首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systemic administration of amphetamine results in increases in the release of acetylcholine in the cortex. Basal forebrain mediation of this effect was examined in three experiments using microdialysis in freely-moving rats. Experiment 1 examined whether dopamine receptor activity within the basal forebrain was necessary for amphetamine-induced increase in cortical acetylcholine by examining whether intra-basalis perfusion of dopamine antagonists attenuates this increase. Systemic administration of 2.0 mg/kg amphetamine increased dopamine efflux within the basal forebrain nearly 700% above basal levels. However, the increase in cortical acetylcholine efflux following amphetamine administration was unaffected by intra-basalis perfusions of high concentrations of D1- (100 microM SCH 23390) or D2-like (100 microM sulpiride) dopamine receptor antagonists. Experiments 2 and 3 determined whether glutamatergic or GABAergic local modulation of the excitability of the basal forebrain cholinergic neurons influences the ability of systemic amphetamine to increase cortical acetylcholine efflux. In Experiment 2, perfusion of kynurenate (1.0 mM), a non-selective glutamate receptor antagonist, into the basal forebrain attenuated the increase in cortical acetylcholine produced by amphetamine. Experiment 3 revealed that positive modulation of GABAergic transmission by bilateral intra-basalis infusion of the benzodiazepine receptor agonist chlordiazepoxide (40 microg/hemisphere) also attenuated the amphetamine-stimulated increase in cortical acetylcholine efflux. These data suggest that amphetamine increases cortical acetylcholine release via a complex neuronal network rather than simply increasing basal forebrain D1 or D2 receptor activity.  相似文献   

2.
In vivo microdialysis was used to determine the ability of benzodiazepine receptor (BZR) ligands to modulate stimulated cortical acetylcholine (ACh) efflux in awake, freely-moving Fischer-344/BNNia rats. Cortical ACh efflux was reliably enhanced during presentation of a complex stimulus (exposure to darkness coupled with presentation of a small amount of palatable food) in animals entrained with that stimulus. Administration of the BZR selective inverse agonist ZK 93 426 (5.0 mg/kg, i.p.) potentiated the ability of the darkness/food stimulus to enhance efflux, whereas administration of the BZR full agonist, chlordiazepoxide (5.0 mg/kg, i.p.) blocked the enhancement. The interaction of the BZR ligands with the entrained stimulus in affecting cortical ACh efflux was not secondary to effects on motor activity. These results, combined with results from a previous study, suggest that modulation of cortical ACh efflux by BZR ligands is bidirectional and dependent on the level of activity within cortical cholinergic neurons. This relationship enables the trans-synaptic stimulation of cortical ACh transmission by BZR inverse agonists to be most effective during behavioral activities which recruit the basal forebrain cholinergic system.  相似文献   

3.
In vivo microdialysis was utilized to determine the effects of benzodiazepine receptor (BZR) ligands on cortical acetylcholine (ACh) release in awake young and aged rats. There were no significant differences in baseline cortical ACh release as a function of age. While administration of the BZR selective inverse agonist ZK 93 426 increased ACh release in both groups of animals, the aged rats exhibited a greater stimulation. Unexpectedly, under the present testing conditions, the BZR agonist chlordiazepoxide (CDP) had no systematic effect on ACh release in either group. The presence or absence of these drug effects or drug-age interactions was not secondary to the impact of these compounds on behavioral activity. Cortical ACh release could also be stimulated by turning off the lights in the observation room or by the systemic administration of scopolamine. Aged rats were at least as able as their younger counterparts to respond to these manipulations with increased release. These results suggest that basal and stimulated release of cortical ACh is not impaired at the ages studied. Moreover, selective inverse BZR agonists may be a potent way of trans-synaptically stimulating cortical cholinergic transmission.  相似文献   

4.
Experience affects how brains respond to sound. Here, we examined how the sensitivity and selectivity of auditory cortical neuronal responses were affected in adult rats by the repeated presentation of a complex sound that was paired with basal forebrain stimulation. The auditory cortical region that was responsive to complex sound was 2-5 five times greater in area in paired-stimulation rats than in naive rats. Magnitudes of neuronal responses evoked by complex sounds were also greatly increased by associative pairing, as were the percentages of neurons that responded selectively to the specific spectrotemporal features that were paired with stimulation. These findings demonstrate that feature selectivity within the auditory cortex can be flexibly altered in adult mammals through appropriate intensive training.  相似文献   

