首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuropeptide Y (NPY) is the most potent endogenous orexigenic signal. Several lines of evidence indicate that the site of NPY action in transducing feeding signal may reside in the paraventricular nucleus (PVN) and neighboring sites in the hypothalamus. To test the hypothesis that an increase in NPY activity in the ARC-PVN pathway precedes the onset of diabetic hyperphagia, we evaluated NPY levels in seven hypothalamic nuclei and NPY gene expression in the hypothalamus at 48, 72 or 96 h after streptozotocin (STZ) treatment in rat. In STZ-treated diabetic rats, NPY gene expression in the hypothalamus and NPY levels only in the PVN significantly elevated at 48 h, while hyperphagia occurred sometimes after 48 h post-injection. These results show that augmentation in NPY neuronal activity in the ARC-PVN axis precedes the onset of increased food intake produced by STZ-induced insulinopenia. These findings affirm the hypothesis that increased NPY neurosecretion in the PVN may underlie the diabetes-induced hyperphagia.  相似文献   

2.
Immunocytochemical studies have documented the presence of neuropeptide Y (NPY) in the hypothalamic paraventricular nucleus (PVN) which harbours a large number of neurones that contain corticotrophin-releasing factor (CRF). In this study the close morphological association between NPY fibres and CRF cell bodies in the PVN was confirmed. The localization of NPY terminals in the vicinity of CRF neurones forms a morphological basis for an action of NPY in the hypothalamic control of the pituitary-adrenocortical axis. We therefore microinjected NPY into the area of the PVN of both conscious, freely moving and anaesthetized rats and noted a powerful stimulatory effect on adrenocorticotropic hormone (ACTH) and corticosterone release as measured by radioimmunoassay. In experiments with conscious, freely moving rats, higher ACTH and corticosterone levels were detected following injection of NPY into the area of the PVN than following control injection (desamidated NPY). Intracerebroventricular injection of NPY produced a small, albeit significant, increase in circulating corticosterone levels as compared to control (saline-injected) rats. Anaesthetized rats responded to NPY (but not to saline) injected into the area of the PVN with elevated ACTH and corticosterone levels, while injection of NPY into the neocortex failed to affect the blood concentration of either ACTH or corticosterone. In conclusion, we have demonstrated an activating effect of NPY on the pituitary-adrenocortical axis both in conscious and anaesthetized rats which may reflect the anatomical relationship between NPY fibres and CRF neurones in the PVN.  相似文献   

3.
The expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP), both of which are important neuropeptides involved in regulation of energy balance and hormone secretion, is up-regulated in the arcuate nucleus during lactation in rodents. The present study tested whether reductions in circulating insulin and/or leptin that occur in lactation provide the critical signals to these systems. Lactating female rats received 3-day infusions of either bovine insulin or recombinant rat leptin via Alzet Osmotic minipumps implanted subcutaneously in regimens designed to restore serum concentrations of these hormones to the higher non-lactating level. Compared to non-lactating rats in diestrus, lactating rats displayed significantly lower serum concentrations of insulin and leptin, and significantly increased NPY peptide concentrations in the paraventricular nucleus (PVN) and median eminence, and AgRP mRNA in the arcuate nucleus. Infusion of leptin in lactating females significantly increased serum concentrations of leptin and significantly reduced NPY concentrations in the PVN and median eminence, and decreased NPY and AgRP mRNAs in the arcuate nucleus. The same effects were produced by infusion of insulin in lactating rats, which restored both insulin and leptin concentrations in serum. The levels of pro-opiomelanocortin mRNA in the arcuate nucleus were not different in non-lactating and lactating females, and were not altered by leptin or insulin treatment. These findings support the hypothesis that the reduction in circulating leptin during lactation contributes to increased expression of NPY and AgRP in hypothalamic systems involved in the behavioural and neuroendocrine adaptations to lactation.  相似文献   

