首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The noise equivalent count (NEC) rate index is used to derive guidelines on the optimal injected dose to the patient for 2-dimensional (2D) and 3-dimensional (3D) whole-body PET acquisitions. METHODS: We performed 2D and 3D whole-body acquisitions of an anthropomorphic phantom modeling the conditions for (18)F-FDG PET of the torso and measured the NEC rates for different activity levels for several organs of interest. The correlations between count rates measured from the phantom and those from a series of whole-body patient scans were then analyzed. This analysis allowed validation of our approach and estimation of the injected dose that maximizes NEC rate as a function of patient morphology for both acquisition modes. RESULTS: Variations of the phantom and patient prompt and random coincidence rates as a function of single-photon rates correlated well. On the basis of these correlations, we demonstrated that the patient NEC rate can be predicted for a given single-photon rate. Finally, we determined that patient single-photon rates correlated with the mean dose per weight at acquisition start when normalized by the body mass index. This correlation allows modifying the injected dose as a function of patient body mass index to reach the peak NEC rate in 3D mode. Conversely, we found that the peak NEC rates were never reached in 2D mode within an acceptable range of injected dose. CONCLUSION: The injected dose was adapted to patient morphology for 2D and 3D whole-body acquisitions using the NEC rate as a figure of merit of the statistical quality of the sinogram data. This study is a first step toward a more comprehensive comparison of the image quality obtained using both acquisition modes.  相似文献   

2.
We compare 3 image reconstruction algorithms for use in 3-dimensional (3D) whole-body PET oncology imaging. We have previously shown that combining Fourier rebinning (FORE) with 2-dimensional (2D) statistical image reconstruction via the ordered-subsets expectation-maximization (OSEM) and attenuation-weighted OSEM (AWOSEM) algorithms demonstrates improvements in image signal-to-noise ratios compared with the commonly used analytic 3D reprojection (3DRP) or FORE+FBP (2D filtered backprojection) reconstruction methods. To assess the impact of these reconstruction methods on detecting and localizing small lesions, we performed a human observer study comparing the different reconstruction methods. The observer study used the same volumetric visualization software tool that is used in clinical practice, instead of a planar viewing mode as is generally used with the standard receiver operating characteristic (ROC) methodology. This change in the human evaluation strategy disallowed the use of a ROC analysis, so instead we compared the fraction of actual targets found and reported (fraction-found) and also investigated the use of an alternative free-response operating characteristic (AFROC) analysis. METHODS: We used a non-Monte Carlo technique to generate 50 statistically accurate realizations of 3D whole-body PET data based on an extended mathematic cardiac torso (MCAT) phantom and with noise levels typical of clinical scans performed on a PET scanner. To each realization, we added 7 randomly located 1-cm-diameter lesions (targets) whose contrasts were varied to sample the range of detectability. These targets were inserted in 3 organs of interest: lungs, liver, and soft tissues. The images were reconstructed with 3 reconstruction strategies (FORE+OSEM, FORE+AWOSEM, and FORE+FBP). Five human observers reported (localized and rated) 7 targets within each volume image. An observer's performance accuracy with each algorithm was measured, as a function of the lesion contrast and organ type, by the fraction of those targets reported and by the area below the AFROC curve. This AFROC curve plots the fraction of reported targets at each rating threshold against the fraction of cases with (> or =1) similarly rated false reports. RESULTS: Images reconstructed with FORE+AWOSEM yielded the best overall target detection as compared with FORE+FBP and FORE+OSEM, although these differences in detectability were region specific. The FORE+FBP and FORE+AWOSEM algorithms had similar performances for liver targets. The FORE+OSEM algorithm performed significantly worse at target detection, especially in the liver. We speculate that this is the result of using an incorrect statistical model for OSEM and that the incorporation of attenuation weighting in AWOSEM largely compensates for this model inaccuracy. These results were consistent for both the fraction of actual targets found and the AFROC analysis. CONCLUSION: We demonstrated the efficacy of performing observer detection studies using the same visualization tools as those used in clinical PET oncology imaging. These studies demonstrated that the FORE+AWOSEM algorithm led to the best overall detection and localization performance for 1-cm-diameter targets compared with the FORE+OSEM and FORE+FBP algorithms.  相似文献   

