共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have shown that CYP2C9.1 mediated metabolism of flurbiprofen or naproxen is activated by co-incubation with dapsone. However, dapsone activation has not been examined in the known variant forms of CYP2C9. Six concentrations of flurbiprofen (2-300microM) or naproxen (10-1800 microM) were co-incubated with six concentrations of dapsone (0-100 microM) and with reconstituted, purified CYP2C9.1, CYP2C9.2 (R144C), CYP2C9.3 (I359L), or CYP2C9.5 (D360E), in order to assess degrees of activation. Dapsone increased the efficiency (V(m)/K(m)) of flurbiprofen 4'-hydroxylation by CYP2C9.1, CYP2C9.2, CYP2C9.3, and CYP2C9.5 by 8-, 31-, 47-, and 22-fold, respectively. In similar experiments using the substrate naproxen, dapsone increased the efficiency of naproxen demethylation 7-, 15-, 13-, and 22-fold, in CYP2C9.1, CYP2C9.2, CYP2C9.3, and CYP2C9.5, respectively. Also, dapsone normalized naproxen's kinetic profile from biphasic (CYP2C9.1 and CYP2C9.2) or linear (CYP2C9.3 and CYP2C9.5) to hyperbolic for all variant forms. Thus, amino acid substitutions of CYP2C9 variants affect the degree of dapsone activation in a genotype-dependent fashion. Furthermore, the degree of effect noted across variants appeared to be dependent on the substrate studied. 相似文献
2.
Sulphamethoxazole undergoes CYP2C9-mediated bioactivation to a hydroxylamine. In this study, we investigated the effect of the CYP2C9Arg144 to Cys (CYP2C9*2) and CYP2C9Ile359 to Leu (CYP2C9*3) polymorphisms on sulphamethoxazole N-hydroxylation. Human livers were genotyped using polymerase chain reaction amplification and restriction fragment length polymorphism analysis. Formation of sulphamethoxazole hydroxylamine and methylhydroxy tolbutamide in microsomes prepared from cell lines and the genotyped human livers was determined by high-pressure liquid chromatography. Microsomes prepared from the cell line expressing the allelic variants CYP2C9-Cys144 and CYP2C9-Leu359 displayed a threefold and 20-fold decrease in intrinsic clearance (Cl(int)) for sulphamethoxazole, respectively, when compared with the wild-type, CYP2C9-Arg144. A significant decrease (P < 0.05) in Cl(int) was also observed with tolbutamide for both mutations. Of the 26 human livers genotyped, 61.5% were homozygous wild-type, 26.9% were heterozygotes for CYP2C9*2 and 15.4% were heterozygotes for CYP2C9*3. No homozygous mutant livers were detected. There was a good correlation between sulphamethoxazole N-hydroxylation and tolbutamide methyl hydroxylation (r = 0.825). However, there was no difference in the kinetic parameters for either sulphamethoxazole N-hydroxylation or tolbutamide methyl hydroxylation between the wild type livers (n = 6) and either the livers heterozygous for the CYP2C9*2 (n = 5) or the livers heterozygous for the CYP2C9*3 mutation (n = 3). The CYP2C9*2 and CYP2C9*3 polymorphisms may have some influence on the bioactivation of sulphamethoxazole, particularly in individuals who are homozygous mutants, and this could act as a protective factor against sulphamethoxazole hypersensitivity. However, given the rarity of homozygous mutants, it is likely that other metabolic and immunological risk factors will dominate individual susceptibility. 相似文献
3.