4.
Electrolytic lesions placed in the ventromedial hypothalamus (VMH) of rats induce instant hyperphagia and excessive weight gain. Since neuropeptide Y (NPY) is a potent hypothalamic orexigenic signal, and leptin secreted by adipocytes regulates NPY output, we tested the hypothesis that altered NPYergic-leptin signaling may underlie hyperphagia in VMH-lesioned rats. VMH-lesioned rats exhibiting hyperphagia and excessive weight gain in a time-related fashion were sacrificed on days 2, 7, and 21 post-surgery. Quite unexpectedly, NPY concentrations in the hypothalamic paraventricular nucleus (PVN), a major site of NPY release for stimulation of feeding, and in other sites, such as the dorsomedial nucleus, lateral hypothalamic area and median eminence-arcuate nucleus decreased, with the earliest diminution occurring on day 2 in the PVN only. In vitro basal and K+-evoked NPY release from the PVN of VMH-lesioned rats was significantly lower than that of controls. Analysis of hypothalamic NPY gene expression showed that although the daily decrease in NPY mRNA from 0800 to 2200 h occurred as in control rats, NPY mRNA concentrations were markedly reduced at these times in the hypothalami of VMH-lesioned rats. Leptin synthesis in adipocytes as indicated by leptin mRNA levels was also profoundly altered in VMH-lesioned rats. The daily pattern of increase in adipocyte leptin mRNA at 2200 h from 0800 h seen in controls was abolished, higher levels of leptin gene expression at 2200 h were maintained at 0800 h. The pattern of increase in serum leptin and insulin levels diverged in VMH-lesioned rats. Serum insulin concentration increased to maximal on day 2 and remained at that level on day 21-post-lesion; serum leptin levels on the other hand, increased slowly in a time-related fashion during this period. These results demonstrate that hyperphagia and excessive weight gain in VMH-lesioned rats are associated with an overall decrease in hypothalamic NPY and augmented leptin signaling to the hypothalamus. The divergent time course of increases in serum leptin and insulin levels suggest independent mechanisms responsible for their augmented secretion, and neither these hormones nor VMH lesions altered the daily rhythm in NPY gene expression. These observations underscore the existence of an independent mechanism controlling the daily rhythm in hypothalamic NPY gene expression and suggest that leptin feedback action requires an intact VMH.  相似文献   

5.
Recent evidence indicates that Neuropeptide Y (NPY) is an important signal in the hypothalamic neural circuitry that stimulates feeding in the rat. Administration of d-fenfluramine (FEN) has been shown to rapidly inhibit feeding in the rat. Because food deprivation increases the levels and release of NPY in the paraventricular nucleus (PVN) of the hypothalamus, the aim of this study was to investigate whether the rapid anorectic effects of FEN in food-deprived (FD) rats are associated with alterations in the hypothalamic NPYergic system. In the first experiment, the effect of FEN (10 mg/kg) on NPY concentrations in nine microdissected hypothalamic sites was assessed by radioimmunoassay (RIA) in rats either food deprived for 3 days or fed ad lib during the experimental period. In response to food deprivation, NPY concentrations increased significantly in the PVN and arcuate nucleus, but NPY levels remained unchanged in the remaining seven hypothalamic sites. In control rats maintained on ad lib food supply, FEN injection produced little effect on NPY concentration in hypothalamic sites. However, FEN suppressed NPY levels selectively in the PVN of FD rats, so that NPY concentrations measured in the nucleus were within the range found in satiated control rats. In the second experiment, the effect of FEN on NPY release in the PVN was examined in FD rats by the push-pull cannula (PPC) technique. NPY levels in the PPC perfusate were unchanged in FD rats during the period 30-120 min after saline or FEN injection. Also, the mean rate of NPY release was similar in vehicle- and FEN-treated FD rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Zheng H  Li YF  Weiss M  Mayhan WG  Patel KP 《Brain research》2002,956(2):268-275
We sought to identify the areas that have altered neuronal activity within the hypothalamus of diabetic rats by mapping neuronal expression of c-fos protein (Fos) and Fos-related antigens. After a standard PAP immunocytochemical protocol, Fos-like immunoreactivity was observed in the paraventricular nucleus (PVN), supraoptic nucleus (SON), median preoptic area (MnPO), anterior hypothalamus (AH) and posterior hypothalamus (PH) of control (vehicle; n=6) and diabetic rats (Sprague-Dawley rats injected with STZ 65 mg/kg/ip 4 weeks prior to the experiment; n=6). Blood glucose levels were significantly elevated in the diabetic group (370+/-8 mg/dl) compared to control group (104+/-3 mg/dl). Diabetic rats had a significantly higher number of Fos-positive cells in PVN (2.5x), SON (7x) and MnPO (2x) compared to the control rats. However, diabetic rats had significantly fewer Fos-positive cells in the AH (0.3x) and no difference was observed in the PH between the diabetic and control rats. Despite the elevated number of Fos-positive cells in the diabetic rats, dehydration (water withdrawal for 24 h) or hypertonic challenge (1.5 ml of 0.1 M NaCl i.p. injection) produced a further increase in the number of Fos-positive cells in the PVN, SON and MnPO. Dehydration did not alter the number of Fos-positive cells in the AH or PH, but hypertonic challenge produced a significant increase in the Fos-positive cells in both the AH and PH of diabetic rats. This study demonstrates that: (1) there is increased basal neuronal activity in the PVN, SON and MnPO, a decrease in neuronal activity in the AH and no change in neuronal activity in the PH as indicated by Fos staining in diabetic rats; and (2) dehydration or hypertonic challenge produces a further increase in the number of Fos-positive cells in the PVN, SON, and MnPO which is comparable to control rats. These data support the conclusion that vasopressin producing neurons in the PVN and SON and autonomic areas within the lamina terminalis and hypothalamus are activated during diabetes and may contribute to the elevated levels of vasopressin and autonomic dysfunction during diabetes.  相似文献   