3.
Purpose: Evaluation of 3D clinical whole-body FDG PET imaging using recent improvements in data correction and reconstruction methods.Methods: Phantom studies following the NEMA NU 2-2000 draft were performed to evaluate count loss and accuracy of attenuation and scatter correction algorithms. Phantom results were used to estimate 3D vs. 2D efficiency. For patient studies, an established 2D imaging protocol (9 min emission, 3 min transmission acquisition per bed position, commencing 60 min after injection of 15 mCi FDG) was used. This was followed by a 3D acquisition of the same duration, commencing approximately 110 min later, so that 3D acquisition was performed with approximately 50% lower patient activity than 2D. Images were compared in terms of anatomic structural definition and visible artifacts.The count loss study showed that in a dose range of 10-15 mCi, 3D produced an approximately two-fold increase in effective NEC compared to 2D. The phantom imaging study showed slightly improved target to background ratios for both hot and the cold "lesions" when using 3D imaging. In 5 patients studied so far, comparison of 2D and 3D studies demonstrated no systematic differences in image quality between the two methods.Conclusion: 3D whole-body imaging with improved image reconstruction may permit a two-fold reduction in emission acquisition time or injected dose, without decrease in image quality compared to standard 2D imaging techniques.  相似文献   

4.
The aim of this work was to compare the quantitative accuracy of iteratively reconstructed cardiac (18)F-FDG PET with that of filtered backprojection for both 2-dimensional (2D) and 3-dimensional (3D) acquisitions and to establish an optimal procedure for imaging myocardial viability with (18)F-FDG PET. METHODS: Eight patients underwent dynamic cardiac (18)F-FDG PET using an interleaved 2D/3D scan protocol, enabling comparison of 2D and 3D acquisitions within the same patient and study. A 10-min transmission scan was followed by a 10-min, 25-frame dynamic 3D scan and then by a series of 10 alternating 5-min 3D and 2D scans. Images were reconstructed with filtered backprojection (FBP) or attenuation-weighted ordered-subsets expectation maximization (OSEM), combined with Fourier rebinning (FORE) for 3D acquisitions, applying all usual corrections. Regions of interest (ROIs) were drawn in the myocardium, left ventricle, and ascending aorta, with the last 2 being used to define image-derived input functions (IDIFs). Patlak graphical analysis was used to compare net (18)F-FDG uptake in the myocardium, calculated from either 2D or 3D data, after reconstruction with FBP or OSEM. Either IDIFs or arterial sampling was used as the input function. The same analysis was performed on parametric images. RESULTS: A good correlation (r(2) > 0.99) was found between net (18)F-FDG uptake values for a myocardium ROI determined using each acquisition and reconstruction method and blood-sampling input functions. A similar result was found for parametric images. The ascending aorta was the best choice for IDIF definition. CONCLUSION: Good correlation and no bias of net (18)F-FDG uptake in relation to that based on FBP images, combined with less image noise, make 3D acquisition with FORE plus attenuation-weighted OSEM reconstruction the preferred choice for cardiac (18)F-FDG PET studies.  相似文献   

5.
Comparison of 2-dimensional and 3-dimensional cardiac 82Rb PET studies.   总被引:2,自引:0,他引:2  
Most new PET scanners have the capability to collect data in 3-dimensional (3D) (septa removed) mode. This allows many more detected events at the cost of increased random events and scatter. In the case of 82Rb imaging, the injected dose might have to be limited to avoid saturating the scanner. We present a comparison of 2-dimensional (2D) and 3D data collection for 82Rb cardiac studies using the ECAT EXACT scanner. METHODS: Resting 82Rb cardiac studies were collected in 2D and 3D modes for 33 consecutive patients. Four experienced physicians rated the images to determine if the different acquisition methods would lead to different patient care. A separate quantitative analysis was performed on data from multiple scans of a thoracic phantom filled to simulate cardiac and background radioactivity corresponding to 82Rb injections between 37 and 1740 MBQ: RESULTS: The 2D and 3D studies were significantly different, with the image quality being poorer in the 3D studies. The scanner collected data at near its maximal counting rate for either 1480-MBq 2D or 37-MBq 3D acquisitions. Because the data collection was counting rate limited in either mode, and there are more random and scatter events in 3D mode, the 2D acquisitions resulted in more detected true events and a better signal-to-noise ratio. CONCLUSION: Cardiac 82Rb studies should be performed in 2D mode when using the ECAT EXACT scanner.  相似文献   