5.
Dopaminergic regulation of cortical acetylcholine release.   总被引:5,自引:0,他引:5  
The extent to which the activity of basal forebrain cholinergic neurons is influenced by dopamine (DA) was investigated using in vivo microdialysis of cortical acetylcholine (ACh). Systemic administration of the DA receptor agonist apomorphine significantly increased dialysate concentrations of ACh. Systemic, but not local, administration of d-amphetamine produced similar effects. Both D1 (SCH 23390) and D2 (haloperidol, raclopride) DA receptor antagonists attenuated the amphetamine-induced increase in cortical ACh release; however, only the D1 antagonist significantly reduced basal output of cortical ACh. These findings suggest that the activity of cortically projecting cholinergic neurons in the nucleus basalis is regulated in an excitatory manner by central dopaminergic neurons and that both D1 and D2 receptors are involved.  相似文献   

6.
7.
The synthesis and release of 3H-acetylcholine was measured in hippocampal slices of adult rat brain following acute in vitro exposure to ethanolamine. Evoked release of 3H-acetylcholine was elevated by 60-70% but 3H-acetylcholine synthesis was unaffected. Other amino alcohols were also found to significantly increase evoked 3H-acetylcholine release. The effect may be stereochemically mediated since only one of four possible propanolamine configurations, R-alaninol, was active. The most potent compound tested was R-prolinol which showed an EC50 nearly 10-fold lower than that of either R-alaninol or ethanolamine; S-prolinol was inactive. Slices taken from adult rats which had been fed active compounds for two weeks also exhibited enhancements in evoked 3H-acetylcholine release. These results indicate that amino alcohols modulate acetylcholine release in the rat hippocampus.  相似文献   

8.
The present study was designed to examine whether glutamatergic receptor mechanisms modulate the release of acetylcholine (ACh) in the region of the subfornical organ (SFO) using intracerebral microdialysis methods in freely moving rats. Perfusion of either non-N-methyl-d-aspartate (NMDA) agonist quisqualic acid (QA, 50 microM) or kainic acid (KA, 50 microM) through the microdialysis probe significantly enhanced the ACh release in the SFO area. Local perfusion of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 and 50 microM) did not change the basal release of ACh. CNQX (10 microM) administered together with either QA (50 microM) or KA (50 microM) in the SFO area antagonized the stimulant effect of the agonists on the ACh release. In urethane-anesthetized rats, repetitive electrical stimulation (500 microA, 10 Hz) of the medial septum (MS) significantly increased dialysate ACh concentrations in the region of the SFO. The increase in the ACh release elicited by the MS stimulation was significantly potentiated by perfusion of QA (50 microM), and the QA-induced potentiation was prevented by CNQX (10 microM) treated together with QA. These results show that the glutamatergic synaptic inputs enhance the ACh release in the SFO area through non-NMDA receptors. The data further suggest that the septal cholinergic inputs to the SFO area are potentiated by non-NMDA receptor mechanisms.  相似文献   

