although no obvious exacerbation of infection was detected. Furthermore, treatment with anti-IFN-gamma monoclonal Ab mostly abrogated the protective effect of this agent. Thus, our results indicated that activation of Valpha14(+) NKT cells resulted in an increased Th1 response and local resistance to C. neoformans through production of IFN-gamma.  相似文献   

7.
Mouse natural killer T cells with an invariant Valpha14-Jalpha18 TCR rearrangement (Valpha14i NKT cells) are able to regulate immune responses through rapid and large amounts of Th1 and Th2 cytokine production. It has been reported that in vivo administration of the Valpha14i NKT cell ligand, alpha-galactosylceramide (alpha-GalCer) significantly reduced morbidity and mortality of acute graft-versus-host disease (GVHD) in mice. In this study, we examined whether adoptive transfer of in vitro-expanded Valpha14i NKT cells using alpha-GalCer and IL-2 could modulate acute GVHD in the transplantation of spleen cells of C57BL/6 mice into (B6xDBA/2) F(1) mice. We found that the adoptive transfer of cultured spleen cells with a combination of alpha-GalCer and IL-2, which contained many Valpha14i NKT cells, modulated acute GVHD by exhibiting long-term mixed chimerism and reducing liver damage. Subsequently, the transfer of Valpha14i NKT cells purified from spleen cells cultured with alpha-GalCer and IL-2 also inhibited acute GVHD. This inhibition of acute GVHD by Valpha14i NKT cells was blocked by anti-IL-4 but not by anti-IFN-gamma monoclonal antibody. Therefore, the inhibition was dependent on IL-4 production by Valpha14i NKT cells. Our findings highlight the therapeutic potential of in vitro-expanded Valpha14i NKT cells for the prevention of acute GVHD after allogeneic hematopoietic stem cell transplantation.  相似文献   

8.
Invariant Valpha14 natural killer T (Valpha14i NKT) cells are a unique immunoregulatory T-cell population that is restricted by CD1d. The glycolipid alpha-galactosylceramide (alpha-GalCer) is presented by CD1d and causes robust Valpha14i NKT-cell activation. Three days after injection of alpha-GalCer, Valpha14i NKT cells vigorously increase in number and then gradually decrease to normal levels. In the present study, we found that the re-administration of alpha-GalCer into mice primed 3 days earlier causes a marked increase in serum interleukin-4 and interferon-gamma. Intracellular staining revealed that the only expanded Valpha14i NKT cells are responsible for the enhanced cytokine production. The enhanced cytokine production was correlated with an increased number of Valpha14i NKT cells after priming. Additionally, primed Valpha14i NKT cells produced larger amounts of cytokine as compared with naive Valpha14i NKT cells when cultured with alpha-GalCer-pulsed dendritic cells. Thus, we considered that a subset of expanded Valpha14i NKT cells acquired a strong ability to produce cytokines. In contrast to mice primed 3 days earlier, cytokine production is markedly diminished in mice primed 7 days earlier. The expanded Valpha14i NKT cells altered the surface phenotype (NK1.1- CD69-) and contained intracellular interferon-gamma. Additionally, we found that primed Valpha14i NKT cells did not disappear or down-regulate surface TCR expression when re-injected with alpha-GalCer as compared with naive Valpha14i NKT cells. These results demonstrate that the function and surface phenotype of Valpha14i NKT cells is dramatically altered after alpha-GalCer priming.  相似文献   

9.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the emergence of autoreactive T cells. Humans and mice with SLE have reduced numbers of CD1d-restricted invariant natural killer T (iNKT) cells, suggesting a key role for these cells in its immunopathogenesis. This subset uses an invariant TCR constituted by Valpha14 Jalpha281 chains paired with some Vbeta domains. The regulatory role for iNKT cells in non-autoimmune mice was suggested by our previous results showing that aged Jalpha281 knockout (KO) mice produce anti-dsDNA. Here we show that old Jalpha281 KO mice have proteinuria and antibodies against dsDNA and cardiolipin. Histological analysis of Jalpha281 KO mice revealed glomeruli damage and deposition of C3c and IgG, mainly of the IgG3 subclass. In spleens of aged Jalpha281 KO mice there is an increase of activated marginal zone B cells. The evolution of lesions may depend on the age-associated increase of autoantibodies production, preferentially IgG3, mainly secreted by marginal zone B cells. Our results provide the first evidence of a lupus-like syndrome in non-autoimmune mice, supporting an age-related immunoregulatory role of Jalpha281+ cells, probably associated with the activation of marginal zone B cells.  相似文献   