J M Hutzler R F Frye K R Korzekwa R A Branch S M Huang T S Tracy 《European journal of pharmaceutical sciences》2001,14(1):47-52
Dapsone has been shown to activate flurbiprofen 4'-hydroxylation by expressed CYP2C9 enzyme and in human liver microsomes. It has been suggested that this observation is due to substrate cooperativity on enzyme activity; however, the in vivo relevance of this observation is unknown. Thus, the purpose of this study was to evaluate whether dapsone can act cooperatively with flurbiprofen to activate the in vivo metabolism of flurbiprofen to 4'-hydroxyflurbiprofen. Twelve healthy subjects received single-dose flurbiprofen 50 mg on three occasions: alone (visit A); 2 h after a single dapsone 100-mg dose (visit B); and 2 h after the seventh daily dose of dapsone 100 mg (visit C). Concentrations of flurbiprofen and 4'-hydroxy flurbiprofen in plasma and urine and dapsone and N-acetyldapsone in plasma were determined by HPLC. Flurbiprofen pharmacokinetic parameters for the three visits were estimated by non-compartmental methods and compared in the absence and presence of dapsone. Flurbiprofen apparent oral clearance was increased by approximately 11% (P < 0.02) after dapsone 100 mg for 7 days. Dapsone plasma concentrations averaged 5 +/- 2 microM after a single dose and 11 +/- 4 microM after seven daily 100 mg doses. These dapsone plasma concentrations were within the range of concentrations producing activation of flurbiprofen metabolism by CYP2C9 in vitro. These results are consistent with the hypothesis that dapsone does influence flurbiprofen metabolism in vivo in a cooperative way to enhance metabolism. However, the magnitude of effect is substantially less than observed in vitro. 相似文献
4.
Tracy C Delozier Grace E Kissling Sherry J Coulter Diana Dai Julie F Foley J Alyce Bradbury Elizabeth Murphy Charles Steenbergen Darryl C Zeldin Joyce A Goldstein 《Drug metabolism and disposition》2007,35(4):682-688
The cytochrome P450 (P450) enzymes CYP2C8, CYP2C9, and CYP2J2 metabolize arachidonic acid to epoxyeicosatrienoic acids, which are known to be vital in regulation of vascular tone and cardiovascular homeostasis. Because there is limited information regarding the relative expression of these P450 enzymes in cardiovascular tissues, this study examined the expression of CYP2C8, CYP2C9, and CYP2J2 mRNA and protein in human heart, aorta, and coronary artery samples by real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. CYP2J2 and CYP2C9 mRNA levels were highly variable in human hearts, whereas CYP2C8 mRNA was present in lower abundance. CYP2J2 mRNA was approximately 10(3) times higher than CYP2C9 or CYP2C8 in human heart. However, CYP2C9 mRNA was more abundant than CYP2J2 or CYP2C8 in one ischemic heart. In human aorta, mean CYP2C9 mRNA levels were approximately 50 times higher than that of CYP2J2 and 5-fold higher than that of CYP2C8. In human coronary artery, mean values for CYP2C9 mRNA were approximately 2-fold higher than that of CYP2J2 mRNA and 6-fold higher than that of CYP2C8 mRNA. Immunoblotting results show relatively high levels of CYP2J2 and CYP2C8 protein in human hearts, which was confirmed by immunohistochemistry. CYP2C9 protein was also detected at high levels in one ischemic heart by immunoblotting. CYP2C9 was present at higher levels than CYPJ2 in aorta and coronary artery, whereas CYP2C8 protein was below the limits of detection. The expression of CYP2J2 and CYP2C8 in human heart, and CYPC9 and CYP2J2 in aorta and coronary artery is consistent with a physiological role for these enzymes in these tissues. 相似文献
5.
Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. 总被引:14,自引:0,他引:14
Xia Wen Jun-Sheng Wang Janne T Backman Jouko Laitila Pertti J Neuvonen 《Drug metabolism and disposition》2002,30(6):631-635
To evaluate the inhibitory effects of trimethoprim and sulfamethoxazole on cytochrome P450 (P450) isoforms, selective marker reactions for CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were examined in human liver microsomes and recombinant CYP2C8 and CYP2C9. The in vivo drug interactions of trimethoprim and sulfamethoxazole were predicted in vitro using [I]/([I] + K(i)) values. With concentrations ranging from 5 to 100 microM, trimethoprim exhibited a selective inhibitory effect on CYP2C8-mediated paclitaxel 6alpha-hydroxylation in human liver microsomes and recombinant CYP2C8, with apparent IC(50) (K(i)) values of 54 microM (32 microM) and 75 microM, respectively. With concentrations ranging from 50 to 500 microM, sulfamethoxazole was a selective inhibitor of CYP2C9-mediated tolbutamide hydroxylation in human liver microsomes and recombinant CYP2C9, with apparent IC(50) (K(i)) values of 544 microM (271 microM) and 456 microM, respectively. With concentrations higher than 100 microM trimethoprim and 500 microM sulfamethoxazole, both drugs lost their selectivity for the P450 isoforms. Based on estimated total hepatic concentrations (or free plasma concentrations) of the drugs and the scaling model, one would expect in vivo in humans 80% (26%) and 13% (24%) inhibition of the metabolic clearance of CYP2C8 and CYP2C9 substrates by trimethoprim and sulfamethoxazole, respectively. In conclusion, trimethoprim and sulfamethoxazole can be used as selective inhibitors of CYP2C8 and CYP2C9 in in vitro studies. In humans, trimethoprim and sulfamethoxazole may inhibit the activities of CYP2C8 and CYP2C9, respectively. 相似文献
6.
Halling J Petersen MS Damkier P Nielsen F Grandjean P Weihe P Lundgren S Lundblad MS Brøsen K 《European journal of clinical pharmacology》2005,61(7):491-497
Objective The purpose of the study was to study the distribution of poor and extensive metabolizers of CYP2C19 and CYP2D6 and to genotype for CYP2C8 and CYP2C9 among 312 randomly selected Faroese.Methods and results The participants were phenotyped for CYP2D6 with the use of sparteine. The distribution of the sparteine metabolic ratio (sparteine/didehydrosparteines) was bimodal, and 14.5% (n=44; 95% CI: 10.7–18.9%) of the subjects were phenotyped as poor metabolizers. The frequency of poor metabolizers was higher (P=0.0002; 2 test) among the Faroese than in other European populations (7.4%). Genotype analyses for the CYP2D6*3, *4, *6 and *9 alleles were performed using real-time polymerase chain reaction (PCR) (TaqMan, Foster City, CA, USA), and we found 14.6% (n = 45) (95% CI: 10.8–19.0%) with deficient CYP2D6 genes (*3/*4, *4/*4, *4/*6, *6/*6) in the Faroese population. The subjects were phenotyped for CYP2C19 with the use of mephenytoin and 10 subjects, i.e., 3.2% (95% CI: 1.6–5.9%) were phenotyped as poor metabolizers. Genotype analysis for the CYP2C19*2 and *3 alleles was performed by means of PCR analysis, and 2.9% (n=9) (95% CI: 1.3–5.4%) of the Faroese were found to have a deficient CYP2C19 gene all explained by the CYP2C19*2/*2 genotype. The allele frequencies of the CYP2C9*2 and CYP2C9*3 alleles were 8.8% (95% CI: 6.7–11.4%) and 5.3% (95% CI: 3.7–7.4%), respectively, while the CYP2C8*3 allele frequency was 6.9% (95% CI: 5.0–9.2%). Real-time PCR (TaqMan) was used for both CYP2C9 and CYP2C8 genotype analyses.Conclusion The frequency of CYP2D6 poor metabolizers is twofold higher among the Faroese population than other Caucasians, while the frequencies of Faroese subjects with decreased CYP2C19, CYP2C8 and CYP2C9 enzyme activity are the same as seen in other Caucasian populations. A possible consequence might be a higher incidence of side effects among Faroese patients taking pharmaceuticals that are CYP2D6 substrates. 相似文献
7.