9.
The aim of the present study was to investigate, using in vivo dialysis, the existence of muscarinic and nicotinic receptors controlling acetylcholine release in the cortex of freely behaving rats. Various muscarinic receptor antagonists, including the nonselective blocker atropine, and a variety of M2 drugs (AF-DX 116, AF-DX 384, AQ-RA 741) potently stimulated, in a concentration-dependent manner, the in vivo release of acetylcholine in the rat cortex. The effects of all these antagonists were long lasting. The nature of these putative muscarinic autoreceptors is likely of the pharmacologically defined M2subtype on the basis of the high potency of the antagonists of the AF-DX series and the variability and shorter duration of action of the effects of the prototypic M1 blocker, pirenzepine. 4-DAMP, a purported M3 blocker, also potently stimulated in vivo cortical acetylcholine release, but this likely relates to its now established, rather limited selectivity for any given muscarinic receptor subtypes. Peripheral and central injections of nicotine also induced the in vivo release of acetylcholine in the rat cortex, albeit with a lower potency and shorter duration of action than muscarinic antagonists. Interestingly, the combination of a muscarinic antagonist, such as atropine, AF-DX 116, or AF-DX 384, in the presence of nicotine, induced tremendous releases of cortical acetylcholine up to 8-to 10-fold over basal values. This is clearly more than a simply additive effect, and it reveals the great capacity of cortical cholinergic nerve terminals to synthesize and release acetylcholine. Optimal pharmacological manipulations of these putative muscarinic and nicotinic autoreceptors could thus be useful in disorders in which the activity of cholinergic inputs is decreased, such as in Alzheimer's disease. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Acetylcholine (ACh) release within the basal forebrain changes significantly as a function of sleep and wakefulness, hence identifying the neurochemical modulators of basal forebrain ACh release will contribute to a mechanistic understanding of sleep cycle regulation. This study tested the hypothesis that muscarinic and gamma aminobutyric acid(A) (GABAA) receptors modulate basal forebrain ACh release. Cats were anaesthetized with halothane to hold arousal state constant and a microdialysis probe was aimed stereotaxically for the substantia innominata region of the basal forebrain. Four concentrations of the muscarinic antagonist scopolamine (0.1, 0.3, 1.0, and 10 nm) and five concentrations of the GABAA antagonist bicuculline (3, 10, 30, 100, and 300 micro m) were delivered by reverse dialysis from the same probes used to collect ACh. These results are based on 27 experiments in nine animals. Scopolamine and bicuculline each caused a concentration dependent enhancement of ACh release. Scopolamine increased ACh by 118% above control levels whereas bicuculline was more effective, causing a 287% increase in ACh release. Scopolamine was more potent (EC50 = 0.16 nm) than bicuculline (EC50 > or = 90 micro m) for increasing ACh release. The results support the hypothesis that substantia innominata ACh release is modulated by muscarinic autoreceptors and inhibited by GABAA receptors. These findings are consistent with the interpretation that inhibition of basal forebrain cholinergic neurotransmission by GABA contributes to the generation of sleep.  相似文献   

11.
Adult female rats sustained aspirative fimbria-fornix lesions and, 2 weeks later, received intrahippocampal grafts of fetal septal or mixed septal-raphe cell suspensions. Twenty-four months later, the extracellular concentration of hippocampal acetylcholine (ACh) was determined by microdialysis. Basal ACh levels (5-65 fmol/5 microl sham-operated rats) were strongly reduced after lesioning (3-7 fmol/5 microl). In septally transplanted and septal-raphe co-transplanted rats, hippocampal ACh concentrations were restored to near-normal levels (15-25 fmol/5 microl), indicating long-term functional survival of hippocampal transplants. After administration of citalopram (100 microM by infusion) and fenfluramine (20 mg/kg i.p.), the hippocampal ACh efflux was increased by 2- to 3-fold in all groups of rats. The relative increase of ACh was highest in co-transplanted rats, an effect which was possibly due to functional interactions between grafted raphe and septal neurons.  相似文献   

12.
We tested the hypothesis that fluctuations in the levels of kynurenic acid (KYNA), an endogenous antagonist of the α7 nicotinic acetylcholine (ACh) receptor, modulate extracellular ACh levels in the medial prefrontal cortex in rats. Decreases in cortical KYNA levels were achieved by local perfusion of S -ESBA, a selective inhibitor of the astrocytic enzyme kynurenine aminotransferase II (KAT II), which catalyses the formation of KYNA from its precursor l -kynurenine. At 5 m m , S -ESBA caused a 30% reduction in extracellular KYNA levels, which was accompanied by a two-threefold increase in basal cortical ACh levels. Co-perfusion of KYNA in the endogenous range (100 n m ), which by itself tended to reduce basal ACh levels, blocked the ability of S -ESBA to raise extracellular ACh levels. KYNA perfusion (100 n m ) also prevented the evoked ACh release caused by d -amphetamine (2.0 mg/kg). This effect was duplicated by the systemic administration of kynurenine (50 mg/kg), which resulted in a significant increase in cortical KYNA formation. Jointly, these data indicate that astrocytes, by producing and releasing KYNA, have the ability to modulate cortical cholinergic neurotransmission under both basal and stimulated conditions. As cortical KYNA levels are elevated in individuals with schizophrenia, and in light of the established role of cortical ACh in executive functions, our findings suggest that drugs capable of attenuating the production of KYNA may be of benefit in the treatment of cognitive deficits in schizophrenia.  相似文献   