6.
Purpose Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system.Methods 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system.Results Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions.Conclusion 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions.  相似文献   

7.
There has been recent controversy regarding the optimal protocol for imaging and ablation of post-thyroidectomy patients. Several authors have suggested that a scanning dose of 185-370 MBq (5-10 mCi) (131)I may be capable of producing a stunning effect on thyroid tissue that may interfere with the uptake and efficacy of the subsequent ablation dose of radioiodine. The purpose of this study was to determine whether a 185-MBq (5 mCi) diagnostic dose of (131)I produces a visually apparent stunning effect 72 h before (131)I ablation therapy. METHODS: One hundred twenty-two consecutive post-thyroidectomy patients for differentiated thyroid carcinoma received a 185-MBq (5 mCi) diagnostic dose of (131)I followed by a whole-body diagnostic scan at 72 h. On the same day the diagnostic scan was completed, the patient was admitted to the hospital and received an (131)I ablation therapy dose of 5550 MBq (150 mCi) in most cases. A postablation, whole-body scan was obtained at 72 h and compared with the previous diagnostic scan for any visual evidence of stunning. RESULTS: No cases of visually apparent thyroid stunning were observed on any of the postablation scans with regard to the number of (131)I foci identified or the relative intensity of (131)I uptake seen. CONCLUSION: Diagnostic whole-body scanning can be performed effectively with a 185-MBq (5 mCi) dose of (131)I 72 h before radioiodine ablation without concern for thyroid stunning.  相似文献   

8.
The aim of this study was to compare 2-dimensional (2D) and 3-dimensional (3D) dynamic PET for the absolute quantification of myocardial blood flow (MBF) with (13)N-ammonia ((13)N-NH(3)). METHODS: 2D and 3D MBF measurements were collected from 21 patients undergoing cardiac evaluation at rest (n = 14) and during standard adenosine stress (n = 7). A lutetium yttrium oxyorthosilicate-based PET/CT system with retractable septa, enabling the sequential acquisition of 2D and 3D images within the same patient and study, was used. All 2D studies were performed by injecting 700-900 MBq of (13)N-NH(3). For 14 patients, 3D studies were performed with the same injected (13)N-NH(3) dose as that used in 2D studies. For the remaining 7 patients, 3D images were acquired with a lower dose of (13)N-NH(3), that is, 500 MBq. 2D images reconstructed by use of filtered backprojection (FBP) provided the reference standard for MBF measurements. 3D images were reconstructed by use of Fourier rebinning (FORE) with FBP (FORE-FBP), FORE with ordered-subsets expectation maximization (FORE-OSEM), and a reprojection algorithm (RP). RESULTS: Global MBF measurements derived from 3D PET with FORE-FBP (r = 0.97), FORE-OSEM (r = 0.97), and RP (r = 0.97) were well correlated with those derived from 2D FBP (all Ps < 0.0001). The mean +/- SD differences in global MBF measurements between 3D FORE-FBP and 2D FBP and between 3D FORE-OSEM and 2D FBP were 0.01 +/- 0.14 and 0.01 +/- 0.15 mL/min/g, respectively. The mean +/- SD difference in global MBF measurements between 3D RP and 2D FBP was 0.00 +/- 0.16 mL/min/g. The best correlation between 2D PET and 3D PET performed with the lower injected activity was found for the 3D FORE-FBP reconstruction algorithm (r = 0.95, P < 0.001). CONCLUSION: For this scanner type, quantitative measurements of MBF with 3D PET and (13)N-NH(3) were in excellent agreement with those obtained with the 2D technique, even when a lower activity was injected.  相似文献   

