首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Recent experiments have shown that rotation of a linear acceleration vector round the head can generate involuntary ocular nystagmus in the absence of angular acceleration. The present experiments examine the suggestion that adequate stimulation of the semicircular canals may contribute to this response.2. Decerebrate cats were located in a stereotaxic device on a platform, slung from four parallel cables, which could be driven smoothly round a circular orbit without inducing significant angular movement of the platform. This Parallel Swing Rotation (PSR) generated a centripetal acceleration of 4.4 m/sec(2) which rotated round the head at 0.52 rev/sec.3. The discharge frequency of specifically lateral canal-dependent neural units in the vestibular nuclei of cats was recorded during PSR to right and left, and in the absence of motion. The dynamic responses to purely angular motion were also examined on a servo-driven turntable.4. Without exception all proven canal-dependent cells examined (twenty-nine cells in nine cats) were more active during PSR in the direction of endolymph circulation assessed to be excitatory to the unit, than during PSR in the opposite direction.5. The observed changes in discharge frequency are assessed to have been of a magnitude appropriate for the generation of the involuntary oculomotor response induced by the same stimulus in the intact animal.6. The findings suggest that a linear acceleration vector which rotates in the plane of the lateral semicircular canals can be an adequate stimulus to ampullary receptors, though an explanation which invokes the modulation of canal cells by a signal dependent upon the sequential activation of macular receptors cannot be positively excluded.  相似文献   

2.
In anesthetized toads, spontaneous activities were recorded from single afferent fibers of three semicircular canals and three otolith organs. Since some efferent fibers ramify within the eighth nerve and innervate two or more vestibular organs, a single branchlet of the eighth nerve was disconnected from its end organ, and was electrically stimulated to activate divergent efferent collaterals leading to other vestibular organs. The stimulation elicited an inhibitory effect on spontaneous activities of about one third of the afferent population, and a facilitatory effect on those of another one third. The remaining one third was unaffected. Whether or not the inhibitory or facilitatory effect was observed in an individual unit seemed to be related to its pattern and its rate of spontaneous activity. Most of the units showing relatively high and regular spontaneous firing were insensitive to the electrical stimulation, and units with a low firing rate and an irregular pattern of activity tended to be affected by the electrical stimulation. The activation of divergent efferent fibers elicited both inhibition and facilitation on the spontaneous afferent activities in all vestibular nerve branchlets, except in the saccular branchlet, where only inhibition was elicited. Electrical stimulation of the central stump of the saccular nerve branchlet, however, could produce both inhibitory and facilitatory effects in other vestibular nerve branchlets.  相似文献   

3.
Summary The response patterns of antidromically identified vestibulo-spinal Deiters' neurons and other vestibular nuclear neurons to stimulation of neck receptors and horizontal semicircular canal receptors were investigated in precollicular decerebrate cats.The neck receptors were stimulated by sinusoidal oscillation (frequency 0.2 Hz and 10 ° amplitude) and trapezoidal movements of the cervical axis vertebrae in the horizontal plane, while the head was stereotaxically fixed in a prone position. The influence of horizontal semicircular canal receptors was examined by sinusoidal turntable oscillations (0.2 Hz, 10 °).Out of 151 antidromically driven Deiters' neurons, 16 units responded to neck rotation and 11 cells out of 148 Deiters' neurons were influenced by the horizontal semicircular canal receptors. Only 3 of these neurons were affected by convergent cervical and vestibular influences and revealed antagonistic response patterns. Neck-responsive units were found to be scattered throughout Deiters' nucleus, whereas semicircular-canal-influenced neurons were predominantly encountered in its rostro-ventral part.Altogether, 68 neck-responsive neurons in the vestibular nuclear complex were tested. These units showed a periodic, direction-specific modulation of the discharge rate in response to sinusoidal oscillation. Almost all responses were related to input angular velocity at 0.2 Hz with a mean gain of 1.15 imp/s per deg/s. During trapezoidal neck displacement, responsive units also exhibited tonical components in their discharge rates.These results suggest kinetic-static response characteristics of neck receptors. The cervico-vestibulo-spinal pathway may contribute to tonic neck reflexes; vestibular and neck reflexes may partially interact in Deiters' nucleus.Supported by Sonderforschungsbereich Hirnforschung und Sinnesphysiologie (SFB 70) der Deutschen Forschungsgemeinschaft  相似文献   

