首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Vascular endothelial growth factor (VEGF) is a major mitogen for endothelial cells and enhances vascular permeability. Enhanced VEGF secretion is found in human cancers and correlates with increased tumor neovascularization. ZD6474 is a p.o. bioavailable, VEGF flk-1/KDR receptor (VEGFR-2) tyrosine kinase inhibitor with antitumor activity in many human cancer xenografts and is currently in Phase I clinical development. EXPERIMENTAL DESIGN: We tested the effects of ZD6474 on EGFR phosphorylation in cell expressing functional epidermal growth factor receptor (EGFR) and the antiproliferative and the proapoptotic activity of ZD6474 alone or in combination taxanes in human cancer cell lines with functional EGFR but lacking VEGFR-2. The antitumor activity of this drug was also tested in nude mice bearing established GEO colon cancer xenografts. RESULTS: ZD6474 causes a dose-dependent inhibition of EGFR phosphorylation in mouse NIH-EGFR fibroblasts and human MCF-10A ras breast cancer cells, two cell lines that overexpress the human EGFR. ZD6474 treatment resulted in a dose-dependent inhibition of soft agar growth in seven human cell lines (breast, colon, gastric, and ovarian) with functional EGFR but lacking VEGFR-2. A dose-dependent supra-additive effect in growth inhibition and in apoptosis in vitro was observed by the combined treatment with ZD6474 and paclitaxel or docetaxel. ZD6474 treatment of nude mice bearing palpable GEO colon cancer xenografts (which are sensitive to inhibition of EGFR signaling) induced dose-dependent tumor growth inhibition. Immunohistochemical analysis revealed a significant dose-dependent reduction of neoangiogenesis. The antitumor activity of ZD6474 in GEO tumor xenografts was also found to be enhanced when combined with paclitaxel. Tumor regression was observed in all mice after treatment with ZD6474 plus paclitaxel, and it was accompanied by a significant potentiation in inhibition of angiogenesis. Six of 20 mice had no histological evidence of tumors after treatment with ZD6474 plus paclitaxel. CONCLUSIONS: This study suggests that in addition to inhibiting endothelial cell proliferation by blocking VEGF-induced signaling, ZD6474 may also be able to inhibit cancer cell growth by blocking EGFR autocrine signaling. These results provide also a rationale for the clinical evaluation of ZD6474 combined with taxanes in cancer patients.  相似文献   

2.
Angiogenesis is required for tumor growth and metastasis and, therefore, represents a target for cancer treatment. While many factors have been implicated in promoting angiogenesis, vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis. ZD6474 is a potent VEGF receptor-2 (VEGFR-2) tyrosine kinase inhibitor which also has activity against the epidermal growth factor receptor (EGFR) tyrosine kinase. The purpose of this study was to investigate the sensitivity of head and neck squamous cell carcinoma (HNSCC) cell lines to ZD6474, and to evaluate its antitumor efficacy on HNSCC xenografts. This is the first demonstration of antitumor effects of ZD6474 on HNSCC. In vitro ZD6474 displayed antiproliferative effects on HNSCC cells and inhibition of VEGFR-2 and EGFR pathways. In vivo ZD6474 displayed antitumor activity, induced apoptosis and antiangiogenic activity on nude mice bearing an established xenograft of YCU-H891 cells. These results suggest that ZD6474 has the potential to inhibit two key pathways in tumor growth via inhibition of VEGF-dependent tumor angiogenesis and via inhibition of EGFR-dependent tumor cell proliferation.  相似文献   