目的:查明CYP2C9、CYV2C8等抗糖尿病药物主要代谢酶的基因多态性在中国2型糖尿病(T2DM)A-群中的分布频率和分布特征。方法:运用多聚酶链反应.限制性长度多态性(PCR.RFLP)方法和变性高效液相色谱法(DHPLC)对222名中国T2DM患者进行了有功能意义的CYP2C8*3、CYP2C8P404A和CYP2C9*3,以及可能存在功能意义的CYP2C8IVs2(-5insertt)突变体等等位基因型检测,并计算了各等位基因的频率。结果:222名中国T2DM患者的CYP2C8基因中未检出CYP2C8*3、P404A型,CYP2C8IVS2(-5insertt)和CYP2C9*3等位基因的频率分别为43.0%、2.48%,二者突变等位基因在男、女性别分布中不存在差异(P〉0.05),同时为CYP2C8IVS2(-5insertt)和CYP2C9*1*3基因的频率为6.3%,该联合突变基因型的分布也不存在性别差异(P〉0.05)。结论:中国T2DM患者中CYP2C9*3的等位基因频率为2.48%;未检出CYP2C8。3和P404A型,CYP2C81VS2(-5insertt)突变体发生频率为43.0%,其是否影响CYV2C8的代谢活力有待于进-步研究。 相似文献
8.
9.
Eugen Muschler Jawahar Lal Alexander Jetter Anke Rattay Ulrich Zanger Gregor Zadoyan Uwe Fuhr Julia Kirchheiner 《Basic & clinical pharmacology & toxicology》2009,105(6):374-379
Abstract: The cytochrome P450 enzyme CYP2C8 appears to have a major role in pioglitazone metabolism. The present study was conducted to further clarify the role of individual CYPs and of the CYP2C8/9 polymorphisms in the primary metabolism of pioglitazone in vitro. Pioglitazone (2–400 μM) was incubated with isolated cytochrome P450 enzymes or human liver microsomes, some of them carrying either the CYP2C8*3/*3 genotype (and also the CYP2C9*2/*2 genotype) or the CYP2C8*1/*1 genotype (five samples each). The formation of the primary pioglitazone metabolite M‐IV was monitored by HPLC. Enzyme kinetics were estimated assuming a single binding site. Mean intrinsic clearance of pioglitazone to the metabolite M‐IV was highest for CYP2C8 and CYP1A2 with 58 pmol M‐IV/min/nmol CYP P450/μM pioglitazone each, 53 for CYP2D6*1, 40 for CYP2C19*1, and 34 for CYP2C9*2, respectively. CYP2A6, CYP2B6, CYP2C9*1, CYP2C9*3, CYP2E1, CYP3A4 and CYP3A5 did not form quantifiable amounts of M‐IV. CYP2C8*1/*1 microsomes (25 ± 4 pmol M‐IV/min/mg protein/μM pioglitazone) showed lower intrinsic clearance of pioglitazone than CYP2C8*3/*3 microsomes (35 ± 9, p = 0.04). In all samples, metabolite formation showed substrate inhibition, while pioglitazone did not inhibit CYP2C8‐mediated paclitaxel metabolism. CYP2C8, CYP1A2 and CYP2D6 are major CYPs forming M‐IV in vitro. The higher activity of CYP2C8*3/CYP2C9*2 microsomes may result from a contribution of CYP2C9*2, or from differences in CYP2C8 expression. The evidence for substrate‐specific inhibitory effects of pioglitazone on CYP2C‐mediated metabolism needs to be tested in further studies. 相似文献
10.
Homology modelling of human CYP2C subfamily enzymes, CYP2C8, CYP2C9 and CYP2C19, based on the rabbit CYP2C5 crystal structure template is reported. The relatively high sequence homologies (75-80%) between the rabbit CYP2C5 and human CYP2C subfamily enzymes tend to indicate that the resulting structures should prove adequate models of these major catalysts of human drug metabolism. Selective substrates of all three human CYP2C enzymes are found to fit closely within the putative active sites in a manner which is consistent with site-directed mutagenesis experiments and known positions of substrate metabolism. The specific interactions between substrates and enzymes can be used to rationalize the variation in substrate binding affinity and generate QSAR models for both inhibition and metabolism via CYP2C family enzymes, yielding a generally good agreement with experimental binding data obtained from Km values, with correlation coefficients (R values) of between 0.97 and 0.99 depending on the QSAR equation produced. 相似文献
11.