7.
Early postnatal overnutrition is a risk factor for obesity in juvenile and adult life. Underlying pathophysiological mechanisms are still unclear. Hypothalamic neuropeptides are decisively involved in the regulation of body weight and food intake. In this study, we investigated consequences of early postnatal overnutrition, as compared to normo-and undernutrition, on NPY within the arcuate nucleus and paraventricular nucleus (PVN). The normal litter size of Wistar rats was adjusted on the third day of life from 10 pups (normal litters, NL; normonutrition) to only three newborns (small litters, SL; overnutrition) or 18 pups per mother (large litters, LL; undernutrition). SL rats developed clear overweight until the day 21 of life (P<0.0001), as well as hyperleptinaemia (P<0.001), and hyperinsulinaemia (P<0.01). LL rats were underweight and had decreased leptin and insulin concentrations. Using radioimmunoassay, NPY contents were determined in hypothalamic micropunches, and immunocytochemistry for NPY was performed in serial hypothalamic sections on day 21 of life. While in the underweight, hypoleptinaemic, and hypoinsulinaemic LL rats increased concentrations of NPY in the arcuate nucleus and PVN were observed, no decrease in NPY content was found in the overweight, hyperleptinaemic, and hyperinsulinaemic SL rats. Moreover, the percentage of NPY-immunopositive neurones per total number of neurones was increased not only in the LL rats, but also in the SL rats. Since the NPY system is functionally mature already at this age, these findings might indicate an acquired resistance of the hypothalamic NPY system to increased levels of insulin and/or leptin in early postnatally overfed SL rats.  相似文献   

8.
Neuropeptide Y (NPY) was injected into the paraventricular nucleus (PVN) of the hypothalamus of anesthetized rats in order to assess its effect on gastric acid secretion. NPY evoked a dose-dependent decrease of interdigestive gastric acid output when injected directly into the PVN or immediately ventral to it. Intracerebroventricular NPY and saline injections did not alter acid output. Injection of NPY into adjacent non-PVN hypothalamic areas resulted in either an elevated acid output or had no effect depending on the site of injection. Mean arterial blood pressure and heart rate were not consistently affected by NPY. These results show that injection of NPY into the PVN of anesthetized rats inhibits interdigestive gastric acid output in a dose-dependent manner.  相似文献   

9.
Recent evidence suggests that neuropeptide Y (NPY) is an important signal in the neural circuitry that controls feeding behavior. Previously we observed that in rats entrained to 4 h daily scheduled feeding regimen (SFR), NPY content and release in the paraventricular nucleus (PVN) was elevated but decreased rapidly in association with food consumption. In the present study, we investigated the pattern of hypothalamic NPY gene expression in SFR rats before and after food consumption by measuring the content of preproNPY mRNA in the medial basal hypothalamus (MBH). Adult male rats were maintained on either ad libitum diet (control) or on SFR. Rats were killed before food presentation at 11.00 h and at the end of 4 h food consumption at 15.00 h. The levels of preproNPY mRNA in the MBH were determined by solution hybridization/RNase protection assay using a cRNA probe complementary to rat NPY precursor mRNA. We observed that, as compared to that in control rats on ad libitum diet, preproNPY mRNA levels in the MBH were increased two-fold in the SFR rat at 11.00 h and remained elevated even after 4 h of food consumption. These results show a simultaneous enhancement in PVN NPY release and hypothalamic gene expression in advance of scheduled feeding time, but food intake rapidly decreases PVN NPY release and content, with little impact on hypothalamic gene expression.  相似文献   