3.
PURPOSE: The epidermal growth factor receptor (EGFR) autocrine pathway plays an important role in cancer cell growth. Vascular endothelial growth factor (VEGF) is a key regulator of tumor-induced endothelial cell proliferation and vascular permeability. Enhanced cyclooxygenase-2 (COX-2) expression has been linked to cancer cell proliferation, EGFR activation, VEGF secretion, and tumor-induced angiogenesis. ZD6474 is an orally available, small molecule, dual VEGF receptor-2 (VEGFR-2) and EGFR tyrosine kinase inhibitor. We investigated the activity of ZD6474 in combination with SC-236, a selective COX-2 inhibitor, to determine the antitumor activity of the simultaneous blockade of EGFR, COX-2, and VEGF functions. EXPERIMENTAL DESIGN: The antitumor activity in vitro and in vivo of ZD6474 and/or SC-236 was tested in human cancer cell lines with a functional EGFR autocrine pathway. RESULTS: The combination of ZD6474 and SC-236 determined supra-additive growth inhibition in all cancer cell lines tested. In nude mice bearing established human colon (GEO) or lung adenocarcinoma (A549) cancer xenografts and treated with ZD6474 and/or SC-236 for 3 weeks, a reversible tumor growth inhibition was seen with each agent, whereas a more prolonged growth inhibition that lasted for 3 to 5 weeks following the end of treatment resulted from the combination of the two agents. A long-term, 10-week treatment with ZD6474 plus SC-236 resulted in sustained tumor growth inhibition in all mice with tumor eradication in 3 of 10 GEO tumor-bearing mice and in 4 of 10 A549 tumor-bearing mice. CONCLUSIONS: This study provides a rationale for evaluating the simultaneous blockade of EGFR, COX-2, and VEGF signaling as cancer therapy in a clinical setting.  相似文献   

4.
PURPOSE: Standard treatments have modest effect against pancreatic cancer, and current research focuses on agents targeting molecular pathways involved in tumor growth and angiogenesis. This study investigated the interactions between ZD6474, an inhibitor of tyrosine kinase activities of vascular endothelial growth factor receptor-2 and epidermal growth factor receptor (EGFR), gemcitabine, and ionizing radiation in human pancreatic cancer cells and analyzed the molecular mechanisms underlying this combination. EXPERIMENTAL DESIGN: ZD6474, ionizing radiation, and gemcitabine, alone or in combination, were given in vitro to MIA PaCa-2, PANC-1, and Capan-1 cells and in vivo to MIA PaCa-2 tumor xenografts. The effects of treatments were studied by the evaluation of cytotoxicity, apoptosis, cell cycle, EGFR and Akt phosphorylation, modulation of gene expression of enzymes related to gemcitabine activity (deoxycytidine kinase and ribonucleotide reductase), as well as vascular endothelial growth factor immunohistochemistry and microvessel count. RESULTS: In vitro, ZD6474 dose dependently inhibited cell growth, induced apoptosis, and synergistically enhanced the cytotoxic activity of gemcitabine and ionizing radiation. Moreover, ZD6474 inhibited phosphorylation of EGFR and Akt and triggered cell apoptosis. PCR analysis showed that ZD6474 increased the ratio between gene expression of deoxycytidine kinase and ribonucleotide reductase. In vivo, ZD6474 showed significant antitumor activity alone and in combination with radiotherapy and gemcitabine, and the combination of all three modalities enhanced MIA PaCA-2 tumor growth inhibition compared with gemcitabine alone. CONCLUSIONS: ZD6474 decreases EGFR and Akt phosphorylation, enhances apoptosis, favorably modulates gene expression in cancer cells, and acts synergistically with gemcitabine and radiotherapy to inhibit tumor growth. These findings support the investigation of this combination in the clinical setting.  相似文献   

