首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo microdialysis, behavioral activity assessments, and a conditioned place preference (CPP) test were used to investigate dopaminergic correlates of cocaine-conditioned behaviors. Over 12 days, rats were given either intravenous cocaine (4.2 mg/kg) or saline (6 cocaine and 6 saline infusions) daily in distinctively different environments. The following day, rats were tested in the cocaine- and saline-paired environments; 48 hr later, CPP was determined. The cocaine-associated environment elicited greater nucleus accumbens dopamine (NAcc DA) levels, hyperactivity, and place preference, though the emergence of DA increases was not in synchrony with peak behavioral activation. Although conditioned behavioral effects after repeated cocaine are well documented, direct evidence of increased NAcc DA in response to a cocaine-paired environment has not been previously reported. Discrepancies with previous work are attributed to a number of methodological differences.  相似文献   

2.
Upregulation of cyclin-dependent kinase 5 (Cdk5) after chronic cocaine administration has led to speculation that Cdk5 plays an important role in drug addiction. However, as Cdk5 involvement is implicated in a variety of neural events, including neuronal development, synaptic plasticity and learning, a specific role in drug abuse is yet to be determined. The present study utilized cocaine self-administration and food-reinforced operant procedures to assess possible relationships between cocaine intake, food-reinforced operant responding, behavioral activity, and Cdk5 levels in the nucleus accumbens (NAcc), ventral tegmental area (VTA), and prefrontal cortex (PFC) in rats. In Experiment 1, animals undergoing daily cocaine self-administration (1-h/30 days) or food-reinforced operant sessions (20-min/30 days) showed significant between-group differences in operant responding and behavioral activity, but no significant differences in NAcc, VTA or PFC Cdk5 levels compared to a Handled Control group. In Experiment 2, animals that had self-administered cocaine in 10 daily 1-h sessions (Short-Access Cocaine) showed significantly greater NAcc Cdk5 expression compared to an Unhandled Control group, and no evidence of cocaine-induced behavioral sensitization. Animals given 4-h daily access to cocaine over the same number of sessions (Long-Access Cocaine) showed significantly enhanced cocaine-reinforced responding and locomotor activation by the end of the sessions, but no significant differences in Cdk5 expression compared to Control animals. These findings suggest that overexpression of Cdk5 may be a transient adaptation to cocaine experience that subsides with increased cocaine exposure and does not correspond with measures of cocaine-induced behavioral sensitization.  相似文献   

3.
Cocaine reinforcement is strongly associated with increased nucleus accumbens dopamine (NAcc DA). The involvement of medial prefrontal cortex (mPFC) DA in cocaine reward is less defined, but substantial evidence indicates that increased mPFC DA may suppress NAcc DA levels. Using in vivo microdialysis, NAcc or mPFC DA was determined in cocaine-naive rats after a self-administered cocaine injection (3.0 mg/kg). Extracellular levels of NAcc DA were dramatically enhanced 10 min post-cocaine injection, but dropped significantly at each subsequent assessment. mPFC DA also increased significantly, but to a lesser extent than observed in the NAcc. Findings of prominent DA increases in both the NAcc and mPFC terminals during the test session indicate that NAcc DA responses do not appear to be inhibited by increased mPFC DA during cocaine self-administration.  相似文献   

4.
Neurotrophic factor signaling modulates cellular and behavioral responses to drugs of abuse. Among other biochemical adaptations, chronic exposure to abused drugs decreases the expression of insulin receptor substrate-2 (IRS-2; a protein involved in neurotrophic signaling) in the ventral tegmental area (VTA), a neural substrate for many drugs of abuse. Using viral-mediated gene transfer to locally alter the activity of IRS-2, the authors show that overexpression of IRS-2 in the VTA results in an enhanced preference for environments previously paired with cocaine, as measured by the place conditioning paradigm, whereas blockade of IRS-2 activity results in avoidance of cocaine-paired compartments. In addition, IRS-2 overexpression leads to enhanced cocaine-induced locomotor activity, and blockade of IRS-2 expression significantly blunts behavioral responses to cocaine. These results demonstrate that levels of IRS-2 in the VTA regulate responsiveness to the behavioral effects of cocaine.  相似文献   