4.
Unlike secondary vestibular neurons primary vestibular afferents of the alert cat do not respond to rotation of large-field visual patterns. The phases and gains of the responses of horizontal canal afferents to head rotation as well as the resting discharges found in the alert animal do not significantly differ from those measured in animals anesthetized with barbiturates.  相似文献   

5.
1. The horizontal semicircular canals of anesthetized (barbiturate/ketamine) pigeons were stimulated by rotational and by mechanical stimulation. 2. The mechanical stimulation consisted of making a small (less than 1 mm) fistula in the lateral part of the bony horizontal semicircular canal and, after inserting a probe coupled to a piezoelectric micropusher through the fistula, providing controlled indentation of the exposed membranous horizontal semicircular duct. 3. Extracellular action potentials from single horizontal semicircular canal primary afferent (HCA) fibers were recorded during sinusoidal rotational and during step, ramp, and sinusoidal mechanical stimulation. 4. The mean spontaneous discharge rate of 160 horizontal canal afferents was 86 +/- 4 (SE) spikes/s. This rate was not significantly different from that reported previously for pigeon HCA fibers recorded with the horizontal canal intact (i.e., no fistula introduced). 5. Sinusoidal mechanical indentation of the horizontal semicircular duct produced clearly entrained action potentials on 36 HCA fibers for a range of peak displacements from +/- 0.5 to +/- 30 microns. Action potentials were never modulated on afferents (n greater than 100) identified as innervating the anterior and posterior semicircular canals or the otolith organs during mechanical stimulation of the horizontal semicircular canal, even for displacements as large as 30 microns. 6. Intensity functions relating peak firing frequency (spikes per second) and peak probe displacement (micrometers) for 1.0-Hz sinusoidal mechanical stimulation were linear over the range 1.0-5.0 microns. The most sensitive units (6/36, 17%) showed response saturation as the stimulus magnitude was extended to 7 microns and beyond. 7. In 15 of 36 units, both mechanical and rotational sinusoidal stimulation (1.0 Hz) were applied to the same unit. The duct indentation magnitudes were 1.0, 2.5, 5.0, and 7.0 microns and the rotational velocities were 5, 10, and 20 deg/s. The constant of proportionality found to equate the peak response produced by rotational to that elicited by mechanical stimulation was 7.0 deg.sec-1/1.0 microns. 8. Bode plots and best-fit transfer functions of the frequency response (0.05-10.0 Hz) of 14 HCAs exposed to both mechanical and rotational stimulation were nearly identical. 9. Parameters for best-fit transfer functions, responses to step, and trapezoidal duct displacements were in excellent agreement with previous rotational studies carried out using the pigeon. 10. Although the mechanisms by which focal identation of the horizontal membranous duct produce responses have not yet been determined, primary afferent responses using this method of stimulation are directly comparable with rotatory stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The caudal aspect of the parabrachial nucleus (PBN) contains neurons responsive to whole body, periodic rotational stimulation in alert monkeys (Balaban et al. in J Neurophysiol 88:3175–3193, 2002). This study characterizes the angular and linear motion-sensitive response properties of PBN unit responses during off-vertical axis rotation (OVAR) and position trapezoid stimulation. The OVAR responses displayed a constant firing component which varied from the firing rate at rest. Nearly two-thirds of the units also modulated their discharges with respect to head orientation (re: gravity) during constant velocity OVAR stimulation. The modulated response magnitudes were equal during ipsilateral and contralateral OVARs, indicative of a one-dimensional accelerometer. These response orientations during OVAR divided the units into three spatially tuned populations, with peak modulation responses centered in the ipsilateral ear down, contralateral anterior semicircular canal down, and occiput down orientations. Because the orientation of the OVAR modulation response was opposite in polarity to the orientation of the static tilt component of responses to position trapezoids for the majority of units, the linear acceleration responses were divided into colinear dynamic linear and static tilt components. The orientations of these unit responses formed two distinct population response axes: (1) units with an interaural linear response axis and (2) units with an ipsilateral anterior semicircular canal-contralateral posterior semicircular canal plane linear response axis. The angular rotation sensitivity of these units is in a head-vertical plane that either contains the linear acceleration response axis or is perpendicular to the linear acceleration axis. Hence, these units behave like head-based (‘strapdown’) inertial guidance sensors. Because the PBN contributes to sensory and interoceptive processing, it is suggested that vestibulo-recipient caudal PBN units may detect potentially dangerous anomalies in control of postural stability during locomotion. In particular, these signals may contribute to the range of affective and emotional responses that include panic associated with falling, malaise associated with motion sickness and mal-de-debarquement, and comorbid balance and anxiety disorders.  相似文献   