10.
Gamma interferon (IFN-gamma)-regulated chemokines of the CXC family have been implicated as key regulators of a variety of T-cell-dependent inflammatory processes. However, the cellular source(s) of IFN-gamma that regulates their early expression has rarely been defined. Here, we have directly addressed this question in mice after Leishmania donovani infection. Comparison of CXCL10 mRNA accumulation in normal and IFN-gamma-deficient mice confirmed an absolute requirement for IFN-gamma for sustained (24 h) expression of CXCL10 mRNA accumulation in this model. In normal mice, IFN-gamma was produced by both CD3int NK1.1+ NKT cells and CD3- NK1.1+ NK cells, as detected by intracellular flow cytometry. Strikingly, B6.Jalpha281-/- mice lacking NKT cells that express the invariant Valpha14Jalpha18 T-cell-receptor alpha chain, although retaining a significant population of IFN-gamma-producing NK cells and NKT cells, were unable to sustain CXCL10 mRNA accumulation. These data indicate that invariant NKT cells are indispensable for the regulation of hepatic CXCL10 gene expression during L. donovani infection.  相似文献   

11.
NKT cells are specialized cells of the immune system that bear both T cell and NK cell markers. Classical NKT cells display TCRs of restricted heterogeneity (Valpha14-Jalpha281) and recognize lipid antigens (e.g., alpha-galactosyl ceramide) presented by nonpolymorphic CD1 molecules. Recently, other nonclassical NKT subsets have been recognized, including NKT cells not reactive with CD1d-alpha-galactosyl ceramide complexes. The biological functions of these cells are unknown. Here, we show that nonclassical NKT cells that are CD1d restricted but nonreactive to alpha-GalCer are activated in response to hepatocytes expressing hepatitis B viral antigens in a transgenic mouse model of acute hepatitis B virus infection. Our results document the first in vivo function for such nonclassical NKT cells and suggest a role for these cells in the host response to HBV infection.  相似文献   

12.
Natural killer T (NKT) cell activation is responsible for eliminating pathogens. However, the biological functions of NKT cells against influenza virus are not fully understood. We therefore investigated the effects of NKT cells in viral infection using CD1d knockout (KO) mice. When CD1d KO or wild-type (WT) mice were infected with a sub-lethal dosage of the influenza virus, the survival rate of CD1d KO mice was significantly lower than for WT mice in association with delayed viral clearance in the lungs. Consistently, IFN-γ production in bronchoalveolar lavage fluid of CD1d KO mice was largely reduced compared to WT mice during infection. Moreover, the cytotoxic activities of NK cells and viral antigen-specific CD8+ T cells were impaired in CD1d KO mice. It was concluded that activated NKT cell-induced IFN-γ release enhances both NK-cell activity and antigen-specific CD8+ T cells to eliminate the influenza virus, thus leading to an enhanced survival.  相似文献   

13.
Administration of NKT cell ligands, alpha-galactosylceramide (alpha-GalCer) resulted in the activation of both cytokine production and natural killing. These responses were abolished in both CD1d-deficient mice and Valpha14NKT-deficient mice. Therefore, NKT cells have been considered to be responsible cells for both cytokine production and natural killing. Here, we reevaluated a critical role of NKT and NK cells at early time after alpha-GalCer administration. Intracellular staining experiments demonstrated that NKT cells were the earliest source of both IL-4 and IFN-gamma production after alpha-GalCer administration in vivo. However, these alpha-GalCer-activated NKT cells exhibited no significant natural killing activity. In contrast, isolated NK1.1+CD3- classical NK cells exhibited greatly enhanced natural killing activity 6 h after alpha-GalCer administration. NKT cells, however, exhibited a strong cytotoxicity when they were activated and expanded with alpha-GalCer plus IL-2 in vitro. These results indicated that NKT cells act as regulatory cells via production of cytokines for activation of NK cell-mediated cytotoxicity in vivo at early phase after alpha-GalCer administration. Thus, NK cells rather than NKT cells may be a crucial early activated killer induced by alpha-GalCer in vivo.  相似文献   