5.
Both ionotropic and metabotropic glutamate receptors (mGluRs) are involved in the behavioral effects of pyschostimulants; however, the specific contributions of individual mGluR subtypes remain unknown. Here we show that mice lacking the mGluR5 gene do not self-administer cocaine, and show no increased locomotor activity following cocaine treatment, despite showing cocaine-induced increases in nucleus accumbens (NAcc) dopamine (DA) levels similar to wild-type (WT) mice. These results demonstrate a significant contribution of mGlu5 receptors to the behavioral effects of cocaine, and suggest that they may be involved in cocaine addiction.  相似文献   

6.
Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (∼180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal metabolic activity. This treatment (∼60 min) had minimal effects on the latencies of drinking, but increased its total duration, with licking interrupted by pauses and retreats. This behavioral attenuation was coupled with weaker than in control locomotor activation and diminished temperature fluctuations in each recording location. Therefore, attenuation of normal behavioral and physiological responses to appetitive stimuli appears to underlie modest inhibiting effects of opiate receptor blockade on motivated behavior and consumption.  相似文献   

7.
Conventional brain microdialysis was used to assess basal and cocaine-induced dopamine (DA) levels in the nucleus accumbens of wildtype (WT) C57BL/6J mice and mice with constitutive deletion of ether mu- or delta-opioid receptors (MOR or DOR knockout [KO], respectively). Locomotor activity was assessed in these same animals. Basal locomotor activity of DOR KO was elevated relative to MOR KO, but did not differ from that of WT mice. DOR mice, but not WT or MOR KO, exhibited a significant increase in activity in response to an injection of saline. The acute administration of cocaine produced a dose-related increase in locomotor activity in the three genotypes. The locomotor activating effects of a low dose (10 mg/kg) of cocaine were enhanced in DOR KO mice whereas the locomotor activating effects of both a low and higher (20 mg/kg) dose of cocaine were reduced in MOR KO animals. Microdialysis studies revealed no difference between genotypes in basal DA levels. Acute administration of cocaine, but not saline, increased DA levels in WT and KO animals. Paradoxically, however, the magnitude of this effect was smaller in DOR KO as compared with that in either WT or MOR KO. These data indicate that constitutive deletion of either MOR or DOR results in contrasting effects upon responsiveness to cocaine, which is consistent with the distinct phenotypes previously described for these mutants.  相似文献   

8.
9.
Traditional models of drug-seeking behavior have shown that exposure to associated environmental cues can trigger relapse. These learned associations take place during repeated drug administration, resulting in conditioned reinforcement. Although considerable investigation has occurred regarding simple conditioned stimuli, less is known about complex environmental cues, particularly those that may be salient in human addiction. Recent studies indicate that music can serve as a contextual conditioned stimulus in rats and influence drug-seeking behavior during abstinence. The purpose of the present study was to further assess the effectiveness of music as a conditioned stimulus in rats, to determine rats' preferences for two contrasting pieces of music, and to determine rats' preferences for music versus silence. To this end, we created an apparatus that gave instrumental control of musical choice (Miles Davis vs. Beethoven) to the rats themselves. After determining baseline musical preference, animals were conditioned with cocaine (10 mg/kg) to the music they initially preferred least, with alternating conditioning sessions pairing saline with the music preferred most. The animals were subsequently tested in a drug-free state to determine what effect this conditioning had on musical preference. The results indicate that music serves as an effective contextual conditioned stimulus, significantly increasing both musical preference and locomotor activity after repeated cocaine conditioning. Furthermore, we found that rats initially favor silence over music, but that this preference can be altered as a result of cocaine-paired conditioning. These findings demonstrate that, after repeated association with reward (cocaine), music can engender a conditioned context preference in rats; these findings are consistent with other evidence showing that musical contextual cues can reinstate drug-seeking behavior in rats.  相似文献   