5.
PURPOSE: The epidermal growth factor receptor (EGFR) autocrine signaling pathway is involved in cancer development and progression. EGFR inhibitors such as C225 (cetuximab), a chimeric human-mouse anti-EGFR monoclonal antibody, and ZD1839 (gefitinib), a small molecule EGFR-selective tyrosine kinase inhibitor, are in advanced clinical development. The potential emergence of cancer cell resistance in EGFR-expressing cancers treated with EGFR inhibitors could determine lack of activity of these drugs in some cancer patients. Vascular endothelial growth factor (VEGF) is secreted by cancer cells and plays a key role in the regulation of tumor-induced endothelial cell proliferation and permeability. ZD6474 is a small molecule VEGF flk-1/KDR (VEGFR-2) tyrosine kinase inhibitor that also demonstrates inhibitory activity against EGFR tyrosine kinase. EXPERIMENTAL DESIGN: The antitumor activity of ZD1839, C225, and ZD6474 was tested in athymic mice bearing human GEO colon cancer xenografts. GEO cell lines resistant to EGFR inhibitors were established from GEO xenografts growing in mice treated chronically with ZD1839 or C225. Expression of EGFR was evaluated by flow cytometry. Expression of various proteins involved in intracellular cell signaling was assessed by Western blotting. Tumor growth data were evaluated for statistical significance using the Student's t test. All Ps were two-sided. RESULTS: Although chronic administration of optimal doses of C225 or ZD1839 efficiently blocked GEO tumor growth in the majority of mice, tumors slowly started to grow within 80-90 days, despite continuous treatment. In contrast, continuous treatment of mice bearing established GEO xenografts with ZD6474 resulted in efficient tumor growth inhibition for the entire duration of dosing (up to 150 days). ZD6474 activity was also determined in mice pretreated with ZD1839 or C225. When GEO growth was apparent after 4 weeks of treatment with EGFR inhibitors, mice were either re-treated with EGFR inhibitors or treated with ZD6474. GEO tumor growth was blocked only in mice treated with ZD6474, whereas tumor progression was observed in mice re-treated with C225 or ZD1839. GEO tumors growing during treatment with C225 or with ZD1839 were established as cell lines (GEO-C225-RES and GEO-ZD1839-RES, respectively). Cell membrane-associated EGFR expression was only slightly reduced in these cell lines compared with parental GEO cells. Western blotting revealed no major change in the expression of the EGFR ligand transforming growth factor alpha of bcl-2, bcl-xL, p53, p27, MDM-2, akt, activated phospho-akt, or mitogen-activated protein kinase. However, both GEO-C225-RES and GEO-ZD1839-RES cells exhibited a 5-10-fold increase in activated phospho-mitogen-activated protein kinase and in the expression of cyclooxygenase-2 and of VEGF compared with GEO cells. GEO-C225-RES and GEO-ZD1839-RES growth as xenografts in nude mice was not significantly affected by treatment with either C225 or ZD1839 but was efficiently inhibited by ZD6474. CONCLUSIONS: Long-term treatment of GEO xenografts with selective EGFR inhibitors results in the development of EGFR inhibitor-resistant cancer cells. Growth of EGFR inhibitor-resistant tumors can be inhibited by ZD6474. These data indicate that inhibition of VEGF signaling has potential as an anticancer strategy, even in tumors that are resistant to EGF inhibitors.  相似文献   

6.
ZD6474 is a novel, orally available inhibitor of vascular endothelial growth factor (VEGF) receptor-2 (KDR) tyrosine kinase, with additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. ZD6474 has been shown to inhibit angiogenesis and tumor growth in a range of tumor models. Gefitinib ("Iressa") is an selective EGFR tyrosine kinase inhibitor (TKI) that blocks signal transduction pathways. We examined the antitumor activity of ZD6474 in the gefitinib-sensitive lung adenocarcinoma cell line, PC-9, and a gefitinib-resistant variant (PC-9/ZD). PC-9/ZD cells showed cross-resistance to ZD6474 in an in vitro dye formation assay. In addition, ZD6474 showed dose-dependent inhibition of EGFR phosphorylation in PC-9 cells, but inhibition was only partial in PC-9/ZD cells. ZD6474-mediated inhibition of tyrosine residue phosphorylation (Tyr992 and Tyr1045) on EGFR was greater in PC-9 cells than in PC-9/ZD cells. These findings suggest that the inhibition of EGFR phosphorylation by ZD6474 can contribute a significant, direct growth-inhibitory effect in tumor cell lines dependent on EGFR signaling for growth and/or survival. The effect of ZD6474 (12.5-50 mg/kg/day p.o. for 21 days) on the growth of PC-9 and PC-9/ZD tumor xenografts in athymic mice was also investigated. The greatest effect was seen in gefitinib-sensitive PC-9 tumors, where ZD6474 treatment (>12.5 mg/kg/day) resulted in tumor regression. Dose-dependent growth inhibition, but not tumor regression, was seen in ZD6474-treated PC-9/ZD tumors. These studies demonstrate that the additional EGFR TKI activity may contribute significantly to the antitumor efficacy of ZD6474, in particular in those tumors that are dependent on continued EGFR-signaling for proliferation or survival. In addition, these results provide a preclinical rationale for further investigation of ZD6474 as a potential treatment option for both EGFR-TKI-sensitive and EGFR-TKI-resistant tumors.  相似文献   