7.
The temporal processing in the encoding of head rotation was investigated by comparing the dynamics of vestibular nuclei neurons with those of the regularly and irregularly firing semicircular canal afferents in alert rhesus monkeys. During earth-vertical axis rotations, neurons without eye movement sensitivity differed in their response dynamics from both regularly and irregularly firing semicircular canal afferents. At high frequencies, central responses increased in sensitivity and maintained phase leads of nearly 30° relative to head velocity. These persistent high-frequency phase leads resembled those of irregularly firing (but not regularly firing) semicircular canal afferents. However, at low frequencies, central responses exhibited significantly smaller phase leads than those of irregularly firing semicircular canal afferents, and dynamics resembled more those of the regularly firing afferents. The response dynamics of central non-eye movement cells were significantly different from those of position-vestibular-pause and eye-head neurons (collectively referred to as eye movement cells). In contrast to the persistent phase leads of non-eye movement neurons, all eye movement cells modulated closely in phase with head velocity at all frequencies down to 0.05 Hz during visual suppression tasks. Vertical canal non-eye movement neurons that were insensitive to both translations and static head tilts led head velocity by approximately 5–30° during high-frequency earth-horizontal axis rotations. Unlike the earth-vertical axis responses that led head velocity at low frequencies by as much as 20–40°, vertical canal neurons only slightly led or even lagged behind head velocity during low-frequency earth-horizontal axis rotations. Posterior canal central non-eye movement cells lagged behind head velocity significantly more than anterior canal neurons. These frequency dependencies of central vestibular neurons in comparison with those of the afferents suggest that both low- and high-pass filtering might be necessary to convert primary semicircular canal afferent response dynamics to central neuron ones.  相似文献   

8.
The firing behavior of 51 non-eye movement related central vestibular neurons that were sensitive to passive head rotation in the plane of the horizontal semicircular canal was studied in three squirrel monkeys whose heads were free to move in the horizontal plane. Unit sensitivity to active head movements during spontaneous gaze saccades was compared with sensitivity to passive head rotation. Most units (29/35 tested) were activated at monosynaptic latencies following electrical stimulation of the ipsilateral vestibular nerve. Nine were vestibulo-spinal units that were antidromically activated following electrical stimulation of the ventromedial funiculi of the spinal cord at C1. All of the units were less sensitive to active head movements than to passive whole body rotation. In the majority of cells (37/51, 73%), including all nine identified vestibulo-spinal units, the vestibular signals related to active head movements were canceled. The remaining units (n = 14, 27%) were sensitive to active head movements, but their responses were attenuated by 20-75%. Most units were nearly as sensitive to passive head-on-trunk rotation as they were to whole body rotation; this suggests that vestibular signals related to active head movements were cancelled primarily by subtraction of a head movement efference copy signal. The sensitivity of most units to passive whole body rotation was unchanged during gaze saccades. A fundamental feature of sensory processing is the ability to distinguish between self-generated and externally induced sensory events. Our observations suggest that the distinction is made at an early stage of processing in the vestibular system.  相似文献   