9.
We compared 2-dimensional (2D) and 3-dimensional (3D) (82)Rb PET imaging in 3 different experiments: in a realistic heart-thorax phantom, in a uniformity-resolution phantom, and in 14 healthy volunteers. METHODS: A nonuniform heart-thorax phantom was filled with 111 MBq of (82)Rb injected into the left ventricular (LV) wall. In the LV wall of the cardiac phantom, 3 inserts-1, 2, and 3 cm in diameter-were placed to simulate infarcts. A standard rest cardiac PET imaging protocol in 2D and 3D modes was used. Following the same protocol, a uniformity-resolution phantom with uniformly distributed activity of 1,998 MBq and 740 MBq of (82)Rb in water was used to obtain 2D PET images and 3D PET images, respectively. All 2D volunteer studies were performed by injecting 2,220 MBq of (82)Rb intravenously. For half the volunteers, 3D studies were performed with a high dose (HD) (2,220 MBq) of (82)Rb; for the remainder of the 3D studies, a low dose (LD) (740 MBq) of (82)Rb was used. In the 2D and LD 3D studies, there was a delay of 2 min and 3 min, respectively, followed by a 6-min acquisition. In the HD 3D volunteer studies, there was a delay of 5 min followed by a 6-min acquisition. Circumferential profiles of the short-axis slices and the contrast of the inserts were used to evaluate the cardiac phantom PET images. The transaxial slices from the uniformity-resolution phantom were evaluated by visual inspection and by measuring uniformity. The human studies were evaluated by measuring the contrast between LV wall and LV cavity, using linear profiles and visual analysis. RESULTS: In the cardiac phantom study, circumferential profiles for the 2D and 3D images were similar. The contrast values for the 1-, 2-, and 3-cm inserts in the 2D study were 0.19 +/- 0.03, 0.34 +/- 0.05, and 0.61 +/- 0.03, respectively. The respective contrast values in the 3D study were 0.15 +/- 0.02, 0.36 +/- 0.04, and 0.52 +/- 0.05. In the uniformity-resolution phantom study, the coefficients of variation, calculated for a representative uniform slice, were 5.3% and 7.6% for the 2D and 3D studies, respectively. For the 7 volunteers on whom HD 3D was used, the mean 2D contrast was 0.33 +/- 0.08 and the mean HD 3D contrast was 0.35 +/- 0.08 (P = not statistically significant). For the other 7 volunteers, on whom LD 3D was used, the mean 2D contrast was 0.39 +/- 0.06 and the mean LD 3D contrast was 0.39 +/- 0.10 (P = not statistically significant). In the tomographic slices, the 2D and 3D images and polar plots were similar. CONCLUSION: When obtained with a PET system having a high counting-rate performance, 2D and 3D (82)Rb PET cardiac images are comparable. LD 3D imaging can make (82)Rb PET cardiac imaging more affordable.  相似文献   

10.
Three-dimensional (3D) PET acquisition has the potential to reduce image noise but the advantage of 3D PET for studies outside the brain has not been well established. To compare the performance of 2-dimensional (2D) and 3D acquisition for whole-body (18)F-FDG applications, a series of patient studies were performed using a lutetium oxyorthosilicate (LSO)-based tomograph. METHODS: Comparative 2D and 3D images were acquired for 27 oncology patients using an LSO-based tomograph. Data acquisition (350-650 keV, 6 ns) started 99 +/- 12 min (mean +/- SD) after injection of 624 +/- 76 MBq (18)F-FDG. Bias caused by tracer redistribution and decay was eliminated by acquiring dynamic data over a single-bed position using a protocol that alternated between septa-in and septa-out modes (2D, 3D, 2D, 3D, 2D, 3D). Frames were combined to form 8 statistically independent sinograms: four 2D replicates (105 s) and four 3D replicates (90 s). The different frame durations in 2D and 3D compensated for the different number of overlapping bed positions required for an 85-cm whole-body study. Images were reconstructed with either 2D or fully 3D ordered-subsets expectation maximization (2 iterations and 8 subsets; 2D 6-mm gaussian, 3D 5- and 6-mm gaussian). Image target-to-background ratio was assessed by dividing the lesion maximum by the mean within a neighboring background region. Image noise was assessed by applying background regions of interest to the replicate images and calculating the within-patient coefficient of variation. RESULTS: The difference in target-to-background ratio between the 2D and 3D images, when they were filtered with 6-mm and 5-mm gaussian filters, respectively, was not highly statistically significant (P = 0.16). The mean ratio of 3D to 2D image values was 0.94 with 95% limits of agreement of 0.63-1.41. The within-patient coefficients of variation for the 2D and 3D images were 13% +/- 15% and 9% +/- 10%, respectively (P = 0.0005). CONCLUSION: Under conditions of matched target to-to-background ratios, the 3D mode was found to produce images with significantly less variability than the 2D mode. These data provide support for the use of 3D acquisition with LSO detectors to reduce scan times in whole-body (18)F-FDG applications.  相似文献   