7.
PURPOSE: The epidermal growth factor receptor (EGFR) is expressed in the majority of human epithelial cancers and has been implicated in the development of cancer cell resistance to cyotoxic drugs and to ionizing radiation. Experimental Design: We used ZD1839, a selective small molecule EGFR tyrosine kinase inhibitor currently in clinical development. We tested the antiproliferative and the proapoptotic activity of ZD1839 in combination with ionizing radiation in human colon (GEO), ovarian (OVCAR-3), non-small cell lung (A549 and Calu-6), and breast (MCF-7 ADR) cancer cell lines. The antitumor activity of this combination was also tested in nude mice bearing established GEO colon cancer xenografts. RESULTS: With ionizing radiation or ZD1839, a dose-dependent growth inhibition was observed in all of the cancer cell lines growing in soft agar. A cooperative antiproliferative and proapoptotic effect was obtained when cancer cells were treated with ionizing radiation followed by ZD1839. This effect was accompanied by inhibition in the expression of the antiapoptotic proteins bcl-xL and bcl-2, and by a suppression of the activated (phosphorylated) form of akt protein. Treatment of mice bearing established human GEO colon cancer xenografts with radiotherapy (RT) resulted in a dose-dependent tumor growth inhibition that was reversible upon treatment cessation. Long term GEO tumor growth regressions were obtained after RT in combination with ZD1839. This resulted in a significant improvement in survival of these mice as compared with the control group (P < 0.001), the RT-treated group (P < 0.001), or the ZD1839-treated group (P < 0.001). The only mice alive 10 weeks after tumor cell injection were in the RT-plus-ZD1839 group. Furthermore, 10% of mice in this group were alive and tumor-free after 26 weeks. Similar results were obtained in mice bearing established human A549 lung adenocarcinoma xenografts. Finally, the combined treatment with RT plus ZD1839 was accompanied by a significant potentiation in the inhibition of transforming growth factor alpha, vascular epidermal growth factor, and basic fibroblast growth factor expression in cancer cells, which resulted in significant antiangiogenic effects as determined by immunohistochemical count of neovessels within the GEO tumors. CONCLUSION: This study provides a rationale for evaluating in cancer patients the combination of ionizing radiation and selective EGFR tyrosine kinase inhibitors such as ZD1839.  相似文献   

8.
Radiation enhances both epithelial growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) expression, which are a part of key pathways for tumor progression. Some tumors may not respond well to EGFR inhibitors alone or may develop resistance to EGFR inhibitors. Therefore, drug therapy targeted to VEGF receptors and EGFRs, when combined with radiotherapy (RT), may improve tumor control and provide wider applicability. This article focuses on ZD6474, an inhibitor of EGFR and VEGF receptor signaling in combination with RT. We discuss preclinical and clinical studies with RT and inhibitors of VEGF or EGFR signaling first. We then address issues associated with ZD6474 pharmacokinetic dosing, and scheduling when combined with RT. We also discuss ZD6474 in the context of anti-EGFR therapy resistance. Dual inhibition of EGFR and VEGF receptor signaling pathways shows promise in enhancing RT efficacy.  相似文献   