14.
Natural killer T (NKT) cells and CD5(+)B cells were searched for in various immune organs of autoimmune prone (NZBxNZW)F(1) (NZB/W F(1)) mice. The number of lymphocytes increased in the liver, spleen, and peritoneal cavity after the onset of disease (at the age of 30 weeks) while the number of thymocytes decreased at that time. Prominent changes of lymphocyte subsets were seen in the liver and peritoneal cavity, namely, expansion of IL-2Rbeta(+)TCRalpha beta(int) cells in the liver and of CD5(+)B220(+) cells in the peritoneal cavity. The majority of TCRalpha beta(int) cells in the liver were NK1.1(+), and CD5(+)B cells in the peritoneal cavity were CD1d(+). Proteinuria became prominent in NZB/W F(1) mice with the progression of disease. In parallel with this progression, the proportion of NKT cells decreased slightly in the liver, but their absolute number remained at a high level in this organ. These NKT cells were CD4(+) and used an invariant chain of Valpha14Jalpha281 for TCRalpha. Reflecting the elevation of CD5(+)B cells, autoantibodies against hepatocyte cytoplasmand denatured DNA were detected in sera. Although NKT cells are known to be immunoregulatory cells in some autoimmune mice, the present results raise the possibility that NKT cells as well as CD5(+)B cells might be associated with the onset of autoimmune diseases in NZB/W F(1) mice. Indeed, NKT cells in F(1) mice had a high potential to induce autoimmune-like inflammationwhen alpha-galactosylceramide was administered or when active NKT cells were transferred into young F(1) mice.  相似文献   

15.
Valpha14 natural killer T (NKT) cells produce large amounts of both IL-4 and IFN-gamma upon stimulation with a ligand, alpha-galactosylceramide (alpha-GalCer), and play a crucial role in various immune responses, including allergic diseases. Interestingly, Valpha14 NKT cells are not essential for the induction of IgE responses but rather induce suppression of specific IgE production upon activation. The suppression in the IgE production is not detected either in Valpha14 NKT cell-deficient mice or in IFN-gamma-deficient mice. Thus, activated Valpha14 NKT cells are likely to exert a potent suppressive activity on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-gamma. In marked contrast, little regulatory effect of IL-4 produced by Valpha14 NKT cells on Th2 cell differentiation is suggested.  相似文献   

16.
Murine NKT cells can recognize alpha-galactosylceramide (alpha-GalCer) in the context of a class Ib CD1d molecule. Here we show that alpha-GalCer can selectively activate freshly isolated human Valpha24(+)Vbeta11(+) cells, functionally defining the human NKT cells. The naive human NKT cell repertoire consisted of cells expressing an invariant Valpha24JalphaQ chain and a diverse array of beta chains derived from a single Vbeta11 gene segment. Stimulation with alpha-GalCer expanded a polyclonal subset of the human NKT cell repertoire carrying a novel complementarity-determining region (CDR) 3beta consensus motif that may directly interact with the sugar moiety of alpha-GalCer. Our data suggest that certain redundancy is allowed for CDR3beta of NKT antigen receptor to interact with the ligand and provide a first clue to understand the novel protein-carbohydrate interaction mechanisms.  相似文献   

17.
CD1d-restricted natural killer T (NKT) cells have at least two subsets: type I, semi-invariant TCRalpha chain-expressing (Valpha14Jalpha18 in mice, Valpha24Jalpha18 in humans), and type II, variable TCRalpha chain-expressing. The protective role of NKT cells in tumor immunosurveillance and immunity has been well documented but paradoxically, there are also studies ascribing a suppressive role to these cells. Recent studies have resolved this paradox by revealing distinct roles for the two types of NKT cells, whereby type I NKT cells enhance anti-tumor responses and type II NKT cells suppress these responses. The finding of cross-regulation between the two types of NKT cells suggests a new immunoregulatory axis. Consideration of the cross-talk of NKT cells along with the well-defined suppression by regulatory T cells could provide new insights into cancer immunotherapy.  相似文献   