10.
Prior studies have demonstrated that chronic consumption over several weeks of a high-carbohydrate (65%) diet, compared to a moderate-carbohydrate (45%) or low-carbohydrate (15%) diet, potentiates the expression, synthesis and release of hypothalamic NPY. This effect occurs specifically in neurons of the arcuate nucleus (ARC) which project to the paraventricular nucleus (PVN). In the present experiments, tests involving acute manipulations were conducted to determine whether such diet-induced changes in NPY can occur rapidly, perhaps within 1-2 h, and whether these effects can be linked to specific changes in circulating glucoregulatory hormones or glucose itself., In adult, albino rats maintained on lab chow, the acute manipulations included the presentation of either a high-carbohydrate, moderate-carbohydrate or high-fat diet for 90 min at the onset of the natural feeding cycle. They also involved manipulations of glucose itself, either through the ingestion of a glucose (20%) solution in a drinking tube or intraperitoneal injection of a glucose solution (10%). After a high-carbohydrate meal compared to a moderate-carbohydrate or high-fat meal, NPY gene expression examined via in situ hybridization is found to be significantly enhanced in the ARC. The high-carbohydrate meal also potentiates NPY immunoreactivity in the ARC and PVN but has little effect on NPY in other hypothalamic areas examined and actually causes a reduction in the feeding-stimulatory peptide, galanin, specifically in the PVN. The meal-induced increase in NPY is associated with specific endocrine patterns, as revealed by measurements in serum collected from trunk blood or from rats implanted with a chronic jugular catheter. After a high-carbohydrate meal, levels of glucose, together with corticosterone and insulin, are significantly elevated, while non-esterified fatty acids are reduced. A possible effect of circulating glucose on hypothalamic NPY is further suggested by the finding that the consumption or a single injection of a glucose solution at the onset of the feeding cycle similarly elevates NPY mRNA and peptide immunoreactivity in the ARC and PVN. These results demonstrate that hypothalamic NPY can change rapidly in response to dietary carbohydrate. They also suggest that this effect may be related to changes in circulating CORT as well as to the availability or utilization of glucose.  相似文献   

11.
Neuropeptide Y (NPY) concentration was determined by radioimmunoassay in selected hypothalamic regions microdissected from fresh brain slices of rats treated neonatally with monosodium glutamate (MSG). Fourteen weeks after MSG treatment, significant decreases in NPY concentration were found in the paraventricular nucleus (PVN) and arcuate nucleus (ARH), while there was no appreciable change in the ventromedial nucleus (VMH) and lateral area (LH). The decrease in NPY in the ARH-PVN system may contribute to the endocrine and metabolic disturbances seen in MSG-treated animals.  相似文献   

12.
The effects of streptozotocin-induced diabetes mellitus on the activity of discrete regions of the brain were studied with histochemical localization and photodensitometric quantification of the metabolic enzyme, hexokinase. Two weeks after a single injection of streptozotocin (65 mg/kg, i.p.), plasma glucose and osmolarity levels were elevated, and plasma sodium concentrations were depressed. These changes were reversed in diabetic rats treated with insulin. Accompanying these symptoms of diabetes were significant increases in hexokinase activity in the magnocellular division of the paraventricular nucleus of the hypothalamus (mPVH, 12.1%), the medial subdivision of the nucleus of the tractus solitarius (mNTS, 15.5%), and the commissural subdivision of the NTS (cNTS, 10.9%). An increase, though just below the level of significance, was also observed in the supraoptic nucleus of the hypothalamus (SON, 11.5%). The increases in hexokinase activity were completely reversed in the cNTS (and SON) and only partly reversed in the mPVH and mNTS of insulin-treated diabetic rats. No changes in hexokinase activity were seen in the subfornical organ, medial preoptic area, parvocellular division of the PVH, locus coeruleus, or dorsal motor nucleus of the vagus of diabetic rats. These results reinforce the idea that the brain is not exempt from changes associated with diabetes mellitus and suggest that metabolic alterations in the mPVH (and SON) and two divisions of the NTS are likely related to changes in vasopressin production and blood volume, respectively.  相似文献   