9.
ZD6474 is a vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor. The present study was undertaken to investigate the direct antiproliferative effect of ZD6474 on human nasopharyngeal carcinoma (NPC) in vitro and the antitumor activity on NPC xenografts in vivo. Results indicated that ZD6474 treatment inhibited EGFR phosphorylation and led to a dose- and time-dependent decrease in NPC cell (CNE-1, CNE-2 and C666-1) proliferation. Further investigation demonstrated G0/G1 cell cycle arrest in all 3 cell lines, which was associated with an upregulation of p21 and/or p27, and downregulation of CDK4, CDK6 and CDK2. ZD6474 treatment also induced apoptosis in CNE-1 and CNE-2 cells. The apoptosis mechanisms involved reduction of Bcl-2 and/or Bcl-XL, induction of Bak and/or Bax, and activation of caspases-3, -9 and/or -8. The in vivo antitumor activity was evaluated in CNE-2 and C666-1 xenografted nude mice. Administration of ZD6474 (25-100 mg/kg/day, once-daily, p.o.) produced a dose-dependent inhibition of tumor growth and prolonged survival in both models. This study suggests that ZD6474 exerts direct antiproliferative effects on NPC cell lines in vitro by inducing G0/G1 arrest and apoptosis, and potent antitumor effects on NPC xenografts in vivo. It indicates that ZD6474 may offer a new and effective treatment for human NPC.  相似文献   

10.
目的探讨VEGF及EGFR抑制剂ZD6474联合放疗抗肿瘤效果,并探讨其对肿瘤微血管生成,细胞增殖及凋亡影响的机制。方法  建立裸鼠鳞状细胞癌荷瘤模型,随机均分成4组:对照组、放疗组(RT)、ZD6474组、联合治疗组(ZD6474+RT)观察肿瘤大体增殖情况,用免疫荧光法检测肿瘤组织CD34表达、细胞增殖相关抗原Ki67,凋亡抗原capase-3表达,计数微血管密度(MVD),肿瘤增殖及凋亡。 结果  VEGF及EGFR抑制剂同步联合放疗组相较于单药治疗及单纯放疗明显延迟肿瘤增殖时间,同时通过针对CD34、Ki67、caspase-3免疫荧光染色,显示明显减少微血管密度,降低肿瘤增殖、提高细胞凋亡(P<0.05)。结论  VEGF及EGFR抑制剂与放疗同步,从机制上抑制肿瘤新生血管形成,抑制肿瘤增殖,从而增进放疗疗效。  相似文献   

11.
ZD6474 [N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine]is a potent, p.o. active, low molecular weight inhibitor of kinase insert domain-containing receptor [KDR/vascular endothelial growth factor receptor (VEGFR) 2] tyrosine kinase activity (IC(50) = 40 nM). This compound has some additional activity versus the tyrosine kinase activity of fms-like tyrosine kinase 4 (VEGFR3;IC(50) = 110 nM) and epidermal growth factor receptor (EGFR/HER1; IC(50) = 500 nM) and yet demonstrates selectivity against a range of other tyrosine and serine-threonine kinases. The activity of ZD6474 versus KDR tyrosine kinase translates into potent inhibition of vascular endothelial growth factor-A (VEGF)-stimulated endothelial cell (human umbilical vein endothelial cell) proliferation in vitro (IC(50) = 60 nM). Selective inhibition of VEGF signaling has been demonstrated in vivo in a growth factor-induced hypotension model in anesthetized rat: administration of ZD6474 (2.5 mg/kg, i.v.) reversed a hypotensive change induced by VEGF (by 63%) but did not significantly affect that induced by basic fibroblast growth factor. Once-daily oral administration of ZD6474 to growing rats for 14 days produced a dose-dependent increase in the femoro-tibial epiphyseal growth plate zone of hypertrophy, which is consistent with inhibition of VEGF signaling and angiogenesis in vivo. Administration of 50 mg/kg/day ZD6474 (once-daily, p.o.) to athymic mice with intradermally implanted A549 tumor cells also inhibited tumor-induced neovascularization significantly (63% inhibition after 5 days; P < 0.001). Oral administration of ZD6474 to athymic mice bearing established (0.15-0.47 cm(3)), histologically distinct (lung, prostate, breast, ovarian, colon, or vulval) human tumor xenografts or after implantation of aggressive syngeneic rodent tumors (lung, melanoma) in immunocompetent mice, produced a dose-dependent inhibition of tumor growth in all cases. Statistically significant antitumor activity was evident in each model with at least 25 mg/kg ZD6474 once daily (P < 0.05, one-tailed t test). Histological analysis of Calu-6 tumors treated with 50 mg/kg/day ZD6474 for 24 days showed a significant reduction (>70%) in CD31 (endothelial cell) staining in nonnecrotic regions. ZD6474 also restrained growth of much larger (0.9 cm(3) volume) Calu-6 lung tumor xenografts and induced profound regression in established PC-3 prostate tumors of 1.4 cm(3) volume. ZD6474 is currently in Phase I clinical development as a once-daily oral therapy in patients with advanced cancer.  相似文献   