9.
Neurons subserving the vestibulo-ocular reflex transform the directionality and timing of input from semicircular canals into commands that are appropriate to rotate the eyes in a compensatory fashion. In order to assess the degree to which this transformation is evident in vestibular nucleus neurons of alert cats, we recorded the extracellular discharge properties of 138 second-order vestibular neurons in the superior and medial vestibular nucleus, including 64 neurons identified as second-order vestibulo-ocular neurons by antidromic responses to oculomotor nucleus stimulation and short-latency orthodromic responses to labyrinth stimulation (1.3 ms or less). Neuronal response gains and phases were recorded during 0.5-Hz sinusoidal oscillations about many different horizontal axes and during vertical axis rotations to define neuronal response directionality more precisely than in past studies. Neurons with spatial responses similar to anterior semicircular canal afferents were found to have more diverse maximal activation direction vectors than neurons with responses resembling those of posterior or horizontal canal afferents. The mean angle from neuron response vector to the axis of the nearest canal or canal pair was 19 degrees for anterior canal second-order neurons (n=28) and 20 degrees for anterior canal second-order vestibulo-ocular neurons (n=18), compared with 11 degrees for posterior canal second-order neurons (n=43) and 11 degrees for posterior canal second-order vestibulo-ocular neurons (n=25). Only two second-order vestibulo-ocular neurons (3%) showed a marked dependence of response phase on rotation direction, which is indicative of convergent inputs that differ in both dynamics and directionality. This suggests that spatiotemporal convergence is uncommon in the three-neuron vestibulo-ocular reflex arc of the cat. Neuron vectors included many that were closely aligned with canal axes and several that were better aligned with oblique or superior rectus extraocular muscle excitation axis vectors. Only single examples of second-order vestibulo-ocular neuron vectors were approximately aligned with the pitch and roll coordinate axes. We conclude that second-order vestibulo-ocular neurons do not exclusively represent either the semicircular canal sensory coordinate frame or the extraocular muscle excitation motor coordinate frame, and instead are mostly distributed on a continuum between the input and output coordinate frames, with anterior canal neurons having the widest distribution of directionality.  相似文献   

10.
The vestibulo-ocular reflex (VOR) allows clear vision during head movements by generating compensatory eye movements. Its response to horizontal rotation is reduced after one horizontal semicircular canal is plugged, but recovers partially over time. The majority of VOR interneurons contribute to the shortest VOR pathway, the so-called three-neuron arc, which includes only two synapses in the brainstem. After a semicircular canal is plugged, transmission of signals by the three-neuron arc originating from the undamaged side may be altered during recovery. We measured the oculomotor response to single current pulses delivered to the vestibular labyrinth of alert cats between 9 h and 1 month after plugging the contralateral horizontal canal. The same response was also measured after motor learning induced by continuously-worn telescopes (optically induced motor learning). Optically induced learning did not change the peak velocity of the evoked eye movement (PEEV) significantly but, after a canal plug, the PEEV increased significantly, reaching a maximum during the first few post-plug days and then decreasing. VOR gain also showed transient changes during recovery. Because the PEEV occurred early in the eye movement evoked by a current pulse, we think the observed increase in PEEV represented changes in transmission by the three-neuron arc. Sham surgery did not result in significant changes in the response to electrical stimulation or in VOR gain. Our data suggest that different pathways and processes may underlie optically induced motor learning and recovery from plugging of the semicircular canals. Electronic Publication  相似文献   

11.
Summary Relationships between the response patterns of semicircular canal afferents to mechanical stimulation and the morphologies of their peripheral endings were investigated in an isolated preparation of the anterior semicircular canal ampulla of chicken, using a combination of electrical recording with intracellular injections of Lucifer Yellow CH. The hair bundle mechanical stimulus was applied in a diffuse manner by a glass rod vibrating in the nearby bathing medium. Two types of spike discharge patterns and postsynaptic potentials were recorded. One type was found exclusively in the bouton type afferent and demonstrated a phasic increase of firing frequency and transient depolarizing postsynaptic potentials at the beginning of mechanical stimulation. These synaptic potentials were also observed spontaneously and their amplitudes were increased by membrane hyperpolarization. The other type was found exclusively in afferents with calyceal endings and showed a tonic increase of spiking frequency and depolarizing DC postsynaptic potentials with superimposing AC responses at the frequency of the mechanical stimulation. Amplitudes of postsynaptic potentials were increased by hyperpolarization. Hair cells generated depolarizing DC transduction potentials superimposed with AC potentials at frequency of the mechanical stimulation. The spontaneous spike discharging patterns of afferent nerve fibres were classified either as a regular type (CV < 0.10) or as an irregular type (CV > 0.25) on the basis of coefficient of variation (CV) of interspike intervals. The spontaneous firing rate of regular units was higher than that of irregular units. Several membrane characteristics are different between these two types of afferent fibers; irregular units had short membrane time constants and fast spikes associated with clear spike-afterhyperpolarization. These features fit with the fact that irregular units tend to have phasic responses to mechanical stimulation while regular units typically have tonic responses. Irregular units had bouton endings with an average axonal diameter thicker than the regular units which had calix endings.  相似文献   