10.
Drug-associated cues and stress increase craving and lead to greater risk of relapse in abstinent drug addicts. This risk may be increased when these factors occur simultaneously. The current study examined whether the presentation of three different levels of intermittent footshock would trigger reinstatement or potentiate reinstatement of cocaine-seeking caused by conditioned cues. Male, Long Evans rats underwent daily i.v. cocaine self-administration, followed by extinction of lever responding in the absence of previously cocaine-paired cues. Reinstatement of cocaine-seeking was measured during presentation of cocaine-paired cues, following pretreatment with three levels of intermittent footshock (0.25, 0.5, and 0.75 mA), or after the combination of footshock and cues. Footshock at the 0.5 and 0.75 mA levels led to significant reinstatement when presented alone, and also potentiated the reinstatement triggered by the presentation of conditioned cues. These results demonstrate that while stress and drug-paired cues reinstate drug-seeking when presented in isolation, their interaction leads to potentiated reinstatement. Dual targeting of stress and cues is thus a critical consideration for treatment intervention in abstinent drug users.  相似文献   

11.
Fast-scan cyclic voltammetry on freely moving rats was used to determine whether a correlation exists between the increase in stereotyped behavior and dopamine (DA) uptake inhibition following cocaine (20 mg/kg, i.p.) administration. Voltammetric recordings were performed every 100 ms at a carbon fiber microelectrode, positioned in the nucleus accumbens. The present experiments revealed that the time course of the changes in Km strictly parallels the time course of the increase in stereotypy after cocaine. More importantly, the magnitudes of cocaine-stimulated stereotypy were positively and significantly correlated with the Km increases. Therefore, these data closely link the DA transporter inhibition with cocaine-induced stereotypy.  相似文献   

12.
The amygdala is part of the brain reward circuitry that plays a role in cocaine-seeking and abstinence in animals and cocaine craving and relapse in humans. Cocaine-seeking is elicited by cocaine-associated cues, and the basolateral amygdala (BLA) and CeA are essential in forming and communicating drug-related associations that are thought to be critical in long-lasting relapse risk associated with drug addiction. Here we simulated a cue stimulus with high-frequency stimulation (HFS) of the BLA-CeA pathway to examine mechanisms that may contribute to drug-related associations. We found enhanced long-term potentiation (LTP) after 14-day but not 1-day withdrawal from 7-day cocaine treatment mediated through N-methyl-d-aspartate (NMDA) receptors (NRs), L-type voltage-gated calcium channels (L-VGCCs), and corticotropin-releasing factor (CRF)(1) receptors; this was accompanied by increased phosphorylated NR1 and CRF(1) protein not associated with changes in NMDA/AMPA ratios in amygdalae from cocaine-treated animals. We suggest that these signaling mechanisms may provide therapeutic targets for the treatment of cocaine cravings.  相似文献   

13.
目的:探讨Rac1信号通路在小鼠可卡因情景线索记忆过程中的作用。方法:将成年雄性C57BL/6J小鼠随机分为对照组(control)、可卡因配对的条件性位置偏爱组(CPP)和Rac1抑制剂NSC23766处理组(NSC),利用CPP实验检测可卡因是否可诱导小鼠产生CPP,利用立体定位技术注射AAV-GFP病毒于小鼠海马CA1区并做免疫荧光染色观察海马CA1区神经元的形态;利用Western Blot及GST-pull down方式检测蛋白表达及活性变化;采用Rac1抑制剂NSC23766阻断信号通路探讨其对小鼠可卡因诱导的CPP的影响。结果:可卡因可以诱导小鼠形成CPP,并导致Rac1 GTPase活性增强及其下游信号分子cofilin磷酸化活性升高,并最终导致海马CA1区锥体神经元发生神经可塑性变化。结论:Rac1信号通路通过影响小鼠海马CA1区锥体神经元发生结构可塑性,从而参与调控可卡因情景线索记忆。  相似文献   