12.
ZD6474 is a novel, orally active inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase, with some additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. The purpose of this study was to determine the potential of ZD6474 in the control of established experimental lung metastasis and pleural effusions produced by human non-small cell lung cancer (NSCLC) cells. PC14PE6 (adenocarcinoma) and H226 (squamous cell carcinoma) cells express high levels of EGFR and only PC14PE6 cells overexpress VEGF. Neither ZD6474 nor the EGFR tyrosine kinase inhibitor gefitinib inhibit proliferation of PC14PE6 or H226 cells in vitro. Both PC14PE6 and H226 cells inoculated intravenously into nude mice induced multiple lung nodules after 5-7 weeks. In addition, PC14PE6 cells produced bloody pleural effusions. Daily oral treatment with ZD6474 did not reduce the number of lung nodules produced by PC14PE6 or H226 cells, but did reduce the lung weight and the size of lung nodules. ZD6474 also inhibited the production of pleural effusions by PC14PE6 cells. Histological analyses of lung lesions revealed that ZD6474 treatment inhibited activation of VEGFR-2 and reduced tumor vascularization and tumor cell proliferation. Therapeutic effects of ZD6474 were considered likely to be due to inhibition of VEGFR-2 tyrosine kinase because gefitinib was inactive in this model. These results indicate that ZD6474, an inhibitor of VEGFR-2, may be useful in controlling the growth of established lung metastasis and pleural effusions by NSCLC.  相似文献   

13.
PURPOSE: Signaling pathways initiated by the epidermal growth factor receptor (EGFR) play important roles in the response to ionizing radiation. In this study the consequences of inhibiting the EGFR on the response of A431 cells (human vulvar squamous cell carcinoma cells that overexpress EGFR) to radiation, were investigated in vitro and in vivo, using the selective EGFR-tyrosine kinase inhibitor, ZD1839 ("Iressa"). METHODS AND MATERIALS: The effect of ZD1839 on proliferation, apoptosis, and clonogenic survival after radiation was determined in vitro. For in vivo studies, athymic nude mice with established subcutaneous A431 xenografts (approximately 100 mm(3)) were treated with either a single 10 Gy fraction or 4 daily 2.5 Gy fractions of radiation with or without ZD1839 (75 mg/kg/day intraperitoneally for 10 days) to determine effects on tumor growth delay. RESULTS: Treatment of A431 cells with ZD1839 in vitro reduced proliferation, increased apoptosis, and reduced clonogenic survival after radiation. Strikingly greater than additive effects of ZD1839 in combination with radiation on tumor growth delay were observed in vivo after either a single 10 Gy fraction (enhancement ratio: 1.5) or multiple 4 x 2.5 Gy fractions (enhancement ratio: 4). ZD1839 reduced tumor vascularity, as well as levels of vascular endothelial growth factor (VEGF) protein and mRNA induced by stimulation with epidermal growth factor (EGF), suggesting a possible role of inhibition of angiogenesis in the effect. CONCLUSIONS: Inhibiting EGFR-mediated signal transduction cascades with ZD1839 potentiates the antitumor effect of single and multiple fractions of radiation. These data provide preclinical rationale for clinical trials of EGFR inhibitors including ZD1839 in combination with radiation.  相似文献   