11.
The aim of this work was to develop a rigorous evaluation methodology to assess performance of different acquisition and processing methods for variable patient sizes in the context of lesion detection in whole-body (18)F-FDG PET. METHODS: Fifty-nine bed positions were acquired in 32 patients in 2-dimensional (2D) and 3-dimensional (3D) modes 1-4 h after (18)F-FDG injection (740 MBq) using a BGO PET scanner. Three spheres (1.0-, 1.3-, and 1.6-cm diameter) containing (68)Ge were also imaged separately in air, at locations corresponding to possible lesion sites in 2D and 3D (590 targets per condition). Each bed position was acquired for 7 min in 2D and 6 min in 3D and corrected for randoms using delayed window randoms subtraction (DWS) or randoms variance reduction (RVR). Sphere sinograms were attenuated using the 2D or 3D attenuation map derived from the transmission scan of the patient, after scaling 2D and 3D sinograms with identical factors to ensure marginal detectability. Resulting 2D sinograms were reconstructed with filtered backprojection (FBP) and ordered-subsets expectation maximization (OSEM) without any scatter or attenuation correction (FBP-NATS and OSEM-NATS) or corrected for scatter and attenuation and reconstructed using FBP (FBP-ATT) or attenuation-weighted OSEM (AWOSEM). 3D sinograms were processed identically after Fourier rebinning. Next, reconstructed volumes were compared on the basis of performance of a 3-channel Hotelling observer (CHO-SNR [SNR is signal-to-noise ratio]) in detecting the presence of a sphere of unknown size on an anatomic background while modeling observer noise. The noise equivalent count (NEC) rate was computed in 2D and 3D for 3 different phantoms sizes (40, 60, and 95 kg) and compared with lesion detection SNR. RESULTS: 3D imaging yielded better lesion detectability than 2D (P < 0.025, 2-tailed paired t test) in patients of normal size (body mass index [BMI] < or = 31). However, 2D imaging yielded better lesion detectability than 3D in large patients (BMI > 31), as 3D performance deteriorated in large patients (P < 0.05). 2D and 3D yielded similar results for different lesion sizes. CHO-SNR were 40% greater for AWOSEM, FBP-ATT, and FBPNAT than for OSEM (P < 0.05), and AWOSEM yielded significantly better lesion detectability than did FBP. In all patients, RVR yielded a systematic improvement in CHO-SNR over DWS in both 2D and 3D. radicalNEC was characterized by a behavior similar to that of SNR(CHO) for the 3 different phantom sizes considered in this study.  相似文献   

12.
With the advantages of the increased sensitivity of fully 3-dimensional (3D) PET for whole-body imaging come the challenges of more complicated quantitative corrections and, in particular, an increase in the number of random coincidences. The most common method of correcting for random coincidences is the real-time subtraction of a delayed coincidence channel, which does not add bias but increases noise. An alternative approach is the postacquisition subtraction of a low-noise random coincidence estimate, which can be obtained either from a smoothed delayed coincidence sinogram or from a calibration scan or directly estimated. Each method makes different trade-offs between noise amplification, bias, and data-processing requirements. These trade-offs are dependent on activity injected, the local imaging environment (e.g., near the bladder), and the reconstruction algorithm. METHODS: Using fully 3D whole-body simulations and phantom studies, we investigate how the gains in noise equivalent count (NEC) rates from using a noiseless random coincidence estimation method are translated to improvements in image signal-to-noise ratio (SNR). The image SNR, however, depends on the image reconstruction method and the local imaging environment. RESULTS: We show that for fully 3D whole-body imaging using a particular set of scanners and clinical protocols, a low-noise estimate of random coincidences improves sinogram and image SNRs by approximately 15% compared with online subtraction of delayed coincidences. CONCLUSION: A 15% improvement in image SNR arises from a 32% increase in the NEC rate. Thus, scan duration can be reduced by 25% while still maintaining a constant total acquired NEC.  相似文献   