13.
Current autoradiographic and electrophysiological data suggest that fibers coursing from the diagonal band/medial septum and lateral preoptic area through the medial forebrain bundle (MFB) to the midbrain may carry the reward signals generated by lateral hypothalamic stimulation. To test this hypothesis, 40 rats were given a unilateral lateral hypothalamic stimulating electrode and an ipsilateral guide cannula for knife cut transection. In baseline self-stimulation testing, both the animal's capacity to respond for the stimulation and the reward efficacy of the stimulation were measured. A coronal plane knife cut transection was given following stabilization of baseline behavior, and any changes in response capacity and stimulation reward efficacy were observed for up to two weeks, beginning 24 h after transection. Cuts to the diagonal band/medial septal region or the outflow therefrom did not permanently or significantly alter stimulation reward effectiveness. Cuts in the lateral preoptic area or in the MFB just anterior to the stimulating electrode decreased stimulation reward effects only if considerable concomitant rostrocaudal tissue damage was apparent around the knife cut. Even in these cases, reward degradation was rarely permanent. These results suggest that the majority of reward-relevant fibers probably do not arise in forebrain nuclei rostral to the stimulating electrode. A possible role of neurons endemic to the lateral hypothalamus in stimulation reward effects is discussed.  相似文献   

14.
Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.  相似文献   

15.
The modulatory inputs of the cholinergic neurons of the nucleus basalis have been investigated in midpontine transected and freely moving rats by measuring acetylcholine release from the cerebral cortex using the cortical cup technique. Acetylcholine release was found to be the same in both groups of rats indicating similar levels of activity of the cholinergic neurons ascending to the cortex. The electrical stimulation of the nucleus basalis was always followed by an increase in acetylcholine release. Conversely, in some experiments only the stimulation of the midbrain reticular formation enhanced acetylcholine output. The stimulation of the nucleus accumbens prevented the increase in acetylcholine release elicited by amphetamine. The dose-dependent increase in acetylcholine output following IP administration of amphetamine was also prevented by the 6-hydroxydopamine induced degeneration of the dopaminergic fibres. However injection of apomorphine in the nucleus basalis did not modify acetylcholine output. Direct injection of the GABAergic agonist muscimol resulted in a decrease in acetylcholine output which was prevented by picrotoxin. In conclusion, the cholinergic neurons ascending to the cortex can be inhibited by GABA receptors located in the nucleus basalis and stimulated indirectly by dopaminergic fibres.  相似文献   

16.
Acetylcholine (ACh) efflux in the frontoparietal cortex was studied with in vivo microdialysis while rats performed in an operant task designed to assess sustained attention. Transferring animals from the baseline environment into the operant chambers elicited a robust increase in cortical ACh efflux that persisted throughout the 18-min pre-task period. Subsequent performance in the 36-min sustained attention task was associated with further significant increases in frontoparietal ACh efflux, while the termination of the task resulted in a delayed decline in ACh levels. Upon the 12-min presentation of a visual distracter (flashing houselight, 0.5 Hz) during task performance, animals initially developed a significant response bias to the left lever in the first 6-min distracter block, reflecting a reduction of attentional effort. Under continued conditions of increased attentional demand, performance recovered during the second 6-min distracter block. This return to attentional processing was accompanied by an increase in cortical ACh efflux, suggesting that the augmentation of attentional demand produced by the distracter elicited further increases in ACh release. The enhancement of cortical ACh efflux observed prior to task performance implies the presence of complex relationships between cortical ACh release and anticipatory and/or contextual factors related to operant performance and attentional processing. This finding, along with the further increases in cortical ACh efflux associated with task performance, extends hypotheses regarding the crucial role of cortical cholinergic transmission for attentional functions. Furthermore, the effects of the distracter stimulus provide evidence for a direct relationship between attentional effort and cortical ACh release.  相似文献   