Llerena A Berecz R Dorado P de la Rubia A 《Journal of psychopharmacology (Oxford, England)》2004,18(2):189-193
The role of certain drug metabolizing enzymes in cardiotoxicity, such as CYP2D6 for thioridazine, has been suggested. Risperidone has been shown to inhibit the delayed rectifier leading to lengthening of cardiac repolarization. The heart-rate corrected QT (QTc) interval lengthening has been reported in psychiatric patients receiving risperidone under steady-state conditions. CYP2D6 is involved in the metabolism of risperidone to 9-hydroxy (OH)-risperidone. CYP2C9 enzyme is also involved in the metabolism of several psychotropic drugs, although there are no data about its implication in risperidone metabolism. The present study aimed to evaluate the influence of CYP2D6 and CYP2C9 genotypes, and plasma concentrations of risperidone and 9-OH-risperidone on the QTc interval in patients under steady-state conditions. The relevance of CYP2D6 and CYP2C9 genotypes on risperidone metabolism was also analysed. Thirty-five White European psychiatric patients receiving risperidone monotherapy were studied. QTc interval was longer (p < 0.05) in subjects with one active CYP2D6 gene compared to those with two. The number of CYP2D6 active genes was related to the dose-corrected plasma concentration of risperidone (p < 0.05), the active moiety (risperidone plus 9-OH-risperidone) (p < 0.05) and the risperidone/9-OH-risperidone ratio (p < 0.05). CYP2C9 genotypes were not related to plasma concentrations of risperidone or 9-OH-risperidone, nor QTc interval. The results suggest that CYP2D6, but not CYP2C9, may be related to QTc lengthening during treatment with risperidone. The effect of the CYP2D6 genotype in risperidone metabolism is also shown. 相似文献
12.
CYP2C9 and CYP2C19 are important drug metabolizing enzymes and together metabolize about 18% of currently available drugs. Some of the important groups of drugs that are metabolized by them are antihypertensives, hypoglycemics, anticonvulsants, antiulcer drugs etc. Genes encoding these enzymes are polymorphically expressed. Thirty variant alleles for CYP2C9 and 21 for CYP2C19 have been reported. The frequencies of these polymorphic alleles show marked inter-ethnic variation. Several reports have been published showing the clinical importance of this polymorphism. This review summarizes the currently available important information on this topic. 相似文献
13.
J Matthew Hutzler Dhanashri Kolwankar Matthew A Hummel Timothy S Tracy 《Drug metabolism and disposition》2002,30(11):1194-1200
Cytochrome P450 2C9-mediated metabolism has been shown to be activated in the presence of the effector dapsone. However, it has yet to be established what effector structural features are necessary to activate CYP2C9 activity. To address this question, kinetic studies were conducted with nine analogs of dapsone containing various functional properties (three sulfone compounds, three carbonyl compounds, and three sulfonamide compounds), to examine the functional groups important for enzyme activation by the effector (dapsone). Results show that phenylsulfone (dapsone without the para-amino groups) activates flurbiprofen 4'-hydroxylation comparable to dapsone but inhibits naproxen demethylation. Meanwhile, p-tolylsulfone had little effect on flurbiprofen metabolism, but activated naproxen demethylation, albeit only at high concentrations. These substrate-dependent differences in effect suggest that naproxen has a different binding orientation compared with flurbiprofen. Perhaps most interesting is that replacement of only one amino group from dapsone with a nitro group (4-(4-nitrophenylsulfonyl)-aniline) resulted in substantial inhibition of flurbiprofen 4'-hydroxylation, suggesting that electronic effects may influence activation of this substrate. Other analogs either had minor or no effect on CYP2C9-mediated metabolism. Overall, it is apparent from these studies that a sulfone group in direct association with two benzene rings with para-electron-donating groups represents the most efficient activator of CYP2C9. However, the effects of these analogs appear to be concentration- and substrate-dependent, further complicating the prediction of these types of in vitro interactions. 相似文献
14.