13.
The synthetic leucine amino acid analog anti-1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid (anti-(18)F-FACBC) is a recently developed ligand that permits the evaluation of the L-amino acid transport system. This study evaluated the whole-body radiation burden of anti-(18)F-FACBC in humans. METHODS: Serial whole-body PET/CT scans of 6 healthy volunteers (3 male and 3 female) were acquired for 2 h after a bolus injection of anti-(18)F-FACBC (366 +/- 51 MBq). Organ-specific time-activity curves were extracted from the reconstructed data and integrated to evaluate the individual organ residence times. A uniform activity distribution was assumed in the body organs with urine collection after the study. Estimates of radiation burden to the human body were calculated on the basis of the recommendations of the MIRD committee. The updated dynamic bladder model was used to calculate dose to the bladder wall. RESULTS: All volunteers showed initially high uptake in the pancreas and liver, followed by rapid clearance. Skeletal muscle and bone marrow showed lower and prolonged uptake, with clearance dominated by the tracer half-life. The liver was the critical organ, with a mean absorbed dose of 52.2 microGy/MBq. The estimated effective dose was 14.1 microSv/MBq, representing less than 20% of the dose limit recommended by the Radioactive Drug Research Committee for a 370-MBq injection. Bladder excretion was low and initially observed 6 min after injection, well after peak tracer uptake in the body organs. CONCLUSION: The PET whole-body dosimetry estimates indicate that an approximately 370-MBq injection of anti-(18)F-FACBC yields good imaging and acceptable dosimetry. The nonmetabolized nature of this tracer is favorable for extraction of relevant physiologic parameters from kinetic models.  相似文献   

14.
11C-Labeled 3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (DASB) is a selective radioligand for the in vivo quantitation of serotonin transporters (SERTs) using PET. The goal of this study was to provide dosimetry estimates for 11C-DASB based on human whole-body PET. METHODS: Dynamic whole-body PET scans were acquired for 7 subjects after the injection of 669 +/- 97 MBq (18.1 +/- 2.6 mCi) of 11C-DASB. The acquisition for each subject was obtained at 14 time points for a total of 115 min after injection of the radioligand. Regions of interest were placed over compressed planar images of source organs that could be visually identified to generate time-activity curves. Radiation burden to the body was calculated from residence times of these source organs using the MIRDOSE3.1 program. RESULTS: The organs with high radiation burden included the lungs, urinary bladder wall, kidneys, gallbladder wall, heart wall, spleen, and liver. The activity peaked within 10 min after the injection of 11C-DASB for all these organs except two--the excretory organs gallbladder and urinary bladder wall, which had peak activities at 32 and 22 min, respectively. Monoexponential fitting of activity overlying the urinary bladder suggested that approximately 12% of activity was excreted via the urine. Simulations in which the urinary voiding interval was decreased from 4.8 to 0.6 h produced only modest effects on the dose to the urinary bladder wall. With a 2.4-h voiding interval, the calculated effective dose was 6.98 microGy/MBq (25.8 mrem/mCi). CONCLUSION: The estimated radiation burden of 11C-DASB is relatively modest and would allow multiple PET examinations of the same research subject per year.  相似文献   

15.
Quantitative PET with (15)O provides absolute values for cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO(2)), and oxygen extraction fraction (OEF), which are used for assessment of brain pathophysiology. Absolute quantification relies on physically accurate measurement, which, thus far, has been achieved by 2-dimensional PET (2D PET), the current gold standard for measurement of CBF and oxygen metabolism. We investigated whether quantitative (15)O study with 3-dimensional PET (3D PET) shows the same degree of accuracy as 2D PET. METHODS: 2D PET and 3D PET measurements were obtained on the same day on 8 healthy men (age, 21-24 y). 2D PET was performed using a PET scanner with bismuth germanate (BGO) detectors and a 150-mm axial field of view (FOV). For 3D PET, a 3D-only tomograph with gadolinium oxyorthosilicate (GSO) detectors and a 156-mm axial FOV was used. A hybrid scatter-correction method based on acquisition in the dual-energy window (hybrid dual-energy window [HDE] method) was applied in the 3D PET study. Each PET study included 3 sequential PET scans for C(15)O, (15)O(2), and H(2)(15)O (3-step method). The inhaled (or injected) dose for 3D PET was approximately one fourth of that for 2D PET. RESULTS: In the 2D PET study, average gray matter values (mean +/- SD) of CBF, CBV, CMRO(2), and OEF were 53 +/- 12 (mL/100 mL/min), 3.6 +/- 0.3 (mL/100 mL), 3.5 +/- 0.5 (mL/100 mL/min), and 0.35 +/- 0.06, respectively. In the 3D PET study, scatter correction strongly affected the results. Without scatter correction, average values were 44 +/- 6 (mL/100 mL/min), 5.2 +/- 0.6 (mL/100 mL), 3.3 +/- 0.4 (mL/100 mL/min), and 0.39 +/- 0.05, respectively. With the exception of OEF, values differed between 2D PET and 3D PET. However, average gray matter values of scatter-corrected 3D PET were comparable to those of 2D PET: 55 +/- 11 (mL/100 mL/min), 3.7 +/- 0.5 (mL/100 mL), 3.8 +/- 0.7 (mL/100 mL/min), and 0.36 +/- 0.06, respectively. Even though the 2 PET scanners with different crystal materials, data acquisition systems, spatial resolution, and attenuation-correction methods were used, the agreement of the results between 2D PET and scatter-corrected 3D PET was excellent. CONCLUSION: Scatter coincidence is a problem in 3D PET for quantitative (15)O study. The combination of both the present PET/CT device and the HDE scatter correction permits quantitative 3D PET with the same degree of accuracy as 2D PET and with a lower radiation dose. The present scanner is also applicable to conventional steady-state (15)O gas inhalation if inhaled doses are adjusted appropriately.  相似文献   