12.
Summary In anesthetized albino rabbits, electric stimulation of vestibular nerve branches innervating semicircular canals produced not only reflex contraction in certain extraocular muscles, but also a transient relaxation in others. From relaxing muscles was recorded a slow muscle potential that reflected depression of spontaneous spike discharges in muscle fibers. When recorded monophasically, spontaneous spikes of muscle fibers were superposed to form a direct current potential, and depression of the spikes resulted in a transient reduction of this direct current potential, i.e., the slow muscle potential. The slow muscle potential was correlated to the postsynaptic inhibition induced in oculomotor neurons through the vestibulo-ocular reflex arc for the following reasons; its latency was compatible with that of the IPSPs recorded from oculomotor neurons; it was removed by severing axons of the inhibitory second-order vestibular neurons; it was blocked by intravenous injection of picrotoxin as were the IPSPs in oculomotor neurons. By recording slow muscle potentials, a specific canal-muscle relationship for the vestibulo-ocular reflex inhibition of oculomotor neurons was shown to be complementary to that obtained for the vestibulo-ocular reflex excitation.This work was supported by a grant from Educational Ministry of Japan (844021).  相似文献   

13.
To elucidate how information is processed in the vestibuloocular reflex (VOR) pathways subserving vertical eye movements, extracellular single-unit recordings were obtained from the vestibular nuclei of alert monkeys trained to track a visual target with their eyes while undergoing sinusoidal pitch oscillations (0.2-1.0 Hz). Units with activity related to vertical vestibular stimulation and/or eye movements were classified as either vestibular units (n = 53), vestibular plus eye-position units (n = 30), pursuit units (n = 10), or miscellaneous units (n = 5), which had various combinations of head- and eye-movement sensitivities. Vestibular units discharged in relation to head rotation, but not to smooth eye movements. On average, these units fired approximately in phase with head velocity; however, a broad range of phase shifts was observed. The activities of 8% of the vestibular units were related to saccades. Vestibular plus eye-position units fired in relation to head velocity and eye position and, in addition, usually to eye velocity. Their discharge rates increased for eye and head movements in opposite directions. During combined head and eye movements, the modulation in unit activity was not significantly different from the sum of the modulations during each alone. For saccades, the unit firing rate either decreased to zero or was unaffected. Pursuit units discharged in relation to eye position, eye velocity, or both, but not to head movements alone. For saccades, unit activity usually either paused or was unaffected. The eye-movement-related activities of the vestibular plus eye-position and pursuit units were not significantly different. A quantitative comparison of their firing patterns suggests that vestibular, vestibular plus eye-position, and pursuit neurons in the vestibular nucleus could provide mossy fiber inputs to the flocculus. In addition, the vertical vestibular plus eye-position neurons have discharge patterns similar to those of fibers recorded rostrally in the medial longitudinal fasciculus. Therefore, our data support the view that vertical vestibular plus eye-position neurons are interneurons of the VOR.  相似文献   

14.
Summary Single unit recordings from two alert cats were used in an attempt to further elucidate the function of the lateral mesencephalic tegmental region (LTR), a part of the mesencephalon forming a link between the superior colliculus and the lower brain stem. A total of 155 units recorded from the LTR were tested with visual, vestibular and acoustic stimuli. Of these, 54 cells (36%) were characterized as either visually (n=33) or vestibularly (n=21) responsive and an additional 13 cells were driven by complex acoustic stimuli. Visually responsive cells typically were directionally selective with large, mainly contralateral receptive fields. Vestibularly responsive cells were modulated by stimulation of either the horizontal canals (yaw stimulation; n = 16) or of both pairs of vertical canals (pitch stimulation; n=5). About half of the cells with activity modulated by rotation about the yaw axis increased discharge during ipsiversive (Type I), the other half during contraversive rotation (Type II). Of the 5 cells with activity modulated by pitch stimulation, 4 preferred the nose-down and only 1 the nose-up direction. Although the discharge of units responsive to yaw stimulation was roughly in phase with head velocity (mean phase lag with respect to head velocity: 10.6 deg), none of the vestibular cells had activity correlated with eye position, eye velocity or movement of visual stimuli. Our observations suggest that the LTR might introduce visual and vestibular signals into the tecto-facial pathway which may be used to adjust the size of pinna movements with respect to the size of ongoing head- or body movements.  相似文献   