13.
The mediobasal hypothalamus regulates functions necessary for survival, including body energy balance and adaptation to stress. The purpose of this experiment was to determine the contribution of the arcuate nucleus (ARC) in controlling these two functions by the paraventricular nucleus (PVN). Circular, horizontal cuts (1.0 mm radius) were placed immediately above the anterior ARC to sever afferents to the PVN. In shams the knife was lowered to the same coordinates but was not rotated. Food intake and body weight were monitored twice daily, at the beginning and end of the light cycle, for 1 week. On the final day the animals were restrained for 30 min. Lesioned animals had increased food intake in light and dark periods, higher weight gain per day, and more body fat as compared with shams. There was no difference in caloric efficiency. Unlike shams, lesioned rats had no predictable relationship between plasma insulin and leptin. Plasma ACTH was increased at 0 min in lesioned rats but was decreased 15 and 30 min after restraint as compared with shams. There was no difference in plasma corticosterone. Immunostaining revealed that alpha-melanocortin (alphaMSH) and neuropeptide Y (NPY) accumulated below the cuts, and both were decreased in PVN. Food intake and body weight were correlated negatively to alphaMSH, but not NPY in PVN. There was no difference in proopiomelanocortin (POMC) mRNA, but NPY mRNA was reduced in the ARC of lesioned animals. We conclude that ARC controls body energy balance in unstressed rats, possibly by alphaMSH input to PVN, and that ARC also is necessary for PVN regulation of ACTH.  相似文献   

14.
Type 1 and 2 diabetes are associated with dysfunction in multiple hormone systems, as well as increased sympathetic nerve activity, which may contribute to the development of diabetic complications. In other pathologies, such as myocardial infarction, increased sympathetic drive is associated with neuroinflammation and microglial activation in the hypothalamic paraventricular nucleus (PVN), a brain region that regulates sympathetic drive and multiple endocrine responses. In the present study, we used immunohistochemistry to study microglial and neuronal activation in the PVN and related brain regions in streptozotocin (STZ)‐induced diabetic rats. As expected, STZ treatment was associated with elevated blood glucose within 1 week. STZ injections also caused neuronal activation in the PVN and superoptic nucleus (SON) but not in the nucleus tractus solitarius (NTS), which was evident by 6 weeks. STZ‐treated rats showed increased plasma osmolarity, which would be expected to activate PVN and SON neurones. There was no apparent increase in histochemical markers of microglial activation, including phospho‐p38, phospho‐extracellular signal regulated kinase, P2X4 receptor or interleukin 1‐β even at 10 weeks after STZ‐treatment. However, we did see a significant increase in the percentage of microglia with an activated morphology in the PVN, SON and NTS, although not in surrounding hypothalamic, brainstem or cortical regions. These morphological changes included a significant reduction in microglial process length and were evident by 8 weeks but not 6 weeks. The delayed onset of microglial changes compared to neuronal activation in the PVN and SON suggests the over‐excitation of neurones as a mechanism of microglial activation. This delayed microglial activation may, in turn, contribute to the endocrine dysregulation and the elevated sympathetic nerve activity reported in STZ‐treated rats.  相似文献   

15.
NPY is synthesized in the hypothalamic arcuate nucleus (ARC), and NPY injected into the paraventricular nucleus (PVN), the main site of NPY release, induces hyperphagia and reduces energy expenditure. Hypothalamic NPY and mRNA and NPY levels are increased in fatty Zucker rats, consistent with increased NPY release. This could explain the hyperphagia and reduced energy expenditure, which lead to obesity in the fatty Zucker rat. We have therefore compared NPY secretion in the PVN of conscious fatty and lean Zucker rats using push-pull sampling. The NPY secretory profile was consistently higher in fatty Zucker rats than in lean rats throughout the 3-h study period (P < 0.01), and mean NPY secretion over the whole 3 h was increased 2-fold in the fatty rats (P < 0.001). We conclude that fatty Zucker rats have increased NPY release in the PVN. This observation further supports the hypothesis that increased activity of the NPYergic ARC-PVN pathway may contribute to obesity in the fatty Zucker syndrome.  相似文献   