17.
Shirane M  Nakamura K 《Brain research》2001,916(1-2):211-221
Aniracetam, a cognition enhancer, has been recently found to preferentially increase extracellular levels of dopamine (DA) and serotonin (5-HT) in the prefrontal cortex (PFC), basolateral amygdala and dorsal hippocampus of the mesocorticolimbic system in stroke-prone spontaneously hypertensive rats. In the present study, we aimed to identify actually active substances among aniracetam and its major metabolites and to clarify the mode of action in DA and 5-HT release in the PFC. Local perfusion of mecamylamine, a nicotinic acetylcholine (nACh) and N-methyl-D-aspartate (NMDA) receptor antagonist, into the ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) completely blocked DA and 5-HT release, respectively, in the PFC elicited by orally administered aniracetam. The effects of aniracetam were mimicked by local perfusion of N-anisoyl-gamma-aminobutyric acid [corrected] (N-anisoyl-GABA), one of the major metabolites of aniracetam, into the VTA and DRN. The cortical DA release induced by N-anisoyl-GABA applied to the VTA was also completely abolished by co-perfusion of mecamylamine. Additionally, when p-anisic acid, another metabolite of aniracetam, and N-anisoyl-GABA were locally perfused into the PFC, they induced DA and 5-HT release in the same region, respectively. These results indicate that aniracetam enhances DA and 5-HT release by mainly mediating the action of N-anisoyl-GABA that targets not only somatodendritic nACh and NMDA receptors but also presynaptic nACh receptors.  相似文献   

18.
Basal forebrain neurons with axon collaterals that project to widely divergent cortical areas were identified using retrograde transport of two labels. A proportion of neurons in the basal forebrain have axon collaterals that project to both anterior (precruciate gyrus) and posterior (marginal and suprasylvian gyri) cortical areas or to medial (precruciate gyrus) and lateral (ectosylvian and anterior suprasylvian gyri) cortical areas. These branched fibers originate from cells located predominantly in the basal nucleus of Meynert. The existence of such neurons suggests that individual basal forebrain cells are capable of influencing widespread neocortical zones in the cat.  相似文献   

19.
In vivo microdialysis was used to measure acetylcholine (ACh) efflux in the frontoparietal cortex while rats performed in one of two operant tasks. One task was designed and validated to generate measures of sustained attention, while the other task was designed to minimize explicit demands on sustained attentional resources (low-demand task). Transferring animals from the baseline environment into the operant chambers robustly increased cortical ACh efflux regardless of subsequent task demands. Performance in the sustained attention task further increased frontoparietal ACh efflux, and these increases were not observed when animals were simply exposed to the operant chamber without task performance. Manipulations of the task parameters within a session, to either increase or decrease explicit demands on sustained attention, were not associated with fluctuations in ACh efflux. Unexpectedly, performance in the low-demand task was also associated with significant increases in ACh efflux that were similar to those observed during the sustained attention task. However, widespread depletions of cortical cholinergic inputs produced by intra-basalis infusions of 192 IgG-saporin failed to impair performance in the low-demand task, suggesting that cholinergic transmission is not necessary for performance in this task. The present results indicate that although a wider range of instrumental processes than previously hypothesized are associated with increases in cortical ACh release, the dependence of performance on the integrity of cortical cholinergic inputs may be limited to tasks with explicit attentional demands.  相似文献   

20.
Acetylcholine release links the activity of presynaptic neurons with their postsynaptic targets and thus represents the intercellular correlate of cholinergic neurotransmission. Here, we review the regulation and functional significance of acetylcholine release in the mammalian cerebral cortex, with a particular emphasis on information derived from in vivo microdialysis studies over the past three decades. This information is integrated with anatomical and behavioral data to derive conclusions regarding the role of cortical cholinergic transmission in normal behavioral and how its dysregulation may contribute to cognitive correlates of several neuropsychiatric conditions. Some unresolved issues regarding the regulation and significance of cortical acetylcholine release and the promise of new methodology for advancing our knowledge in this area are also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号