15.
Summary Activity of vestibular only (VO) and vestibular plus saccade (VPS) units was recorded in the rostral part of the medial vestibular nucleus and caudal part of the superior vestibular nucleus of alert rhesus monkeys. By estimating the null axes of recorded units (n = 79), the optimal plane of activation was approximately the mean plane of reciprocal semicircular canals, i.e., lateral canals, left anterior-right posterior (LARP) canals or right anterior-left posterior (RALP) canals. All units were excited by rotation in a direction that excited a corresponding ipsilateral semicircular canal. Thus, they all displayed a type I response. With the animal upright, there were rapid changes in firing rates of both VO and VPS units in response to steps of angular velocity about a vertical axis. The units were bidirectionally activated during vestibular nystagmus (VN), horizontal optokinetic nystagmus (OKN), optokinetic afternystagmus (OKAN) and off-vertical axis rotation (OVAR). The rising and falling time constants of the responses to rotation indicated that they were closely linked to velocity storage. There were differences between VPS and VO neurons in that activity of VO units followed the expected time course in response to a stimulus even during periods of drowsiness, when eye volocity was reduced. Firing rates of VPS units, on the other hand, were significantly reduced in the drowsy state. Lateral canal-related units had average firing rates that were linearly related to the bias or steady state level of horizontal eye velocity during OVAR over a range of ±60 deg/s. These units could be further divided into two classes according to whether they were modulated during OVAR. Non-modulated units (n = 5) were VO types and all modulated units (n = 5) were VPS types. There was no significant difference between the bias level sensitivities relative to eye velocity of the units with and without modulation (P>0.05). The modulated units had no sustained change in firing rate in response to static head tilts and their phases relative to head position varied from unit to unit. The phase did not appear to be linked to the modulation of horizontal eye velocity during OVAR. The sensitivities of unit activity to eye velocity were similar during all stimulus modalities despite the different gains of eye velocity vs stimulus velocity during VN, OKN and OVAR. Therefore, VO and VPS units are likely to carry an eye velocity signal related to velocity storage. For example, when unit sensitivities were related to head or surround velocity, sensitivity relative to OVAR was less than for VN or OKN. Firing rates of both vertical canal-related VO and VPS units (n= 19) were strongly modulated during OVAR, although they did not show changes in discharge rate during static head tilts relative to the spatial vertical up to a maximal 25 deg. In some cases the amplitude of the modulation increased with increases in head velocity and eye velocity. Average activity of vertical canal-related units was linearly related to steady state horizontal eye velocity in the ipsilateral direction during OVAR. The mean sensitivities of RALP units were not significantly different from those of LARP neurons (P>0.05). Together, their mean sensitivity during OVAR about a subject yaw axis was 0.34 (imp/s)/(deg/s) relative to horizontal eye velocity. This could be explained as a contribution of the vertical canals to horizontal eye velocity due to their orientation in the head. During OVAR to the ipsilateral side, the bias level of neuronal activity decreased and saturated. For steps of rotation about a vertical axis with the animal upright, the firing rates of RALP and LARP units were linearly related to stimulus velocity and eye velocity. Contralateral rotation excited the units reflecting the orientation of the semicircular canals relative to the yaw axis of rotation. RALP and LARP units also responded during horizontal optokinetic stimulation producing both OKN and OKAN. All the vertical canal units had dynamic characteristics closely related to velocity storage. Their response characteristics were consistent with the model that they contribute to horizontal slow phase velocity as part of a three-dimensional system based on a semicircular canal frame of reference. Otolith-related units (n= 5) in the vestibular nuclei showed no evidence of velocity storage and were modulated in accordance with head position during OVAR. Mean amplitude of the modulation of activity during OVAR at a 20 deg tilt and 60 deg/s rotational velocity was 24 imp/s. The data indicate that the vestibular nuclei contain the requisite signals to generate horizontal eye velocity during OVAR. VO and VPS units probably contribute to the bias or velocity storage component while otolith units mainly contribute to the oscillations in eye velocity by generating gravity dependent eye position changes during OVAR. In addition to the velocity storage component of horizontal eye velocity, the vertical VO neurons also have oscillations in their discharge patterns probably related to the vertical component of eye movements generated by the velocity storage integrator.  相似文献   