16.
In rats, circulating corticosterone and insulin are involved in regulation of the hypothalamic neuropeptide Y (NPY) system, which in turn, is involved in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Since the HPA axis and stress responsivity is altered in diseases such as depression, we investigated interactions between the effects of stress and antidepressant drug treatment on arcuate nucleus and locus coeruleus NPY mRNA expressions using in-situ hybridization histochemistry. After acute (2 h) and repeated immobilization (2 h daily, for 14 days), plasma concentrations of corticosterone increased, and those of insulin decreased. The expression of NPY mRNA was significantly increased in the arcuate nucleus, but was unchanged in the locus coeruleus following acute and repeated immobilization. Adrenalectomized rats with systemic corticosterone replacement (ADX+CORT), whose corticosterone concentration was maintained at approximately 50-100 ng/ml during repeated stress, showed a decrease in plasma insulin and an increase in arcuate nucleus NPY mRNA similar to that observed in sham rats, suggesting that changes in NPY mRNA levels are more closely tied to circulating insulin than to circulating corticosterone. In contrast, locus coeruleus NPY mRNA expressions in ADX+CORT rats were significantly higher than those in sham rats after repeated stress. Desmethylimipramine (DMI) treatment for 24 days did not affect basal plasma concentrations of corticosterone or insulin, or arcuate nucleus NPY mRNA expressions, but significantly decreased basal levels of locus coeruleus NPY mRNA compared to saline-treated rats. After repeated immobilization (2 h daily, for 4 days), DMI significantly reduced the stress-induced rise in locus coeruleus NPY mRNA levels, but potentiated the stress-induced rise in arcuate nucleus NPY mRNA expression. These results demonstrate that: (1) the increase in arcuate nucleus NPY mRNA expressions in stressed rats closely follows the decrease in plasma concentrations of insulin; (2) increases in NPY mRNA expressions occur in the absence of changes in plasma corticosterone; and (3) desipramine treatment potentiated the effect of stress on arcuate nucleus NPY mRNA expressions, but blocked the repeated stress-induced increase in locus coeruleus NPY mRNA expressions. Thus, NPY mRNA expression in the arcuate nucleus and the locus coeruleus is sensitive to the effects of stress and to the antidepressant drug desipramine, but the arcuate nucleus NPY system is regulated by different mechanisms than the locus coeruleus NPY system. The results provide further evidence for the importance of circulating insulin in the regulation of the arcuate nucleus NPY system.  相似文献   

17.
Neuropeptide Y (NPY) synthesized in the arcuato-paraventricular projection in the rat hypothalamus is thought to play an important role in controlling energy homeostasis. The factors that regulate hypothalamic NPY are not known but, amongst others, insulin has been postulated as an inhibitory modulatory agent. To test this hypothesis, normal male rats were given either insulin (2 units/day) or saline via subcutaneous osmotic minipumps for 3 days. Euglycaemia was maintained by a concomitant glucose infusion in insulin-infused rats which had peripheral insulin levels 5–8 times higher than saline-infused controls. Hyperinsulinaernic rats ate 42% less than controls, but their total energy intake (food intake plus glucose infusion) was higher than that of controls, and they gained more weight than controls during the experimental period. Hyperinsulinaemia had no significant effect on hypothalamic NPY mRNA or NPY levels in the arcuate nucleus. NPY concentrations in the paraventricular nucleus were, however, significantly increased by 73% in hyperinsulinaemic rats, but were closely similar to controls in all other areas. Insulin may act as a satiety factor in that hyperinsulinaemic rats ate less, but the fact that these animals had increased total energy intake and gained excessive weight suggests that insulin may not function as an overall regulator of energy balance. In addition, physiological hyperinsulinaemia does not apparently inhibit NPY gene expression in the arcuate nucleus. Due to the lack of effect of hyperinsulinaemia on NPY synthesis in the arcuate nucleus, the elevated NPY concentrations in the paraventricular nucleus could result from a reduction of its release, which would be in keeping with the reduction in food intake.  相似文献   