18.
To clarify the essential role of NKT cells in allergy, we investigated the contribution of NKT cells to the pathogenesis of eosinophilic airway inflammation using alpha-galactosylceramide (alpha-GalCer), a selective ligand for NKT cells. Although continuous administration of alpha-GalCer during ovalbumin (OVA) sensitization increased OVA-specific IgE levels and worsened eosinophil inflammation, a single administration of alpha-GalCer at the time of OVA challenge completely prevented eosinophilic infiltration in wild-type mice. This inhibitory effect of alpha-GalCer was associated with a decrease in airway hyperresponsiveness, an increase in IFN-gamma, and decreases in IL-4, IL-5 and IL-13 levels in the bronchoalveolar lavage fluids. Analysis of lung lymphocytes revealed that production of IFN-gamma increased in NK cells, but not in T or NKT cells, following alpha-GalCer administration. Induction of vascular cell adhesion molecule-1 in the lungs of wild-type mice was also significantly attenuated by treatment with alpha-GalCer. These effects of alpha-GalCer were abrogated in J alpha281-/- mice, which lack NKT cells, and in wild-type mice treated with anti-IFN-gamma Ab. Hence, our data indicate that alpha-GalCer suppresses allergen-induced eosinophilic airway inflammation, possibly by inducing a Th1 bias that results in inhibition of eosinophil adhesion to the lung vessels.  相似文献   

19.
NKT cells expressing the invariant Valpha14 antigen receptor constitute a novel lymphocyte subpopulation with immunoregulatory functions. Stimulation via their invariant Valpha14 receptor with anti-CD3 or a ligand, alpha-galactosylceramide (alpha-GalCer), triggers activation of Valpha14 NKT cells, resulting in a rapid cytokine production such as IFN-gamma and IL-4. Soon after their receptor activation, Valpha14 NKT cells disappeared as judged by staining with CD1d tetramer loaded with alpha-GalCer (alpha-GalCer/CD1d tetramer), which has been believed to be due to apoptotic cell death. Here we show that such a disappearance was largely attributed to down-regulation of the Valpha14 receptor. In fact, Valpha14 NKT cells were relatively resistant to apoptosis compared to the conventional T cells as evidenced by less staining with Annexin-V, a limited DNA fragmentation, and their preferential expression of anti-apoptotic genes such as NAIP and MyD118. Furthermore, they did not become tolerant, and maintained their proliferative capacity and cytokine production even after their receptor down-regulation. These as yet unrecognized facets of Valpha14 NKT cells are discussed in relation to their regulatory functions.  相似文献   

20.
Natural killer T (NKT) cells have recently been implicated in atherogenesis, primarily for their ability to recognize and respond to lipid antigens. Because the atherosclerotic lesion is characterized by the retention and modification of lipids in the vascular wall, NKT cells may be involved in promoting the local vascular inflammatory response. Here, we investigate the proatherogenic role of NKT cells in an adoptive transfer model of atherosclerosis, using as recipients immune-deficient, atherosclerosis-susceptible RAG1(-/-)LDLR(-/-) mice. The adoptive transfer of an NKT cell-enriched splenocyte population from Valpha14Jalpha18 T-cell receptor transgenic mice resulted in a 73% increase in aortic root lesion area compared with recipients of NKT cell-deficient splenocytes derived from CD1d(-/-) mice after 12 weeks of Western-type diet feeding. The total serum from hypercholesterolemic mice leads to a small but significant activation of Valpha14Jalpha18 T-cell receptor-expressing hybridoma line by dendritic cells that is CD1d-dependent. Therefore, these studies demonstrate that NKT cells are proatherogenic in the absence of exogenous stimulation, and this activity is likely associated with endogenous lipid antigens carried by lipoproteins in the circulation and perhaps also in the atherosclerotic plaque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号