Izumi Iida Atsunori Miyata Masayuki Arai Mitsuyo Hirota Masayuki Akimoto Shohei Higuchi Kaoru Kobayashi Kan Chiba 《Drug metabolism and disposition》2004,32(1):7-9
The effects of allelic variants of CYP2C9 (CYP2C9*2 and CYP2C9*3) on lornoxicam 5'-hydroxylation were studied using the corresponding variant protein expressed in baculovirus-infected insect cells and human liver microsomes of known genotypes of CYP2C9. The results of the baculovirus expression system showed that CYP2C9.3 gives higher K(m) and lower V(max) values for lornoxicam 5'-hydroxylation than does CYP2C9.1. In contrast, K(m) and V(max) values of CYP2C9.1 and CYP2C9.2 for the reaction were comparable. Lornoxicam 5'-hydroxylation was also determined in liver microsomes of 12 humans genotyped for the CYP2C9 gene (*1/*1, n = 7; *1/*2, n = 2; *1/*3, n = 2; *3/*3, n = 1). A sample genotyped as *3/*3 exhibited 8- to 50-fold lower intrinsic clearance for lornoxicam 5'-hydroxylation than did samples genotyped as *1/*1. However, the values for intrinsic clearance for *1/*3 were within the range of values exhibited by samples of *1/*1. In addition, no appreciable differences were observed in kinetic parameters for lornoxicam 5'-hydroxylation between *1/*1 and *1/*2. In conclusion, this study showed that lornoxicam 5'-hydroxylation via CYP2C9 was markedly decreased by the substitution of Ile359Leu (CYP2C9.3), whereas the effect of the substitution of Arg144Cys (CYP2C9.2) was nonexistent or negligible. Additional in vivo studies are required to confirm that individuals with homologous CYP2C9*3 allele exhibit impaired lornoxicam clearance. 相似文献
15.
人肝细胞色素P450 2C8/9、2E1比活性测定 总被引:2,自引:0,他引:2
目的 建立甲苯磺丁脲羟化酶 (CYP2C8/ 9)和氯羟苯口恶唑 6 羟化酶 (CYP2E1)比活性的测定方法 ,为深入研究CYP45 0在药物代谢中的作用奠定基础。方法 从成人肝细胞中提取微粒体 ,测定其蛋白含量 ,以甲苯磺丁脲、氯羟苯口恶唑为底物 ,用HPLC以梯度洗脱法测定其代谢产物羟基甲苯磺丁脲及 6 羟基氯羟苯 口恶唑生成量 ,据此计算人肝细胞色素P45 0 (CYP45 0 )同工酶甲苯磺丁脲羟化酶 (CYP2C8/9)和氯羟苯 口恶唑 6 羟化酶 (CYP2E1)比活性。结果 于不同时间反复测定的CYP2C8/ 9、CYP2E1比活性无差异。结论 CYP2C8/ 9、CYP2E1的测定方法较为简单、稳定、重复性好 ,可用于新药筛选、安全性评价及肝脏病理学、毒理学研究。 相似文献
16.
人肝细胞色素P450 2C8/9、2E1比活性测定 总被引:2,自引:0,他引:2
目的 建立甲苯磺丁脲羟化酶 (CYP2C8/ 9)和氯羟苯口恶唑 6 羟化酶 (CYP2E1)比活性的测定方法 ,为深入研究CYP45 0在药物代谢中的作用奠定基础。方法 从成人肝细胞中提取微粒体 ,测定其蛋白含量 ,以甲苯磺丁脲、氯羟苯口恶唑为底物 ,用HPLC以梯度洗脱法测定其代谢产物羟基甲苯磺丁脲及 6 羟基氯羟苯 口恶唑生成量 ,据此计算人肝细胞色素P45 0 (CYP45 0 )同工酶甲苯磺丁脲羟化酶 (CYP2C8/9)和氯羟苯 口恶唑 6 羟化酶 (CYP2E1)比活性。结果 于不同时间反复测定的CYP2C8/ 9、CYP2E1比活性无差异。结论 CYP2C8/ 9、CYP2E1的测定方法较为简单、稳定、重复性好 ,可用于新药筛选、安全性评价及肝脏病理学、毒理学研究。 相似文献
17.