18.
Effects of obesity on gene expression for opioid peptides and neuropeptide-Y (NPY) in the arcuate nucleus (ARC), and on opioid peptides and α-melanocyte stimulating hormone (α-MSH) in the paraventricular nucleus (PVN) were examined in obese Zucker rats (18 weeks old). Obese Zucker rats are insulin-resistant, diabetic and hyperleptinemic as indicated by high serum glucose, insulin and leptin levels. ARC proOpiomelanocortin (POMC) mRNA levels were significantly lower in the obese relative to lean Zucker rats and ARC proNeuropeptide Y (proNPY) mRNA levels were higher (P<0.05). There were no differences in proDynorphin and proEnkephalin mRNA levels in the ARC (P>0.05). Obese Zucker rats had lower α-MSH and dynorphin A1–17 peptide levels in the paraventricular nucleus (PVN) (P<0.05), but did not have lower PVN β-endorphin peptide levels (P>0.05). The decrease in POMC in the ARC and decrease in α-MSH in the PVN seen in the obese Zucker rat in the present study suggest that reduced activity of the melanocortin system in the ARC to PVN pathway may contribute to the related hyperphagia. Reduced activity of the melanocortin system in the ARC to PVN pathway may be due to a disturbance of leptin signaling coupling to POMC.  相似文献   

19.
The paraventricular nucleus (PVN) is known to have an important function in mediating a variety of behavioral and endocrine responses. In the present study, the responsiveness of the PVN to the effects of the coexisting neurotransmitters, neuropeptide Y (NPY), epinephrine (EPI) and norepinephrine (NE), was examined. Albino rats were each chronically implanted with a swivel brain-cannula that permits chemicals to be infused without disturbing the animals' ongoing behavior. When infused into the PVN, each of these neurotransmitters elicited a reliable feeding response during the first hour after injection. The response to EPI was significantly stronger than that of NE and NPY, while the latency to eat after injection was considerably longer for NPY as compared to the catecholamines. In tests with food absent, each of these substances also increased blood levels of corticosterone (EPI greater than NE = NPY) and vasopressin (NPY greater than EPI greater than NE) and revealed a significant positive correlation between circulating levels of these two hormones. In addition, EPI and NE, in contrast to NPY, caused a simultaneous rise in blood glucose, producing levels that were positively correlated with the hormones. No relationship, however, was detected between these endocrine changes and the rats' feeding-stimulatory responses. Together with other evidence, these results suggest that adrenergic as well as noradrenergic innervation to the PVN has a key role in the behavioral and endocrine systems of this nucleus and, moreover, that NPY generally mimics the effects of these catecholamines in the PVN.  相似文献   

20.
Neuropeptide Y (NPY) is a powerful stimulus to food intake in the rat. Exogenous NPY given into the third ventricle or into the paraventricular nucleus (PVN) of the hypothalamus stimulates both food consumption as well as the hypothalamus-pituitary-adrenal (HPA) axis. Presumably NPY activates the adrenocortical system through direct stimulation of CRF containing cells in the PVN. Food intake is also a major regulator of adrenocortical activation. Rhythms in HPA axis activity follow rhythms in food consumption, and rats that have been food deprived overnight have inhibited HPA axis responses to restraint stress and corticosteroid feedback the following morning. To investigate the interaction of NPY with both feeding and HPA axis activation three sets of experiments were performed: Animals fed ad lib were injected icv with NPY (2.5 μg) and allowed access to food or not post injection; animals were fasted overnight prior to NPY injection; finally, dose response experiments were performed to examine the relative sensitivities of feeding and HPA axis activation to exogenous NPY. Ad lib fed animals allowed access to food after NPY injection had slightly greater ACTH responses to NPY while glucocorticoid and insulin responses were not significantly different from ad lib fed animals not allowed access to food post injection. Animals allowed to eat post injection had significantly decreased food consumption the night following injection, however, total 24 h food consumption was not different between these animals and those given food 8 h post NPY injection. In overnight fasted animals NPY injections produced ACTH responses of equal magnitude to those in ad lib fed animals. Insulin responses to NPY were significantly elevated compared to CSF controls in overnight fasted animals. Dose response studies revealed that the adrenocortical system responds to icv NPY with at least as great sensitivity as feeding systems. NPY is discussed as a potential integrator of feeding and responsiveness in the HPA axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号