16.
Imaging characteristics of a 3-dimensional GSO whole-body PET camera.   总被引:4,自引:0,他引:4  
A whole-body 3-dimensional PET scanner using gadolinium oxyorthosilicate (GSO) crystals has been designed to achieve high sensitivity and reduced patient scanning time. This scanner has a diameter of 82.0 cm and an axial field of view of 18 cm without interplane septa. The detector comprises of 4 x 6 x 20 mm(3) GSO crystals coupled via an optically continuous light guide to an array of 420 photomultiplier tubes (39-mm diameter) in a hexagonal arrangement. The patient port diameter is 56 cm, and 2.86-cm (1.125 in.) thick lead shielding is used to fill in the region up to the detector ring. METHODS: Performance measurements on the scanner were made using the National Electrical Manufactures Association (NEMA) NU 2-2001 procedures. Additional counting rate measurements with a large phantom were performed to evaluate imaging characteristics for heavier patients. The image-quality torso phantom with hot or cold spheres was also measured as a function of counting rate to evaluate different techniques for randoms and scatter subtraction as well as to determine an optimum imaging time. RESULTS: The transverse and axial resolutions near the center are 5.5 and 5.6 mm, respectively. The absolute sensitivity of this scanner measured with a 70-cm-long line source is 4.36 cps/kBq, whereas the scatter fraction is 40% with a 20 x 70 cm line source cylinder. For the same cylinder, the peak noise equivalent count (NEC) rate of 30 kcps at an activity concentration of 9.25 kBq/mL (0.25 micro Ci/mL) leads to a 7% increase in the peak NEC value. A significant reduction in the peak NEC is observed with a larger 35 x 70 cm line source cylinder. Image-quality measurements show that the small 10-mm sphere in the NEMA NU 2-2001 image-quality phantom is clearly visible in a scan time of 3 min, and there is no noticeable degradation in image contrast at high activity levels. CONCLUSION: This whole-body scanner represents a new generation of 3D, high-sensitivity, and high-performance PET cameras capable of producing high-quality images in <30 min for a full patient scan. The use of a pixelated GSO Anger-logic detector leads to a high-sensitivity scanner design with good counting rate capability due to the reduced light spread in the detector and fast decay time of GSO. The light collection over the detector is fairly uniform, leading to a good energy resolution and, thus, reduced scatter in the collected data due to a tight energy gate.  相似文献   

17.
Biodistribution and radiation dosimetry of the dopamine transporter ligand.   总被引:14,自引:0,他引:14  
18F-labeled 2 beta-carbomethoxy-3beta-(4-chlorophenyl)-8-(-2-fluoroethyl)nortropane ([18F]FECNT) is a recently developed dopamine transporter ligand with potential applications in patients with Parkinson's disease and cocaine addiction. METHODS: Estimates of the effective dose equivalent and doses for specific organs were made using biodistribution data from 16 Sprague-Dawley rats and nine rhesus monkeys. PET images from two rhesus monkeys were used to calculate the residence time for the basal ganglia. The computer program MIRDOSE3 was used to calculate the dosimetry according to the methodology recommended by MIRD. RESULTS: The basal ganglia were the targeted tissues receiving the highest dose, 0.11 mGy/MBq (0.39 rad/mCi). The effective dose equivalent was 0.018 mSv/MBq (0.065 rem/mCi), and the effective dose was 0.016 mSv/MBq (0.058 rem/mCi). CONCLUSION: Our data show that a 185-MBq (5-mCi) injection of [18F]FECNT leads to an estimated effective dose of 3 mSv (0.3 rem) and an estimated dose to the target organ or tissue of 19.4 mGy (1.93 rad).  相似文献   