14.
ZD6474, a small molecule VEGFR and EGFR tyrosine kinase inhibitor, has been considered as a promising tumor-targeted drug in various malignancies. EGFR and cyclooxygenase-2 (COX-2) were found overexpressed in osteosarcoma in previous reports, so here we tried to explore the anti-osteosarcoma effect of ZD6474 alone or combination with celecoxib, a COX-2 inhibitor. The data demonstrated that ZD6474 inhibited the growth of osteosarcoma cells, and promoted G1-phase cell cycle arrest and apoptosis by inhibiting the activity of EGFR tyrosine kinase, and consequently suppressing its downstream PI3k/Akt and MAPK/ERK pathway. Additionally, daily administration of ZD6474 produced a dose-dependent inhibition of tumor growth in nude mice. Celecoxib also significantly inhibited the growth of osteosarcoma cells in dose-dependent manner, while combination of ZD6474 and celecoxib displayed a synergistic or additive antitumor effect on osteosarcoma in vitro and in vivo. The possible molecular mechanisms to address the synergism are likely that ZD6474 induces the down-regulation of COX-2 expression through inhibiting ERK phosphorylation, while celecoxib promotes ZD6474-directed inhibition of ERK phosphorylation. In conclusion, ZD6474 exerts direct anti-proliferative effects on osteosarcoma cells, and the synergistic antitumor effect of the combination of ZD6474 with celecoxib may indicate a new strategy of the combinative treatment of human osteosarcoma.  相似文献   

15.
PURPOSE: Conventional therapies for patients with lung cancer have reached a therapeutic plateau. We therefore evaluated the feasibility of combined vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and epidermal growth factor (EGF) receptor (EGFR) targeting with radiation therapy in an orthotopic model that closely recapitulates the clinical presentation of human lung cancer. METHODS AND MATERIALS: Effects of irradiation and/or ZD6474, a small-molecule inhibitor of VEGFR2 and EGFR tyrosine kinases, were studied in vitro for human lung adenocarcinoma cells by using proliferation and clonogenic assays. The feasibility of combining ZD6474 with radiation therapy was then evaluated in an orthotopic model of human lung adenocarcinoma. Lung tumor burden and spread within the thorax were assessed, and tumor and adjacent tissues were analyzed by means of immunohistochemical staining for multiple parameters, including CD31, VEGF, VEGFR2, EGF, EGFR, matrix metalloproteinase-2 and -9, and basic fibroblast growth factor. RESULTS: ZD6474 enhanced the radioresponse of NCI-H441 human lung adenocarcinoma cells by a factor of 1.37 and markedly inhibited sublethal damage repair. In vivo, the combined blockade of VEGFR2 and EGFR by ZD6474 blocked pleural effusion formation and angiogenesis and enhanced the antivascular and antitumor effects of radiation therapy in the orthotopic human lung cancer model and was superior to chemoradiotherapy. CONCLUSIONS: When radiation therapy is combined with VEGFR2 and EGFR blockade, significant enhancement of antiangiogenic, antivascular, and antitumor effects are seen in an orthotopic model of lung cancer. These data provide support for clinical trials of biologically targeted and conventional therapies for human lung cancer.  相似文献   