16.
To study presumed efferent-mediated responses, we determined if afferents responded to head rotations that stimulated semicircular canals other than the organ being innervated. To minimize stimulation of an afferent's own canal, its plane was placed nearly orthogonal to the rotation plane. Otolith units were tested in a horizontal head position with the ear placed near the rotation axis to minimize linear forces. Under these circumstances, angular-velocity trapezoids (2-s ramps, 2-s plateau) evoked excitatory responses for both rotation directions. These type III responses were considerably larger in decerebrate than in anesthetized preparations. In addition to their being exclusively excitatory, the responses resembled those obtained with electrical stimulation of efferent pathways in including per-stimulus and more prolonged post-stimulus components and in being larger in irregularly discharging than in regularly discharging units. Responses, which were not seen for rotations <80 degrees/s, grew as velocity increased between 80 and 500 degrees/s but were seldom larger than 20 spikes/s. Complete section of the VIIIth nerve abolished type III responses, leaving conventional afferent responses intact. To study the separate contributions of canals on the two sides, responses were compared when the labyrinths were intact and when the ipsilateral or contralateral horizontal canal was mechanically inactivated. Both sides contributed to the efferent-mediated responses. That afferents could be influenced from the contralateral labyrinth was confirmed with the use of unilateral galvanic currents. Following inactivation, excitatory responses were produced by rotations exciting or inhibiting the intact horizontal canal with the responses resulting from excitatory rotations being much larger. Such a response asymmetry is consistent with a semicircular-canal origin for the type III responses. A similar asymmetry was seen in the post-stimulus responses to contralateral cathodal (excitatory) and anodal (inhibitory) galvanic currents. We conclude that the efferent system receives a sufficiently powerful vestibular input from both the ipsilateral and contralateral labyrinths to affect afferent discharge.  相似文献   

17.
The vestibular labyrinth is innervated by both primary afferent nerves and efferent axons with cell bodies located in the central nervous system. Efferent terminals are found on both hair cells and on primary afferent axons. Acetylcholine is the major efferent transmitter, but enkephalin and calcitonin gene-related peptide (CGRP) have also been localized to efferent terminals and somata. The efferent vestibular nuclei are bilaterally organized in the majority of species. Semicircular canal primary afferents have been classified by their sensitivity and phase in response to rotation. Electrical activation of efferents in monkey and fish increases afferent resting discharge and reduces afferent gain to adequate stimulation. Effects are most profound on high-gain, phase-advanced (re. velocity) afferents. Experiments in alert animals indicate that multiple sensory modalities can activate the efferent system.  相似文献   