18.
This article reports the results of performance measurements obtained for the lutetium oxyorthosilicate (LSO)-based whole-body PET/CT scanner Biograph 16 HI-REZ with the National Electrical Manufacturers Association (NEMA) NU 2-2001 standard. The Biograph 16 HI-REZ combines a multislice (16-slice) spiral CT scanner with a PET scanner composed of 24.336 LSO crystals arranged in 39 rings. The crystal dimensions are 4.0x4.0x20 mm3, and the crystals are organized in 13x13 blocks coupled to 4 photomultiplier tubes each. The 39 rings allow the acquisition of 81 images 2.0 mm thick, covering an axial field of view of 162 mm. The low- and high-energy thresholds are set to 425 and 650 keV, respectively, acquiring data within a 4.5-ns-wide coincidence window. METHODS: Performance measurements for the LSO-based PET/CT scanner were obtained with the NEMA NU 2-2001 standard, taking into account issues deriving from the presence of intrinsic radiation. RESULTS: The results obtained with the NEMA NU 2-2001 standard measurements were as follows: average transverse and axial spatial resolutions (full width at half maximum) at 1 cm and at 10 cm off axis of 4.61 (5.10) mm and 5.34 (5.91) mm, respectively; average sensitivity of 4.92 counts per second per kilobecquerel for the 2 radial positions (0 and 10 cm); 34.1% system scatter fraction; and peak noise equivalent count (NEC) rates of 84.77 kilocounts per second (kcps) at 28.73 kBq/mL (k=1 in the NEC formula; noiseless random correction) and 58.71 kcps at 21.62 kBq/mL (k=2; noisy random correction). CONCLUSION: The new integrated PET/CT system Biograph 16 HI-REZ has good overall performance, with, in particular, a high resolution, a low scatter fraction, and a very good NEC response.  相似文献   

19.

Objective  

This work assessed the usefulness of fully three-dimensional ordered subset expectation maximization (3D-OSEM) algorithm for lymph node (LN) metastases from lung cancer. 3D-OSEM images were evaluated by comparing them with those reconstructed by conventional algorithms, such as conventional OSEM algorithm (2D-OSEM) for 2D acquisition and Fourier rebinning plus conventional OSEM algorithm (FORE + OSEM) for 3D acquisition.  相似文献   

20.
We measured the resolution and count recovery coefficients (RC) of the SET-2400W whole-body PET scanner (Shimadzu Co., Japan) in the 2D and 3D clinical modes. METHOD: The 3D images were reconstructed by using the full 3D image reconstruction method (3-D reprojection algorithm: 3DRP) and the Fourier rebinning method (FORE). The 2D images were reconstructed with conventional filtered back-projection method (FBP). The measurements of resolution and recovery coefficient were according to JRIA (Japan Radioisotope Association) protocols. RESULTS: The transaxial resolutions of all methods were better than 7 mm FWHM at a radius of 10 cm with 1.25 cm-1 cutoff frequency. The average slice width of 2D FBP, 3DRP and FORE are 5.8 mm, 8.0 mm and 6.8 mm respectively at the center of transaxial field of view. The RC values were measured in a range from 10 mm to 27 mm at 6 cm from the center with the cylindrical and spherical hot area phantoms. In all methods, RC values at 27 mm diameter were nearly 1.0 in both type of hot area. RC values at 10 mm diameter in 2D FBP, 3DRP and FORE of cylindrical hot area were 0.69, 0.72, 0.73 and those of spherical hot area were 0.52, 0.51, 0.53 respectively. CONCLUSION: At the SET-2400W, resolution and recovery coefficient of 3D mode image under the clinical mode showed the value which did not differ from the 2D mode image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号