14.
15.
Dopamine (DA) D2 receptors expressed in DA neurons (D2 autoreceptors) exert a negative feedback regulation that reduces DA neuron firing, DA synthesis and DA release. As D2 receptors are mostly expressed in postsynaptic neurons, pharmacological and genetic approaches have been unable to definitively address the in vivo contribution of D2 autoreceptors to DA-mediated behaviors. We found that midbrain DA neurons from mice deficient in D2 autoreceptors (Drd2(loxP/loxP); Dat(+/IRES-cre), referred to as autoDrd2KO mice) lacked DA-mediated somatodendritic synaptic responses and inhibition of DA release. AutoDrd2KO mice displayed elevated DA synthesis and release, hyperlocomotion and supersensitivity to the psychomotor effects of cocaine. The mice also exhibited increased place preference for cocaine and enhanced motivation for food reward. Our results highlight the importance of D2 autoreceptors in the regulation of DA neurotransmission and demonstrate that D2 autoreceptors are important for normal motor function, food-seeking behavior, and sensitivity to the locomotor and rewarding properties of cocaine.  相似文献   

16.
Nicotine stimulates dopamine (DA) cell firing via a local action at somatodendritic sites in the ventral tegmental area (VTA), increasing DA release in the nucleus accumbens (NAcc). Additionally, nicotine may also modulate DA release via a direct effect in the NAcc. This study examined the contribution of the latter mechanism on NAcc DA release by applying nicotine systemically, as well as locally in the VTA and NAcc shell region in rats. Furthermore, the effect of i.v. nicotine on cell firing rate of dopaminergic neurons in the VTA was measured. Systemic administration of nicotine (0.32mg/kg s.c.) increased extracellular DA levels in the NAcc to ~1.5 fold of baseline, while DA levels in the VTA remained unaffected. A similar DA increase was observed after local NAcc infusion of nicotine (1μM and 10μM). However, 10-1000-fold higher nicotine concentrations were required in the VTA to produce a comparable 150% increase in extracellular DA levels in the ipsilateral NAcc. Additionally, electrophysiological experiments showed that the dopaminergic firing rate in the VTA showed a trend towards an increase after a nicotine dose of 0.1mg/kg i.v. Taken together these data indicate that the effects of nicotine on DA release at the level of the NAcc might be more important for the rewarding effects than originally proposed.  相似文献   

17.
Growing evidence has pointed to an interaction between the tetracycline antibiotic minocycline and drugs with abuse liability such as opioids and amphetamines. In this work, we tested the hypothesis that similar to its effects on methamphetamine-induced locomotor sensitization, minocycline may influence the behavioral effects of cocaine. Experiments were performed in male C57BL/6J mice using an automated system to measure locomotor activity. We found that 80 mg/kg minocycline significantly reduced locomotor activity when administered either alone or injected 30 min prior to cocaine, which increased locomotor activity. To investigate whether minocycline selectively affects the development of locomotor sensitization induced by four daily injections of 10 mg/kg cocaine, we sought a schedule of minocycline administration that does not per se affect locomotor activity. Thus, we selected 40 mg/kg minocycline administered 3 h prior to cocaine; minocycline did not affect cocaine-stimulated locomotor activity on the first day of administration but prevented the development of cocaine sensitization. We also tested whether minocycline would affect an already established cocaine sensitization. After establishing the sensitization effect by four daily injections, cocaine treatment was discontinued and mice were treated with minocycline daily (days 5–11) or on day 11 only. There was no effect of minocycline treatment on the response of cocaine-sensitized mice to the challenge dose of cocaine on day 11. The mechanisms by which minocycline interferes with the development of cocaine sensitization need to be characterized.  相似文献   