18.
1. The relation between the response properties of semicircular canal afferents and their peripheral innervation patterns was studied by the use of intra-axonal labeling techniques. Fifty physiologically characterized units were injected with horseradish peroxidase (HRP) or Lucifer yellow CH (LY) and their processes were traced to the crista. The resting discharge, discharge regularity, and responses to both externally applied galvanic currents and sinusoidal head rotations were determined for most neurons. Terminal fields were reconstructed and, as in the preceding paper, the fibers were classified as calyx, bouton, or dimorphic units. 2. To determine if the intra-axonal sample was representative, the physiological properties of the labeled units were compared with those of a sample of extracellularly recorded units. A comparison was also made between the morphology of the intra-axonal units and those labeled by extracellular injection of HRP into the vestibular nerve Most of the discrepancies between the intra-axonal and the two extracellular samples can be explained by assuming that small-diameter fibers are underrepresented in the former sample. 3. A normalized coefficient of variation (CV*), independent of discharge rate, was used to classify units as regular, intermediate, or irregular. The CV* ranged from 0.020 to 0.60. Regular units (CV* less than or equal to 0.10) outnumbered irregular units (CV* greater than or equal to 0.20) by an approximately 3:1 ratio and had higher resting discharges. 4. Calyx units were invariably irregular. The one recovered bouton unit was regular. The discharge regularity of dimorphic units was related to their epithelial location, with those found in the periphery of the crista having a more regular discharge than those located more centrally. Dimorphic units, even those with quite similar morphology, can differ in their discharge regularity. Calyx and dimorphic units, which differ in their morphology, can both be irregular. These observations imply that discharge regularity is not determined by the branching pattern of a fiber or the number and types of hair cells it contacts. 5. The galvanic sensitivity (beta*) of an afferent, irrespective of its peripheral innervation pattern, was strongly correlated with CV*. This is consistent with the notion that discharge regularity and galvanic sensitivity are causally related, both being determined by postspike recovery mechanisms of the afferent nerve terminal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The pitch vertical vestibulo-ocular reflex (VOR) is accurate and symmetrical when tested in the normal upright posture, where otolith organ and central velocity storage signals supplement the basic VOR mediated by the semicircular canals. However, when the animal and rotation axis are together repositioned by rolling 90° to one side, head forward pitch rotations that excite the anterior semicircular canals elicit a more accurately timed VOR than do oppositely directed rotations that excite the posterior canals. This suggests that velocity storage of posterior canal signals is lost when the head is placed on its side. We recorded from 47 VOR relay neurons, second-order vestibulo-ocular neurons, of alert cats to test whether asymmetries are evident in the responses of neurons in the medial and superior vestibular nuclei during earth-horizontal axis rotations in the normal upright posture. Neurons were identified by antidromic responses to oculomotor nucleus stimulation and orthodromic responses to labyrinth stimulation, and were classified as having primarily anterior, posterior, or horizontal canal input based on response directionality. Neuronal response gains and phases were recorded during 0.5 Hz and 0.05 Hz sinusoidal oscillations in darkness. During 0.5 Hz rotations, anterior canal second-order vestibulo-ocular neurons responded approximately in phase with head velocity (mean phase re head position, ±SE, 80°±3°, n=18), as did posterior canal second-order vestibulo-ocular neurons (mean phase 81°±1°, n=25). Lowering the rotation frequency to 0.05 Hz resulted in only slight advances in response phases of individual anterior canal second-order vestibulo-ocular neurons (mean phase 86°±6°, mean advance 7°±5°, n=12). In contrast, posterior canal second-order vestibulo-ocular neurons behaved more like semicircular canal afferents, with responses markedly phase-advanced (mean advance 28°±5°, n=14) by lowering rotation frequency to 0.05 Hz (mean phase 111°±5°, n=14). In summary, low frequency responses of anterior and posterior canal second-order vestibulo-ocular neurons recorded during horizontal axis pitch correspond to the VOR they excite during vertical axis pitch. These results show that velocity storage is evident at anterior but not posterior canal second-order vestibulo-ocular neurons. We conclude that responses of posterior canal second-order vestibulo-ocular neurons are insufficient to explain the accurate low frequency VOR phase observed during backward head pitch in the upright posture, and that velocity storage or otolith signals required for VOR accuracy are carried by other neurons. Electronic Publication  相似文献   

20.
1. The electrical activity of single trochlear motoneurons (TMns) and axons of second order vestibular neurons presumably terminating on these motoneurons were studied during natural stimulation of semicircular canals and otolith organs in cats anesthetized with Ketamine. 2. Null point analysis showed that TMns received an excitatory canal input from the contralateral posterior canal, and labyrinthine lesion experiments suggested that the functionally synergistic, ipsilateral anterior canal provides an inhibitory input. A small number of motoneurons showed orthogonal canal convergence. 3. In addition to the canal projections most TMns received an otolithic input. Firing rate was proportional to lateral head tilt and was of the beta type. Most units also responded to pitch with an increase and decrease in firing rate on nose-up and nose-down positioning, respectively. Lesion experiments indicated that the otolith responses are the results of reciprocal innervation of TMns by contralateral (excitatory) and ipsilateral (inhibitory) otolith projections. 4. During sinusoidal rotation in yaw (canal only stimulation) the mean phase lag re acceleration of the response of TMns increased from 60 degrees at 0.025 Hz to 126 degrees at 1.0 Hz. In roll (canal plus otolith stimulation) the phase lag of TMn responses measured 180 degrees and 130 degrees at 0.025 and 1.0 Hz, respectively. Phase-lags measured in Vi and Vc axons were less by ca. 15 degrees. 5. The otolith contribution to TMn responses in roll was calculated by vectorial subtraction of the yaw from the roll responses: A phase lag of 10 (0.025 Hz) to 90 degrees (0.5 Hz) re. displacement was noted and gain was constant over the same range. Similar lag dynamics were revealed in TMns when studied during ramp displacement of the head. 6. The possible functional role of central canal-otolith convergence and the differences between the response of primary vestibular afferents and secondary vestibular neurons and TMns will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号