目的 研究中国汉族癫痫患者细胞色素P450(CYP450)2C19和2C9基因多态性对苯妥英钠血药浓度的影响.方法 用PCR-RFLP方法,分析82例患者的CYP2C19*2,*3及CYP2C9*3这3个单碱基突变位点,用荧光偏振免疫法(FPIA)测定苯妥英钠血药浓度.结果 CYP2C9*3*、CYP2C19*2及CYP2C19*3等位基因频率分别为7.3%,33.5%和3.7%.强、中间、弱代谢组间的标准化血药浓度差别显著(P=0.000).苯妥英钠血药浓度的多元线性回归中,CYP2C19*2、CYP2C19*3、CYP2C9*3这3个基因突变位点beta值分别为5.71,6.65,6.95.结论 基因突变导致苯妥英钠血药浓度升高,且与突变位点的数量有关. 相似文献
18.
目的建立甲苯磺丁脲羟化酶(CYP2C8/9)和氯羟苯口恶唑6-羟化酶(CYP2E1)比活性的测定方法,为深入研究CYP450在药物代谢中的作用奠定基础.方法从成人肝细胞中提取微粒体,测定其蛋白含量,以甲苯磺丁脲、氯羟苯口恶唑为底物,用HPLC以梯度洗脱法测定其代谢产物羟基甲苯磺丁脲及6-羟基氯羟苯口恶唑生成量,据此计算人肝细胞色素P450(CYP450)同工酶甲苯磺丁脲羟化酶(CYP2C8/9)和氯羟苯口恶唑6-羟化酶(CYP2E1)比活性.结果于不同时间反复测定的CYP2C8/9、CYP2E1比活性无差异.结论 CYP2C8/9、CYP2E1的测定方法较为简单、稳定、重复性好,可用于新药筛选、安全性评价及肝脏病理学、毒理学研究. 相似文献
19.
Soyama A Hanioka N Saito Y Murayama N Ando M Ozawa S Sawada J 《Pharmacology & toxicology》2002,91(4):174-178
Amiodarone is a potent Class III antiarrhythmic drug. The N-deethylation of amiodarone to desethylamiodarone is known to be catalyzed by cytochrome P450 (CYP) 2C8. In the present study, amiodarone N-deethylation by the CYP2C8s, CYP2C8*1 (wild-type), CYP2C8*3, and CYP2C8 P404A (Pro404Ala substitution in exon 8), was investigated by their transient expression in Hep G2 cells. The expression levels of CYP2C8*1 and CYP2C8*3 were similar, whereas the level of CYP2C8 P404A was 55.6% of that of CYP2C8*1. The kinetic parameters of amiodarone N-deethylation were obtained by means of Lineweaver-Burk analysis. The intrinsic clearance (Vmax/Km, per mg of microsomal protein) of amiodarone by CYP2C8 P404A but not CYP2C8*3 was significantly (48.7%) less than that of CYP2C8*1. These results suggest that CYP2C8 P404A but not CYP2C8*3 is less effective in the N-deethylation of amiodarone. 相似文献
20.
Rasmus S. Pedersen Charlotte Brasch-Andersen Sarah C. Sim Troels K. Bergmann Jónrit Halling Maria S. Petersen Pál Weihe Hege Edvardsen Vessela N. Kristensen Kim Brøsen Magnus Ingelman-Sundberg 《European journal of clinical pharmacology》2010,66(12):1199-1205