18.
Wakazono Y  Kiyatkin EA 《Neuroscience》2008,151(3):824-835
Cocaine effectively inhibits dopamine (DA) uptake and this action appears to be the primary cause for increased DA transmission following systemic cocaine administration. Although this action had been reliably demonstrated in vivo with cocaine at high doses, data on the extent and the time-course of DA uptake inhibition induced by i.v. cocaine at low, reinforcing doses remain controversial. To clarify this issue, we examined how cocaine affects striatal neuronal responses to repeated iontophoretic DA applications in urethane-anesthetized rats. Because most striatal neurons during anesthesia have low, sporadic activity, DA tests were performed on cells tonically activated by continuous glutamate application. DA phasically decreased the activity of most dorsal and ventral striatal neurons; these responses in control conditions (i.v. saline) were current (dose) -dependent and remained highly stable following repeated DA applications at the same currents. DA also consistently decreased the activity of striatal neurons after i.v. cocaine (1 mg/kg); the magnitude of DA-induced inhibition slowly increased from approximately 5 min, became significantly larger from approximately 9 min, and peaked at 13-15 min after a single i.v. injection. Then, the difference in the DA response slowly decreased toward the pre-cocaine baseline. A similar enhancement of DA induced-inhibition was also seen after i.p. cocaine administration at a high dose (15 mg/kg). In this case, the DA response became significantly stronger at 7-9 min and remained enhanced vs. a pre-drug control up to 24-26 min after the injection. Both regimens of cocaine treatment did not result in evident changes in either onset or offset of the DA-induced inhibitions. Our data confirm that cocaine at low, reinforcing doses inhibits DA uptake, resulting in potentiation of DA-induced neuronal inhibitions, but they suggest that this effect is relatively weak and delayed from the time of i.v. injection. These slow and prolonged effects of i.v. cocaine on DA-induced neuronal responses are consistent with previous binding and our electrochemical evaluations of DA uptake, presumably reflecting the total time necessary for i.v.-delivered cocaine to reach brain microvessels, cross the blood-brain barrier, passively diffuse within brain tissue, interact with the DA transporters, and finally inhibit DA uptake.  相似文献   

19.
Withdrawal from an escalating-dose, bingelike regimen of cocaine administration in rats produced significantly depressed levels of locomotor activity during the nocturnal portion of the day-night cycle. This effect was observed during the first 48 hr of testing. Extracellular single-unit recordings of ventral tegmental area (VTA) dopamine (DA) neurons revealed no differences between saline- and cocaine-treated rats with respect to basal firing rates. However, significantly fewer spontaneously active VTA DA neurons were encountered in rats withdrawn from binge cocaine. As with the nocturnal hypoactivity, this effect was observed only during the first 48 hr of withdrawal. These findings suggest that short-term DA neuron dysfunction during cocaine withdrawal temporally corresponds to behavioral disruptions that are similar to those described in human addicts.  相似文献   

20.
The behavioral effects of cocaine are affected by gene knockout (KO) of the dopamine transporter (DAT), the serotonin transporter (SERT) and the norepinephrine transporter (NET). The relative involvement of each of these transporters varies depending on the particular behavioral response to cocaine considered, as well as on other factors such as genetic background of the subjects. Interestingly, the effects of these gene knockouts on cocaine-induced locomotion are quite different from those on reward assessed in the conditioned place preference paradigm. To further explore the role of these genes in the rewarding effects of cocaine, the ability of five daily injections of cocaine to induce conditioned locomotion was assessed in DAT, SERT and NET KO mice. Cocaine increased locomotor activity acutely during the initial conditioning session in SERT KO and NET KO, but not DAT KO, mice. Surprisingly, locomotor responses in the cocaine-paired subjects diminished over the five conditioning sessions in SERT KO mice, while locomotor responses increased in DAT KO mice, despite the fact that they did not demonstrate any initial locomotor responses to cocaine. Cocaine-induced locomotion was unchanged over the course of conditioning in NET KO mice. In the post-conditioning assessment, conditioned locomotion was not observed in DAT KO mice, and was reduced in SERT KO and NET KO mice. These data reaffirm the central role of dopamine and DAT in the behavioral effects of cocaine. Furthermore, they emphasize the polygenic basis of cocaine-mediated behavior and the non-unitary nature of drug reward mechanisms, particularly in the context of previous studies that have shown normal cocaine-conditioned place preference in DAT KO mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号