16.
PURPOSE: In this study, the efficacy of combining ZD6474 (Zactima), a vascular endothelial growth factor (VEGF) receptor 2-associated tyrosine kinase inhibitor currently undergoing Phase II clinical trial evaluation, with single and fractionated dose radiation exposures was examined in a human colorectal carcinoma model (HT29). METHODS AND MATERIALS: HT29 xenograft-bearing mice were treated with either single-dose (10 Gy) or multifraction (2 Gy/day for 2 weeks) radiotherapy alone or in conjunction with a 2-week course of ZD6474 (25 mg/kg). In the single-dose investigation, ZD6474 treatment followed radiotherapy, whereas in the fractionated dose studies the antiangiogenic therapy was given before, after, or concurrent with the radiation. Tumor response was determined by tumor growth delay. RESULTS: ZD6474 increased the response of HT29 xenografts to both single and fractionated dose radiotherapy. In the fractionation studies sequencing of therapies had little impact on treatment outcomes; the time for the median tumors in each of the treatment groups to grow to five times the starting size was 53, 53.5, and 49 days, respectively. CONCLUSIONS: These studies indicate that ZD6474, when used in conjunction with radiation therapy, has a clear therapeutic advantage, providing a rationale for considering the combination of this agent with radiotherapy in the clinic.  相似文献   

17.
PURPOSE: Androgen ablation therapy leads to mild regression or stabilization of prostate cancer, followed by progression to the fatal androgen-independent state. Whereas androgen ablation diminishes tumor angiogenesis by suppressing vascular endothelial growth factor (VEGF) production, androgen-independent disease is marked by androgen-independent VEGF expression. We examined combined androgen ablation and inhibition of VEGF signaling in an androgen-sensitive human prostate cancer xenograft model (LNCaP) that is known to develop androgen-independent growth after androgen ablation. EXPERIMENTAL DESIGN: N-(4-Bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine (ZD6474) is an orally active inhibitor of VEGF receptor tyrosine kinase activity, with additional activity against epidermal growth factor receptor tyrosine kinase. ZD6474 (50 mg/kg/d, per os) was administered to groups of castrated and noncastrated athymic mice bearing established (4-616 mm3) LNCaP xenografts. To evaluate the extent of tumor regrowth after ZD6474, treatment was stopped after 40 days of continuous dosing, and subsequent tumor growth was monitored. Prostate-specific antigen expression was assessed to determine the effect of ZD6474 on androgen-regulated genes. RESULTS: In comparison with orchiectomy, ZD6474 treatment produced greater tumor growth inhibition (P < 0.001), inducing complete cytostasis for the duration of dosing. An analysis of serum prostate-specific antigen concentration and tumor weight indicated that ZD6474 did not have a direct effect on androgen-related gene expression. Combination therapy (castration plus ZD6474) produced a comparable therapeutic effect to treatment with ZD6474 alone (in noncastrated mice), for the duration of ZD6474 administration. However, when ZD6474 treatment was discontinued, the rate of tumor regrowth was significantly less in the combination group. Tumors from mice receiving combined treatment were also found to be more necrotic than tumors from mice receiving either androgen ablation or ZD6474 alone. CONCLUSIONS: These data indicate that inhibition of VEGF signaling produces a highly significant inhibition of tumor growth in a human androgen-dependent prostate tumor model, which far exceeds that produced by androgen ablation alone. However, when ZD6474 treatment is removed, concurrent androgen ablation produces a greater inhibition of tumor regrowth than is observed in mice without androgen ablation. Increased necrosis observed in tumors from orchiectomized mice receiving ZD6474 also suggests benefit from combining anti-androgen and anti-VEGF signaling approaches.  相似文献   

18.
ZD6474 is an inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2/KDR) tyrosine kinase, with additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. ZD6474 inhibits angiogenesis and growth of a wide range of tumor models in vivo. Gefitinib ("Iressa") is a selective EGFR tyrosine kinase inhibitor that blocks signal transduction pathways implicated in cancer cell proliferation. Here, the ability of gefitinib and ZD6474 to inhibit tumor cell proliferation was examined directly in eight cancer cell lines in vitro, and a strong correlation was noted between the IC(50) values of gefitinib and ZD6474 (r = 0.79). No correlation was observed between the sensitivity to ZD6474 and the level of EGFR or VEGFR expression. The NSCLC cell line PC-9 was seen to be hypersensitive to gefitinib and ZD6474, and a small (15-bp) in-frame deletion of an ATP-binding site (exon 19) in the EGFR was detected (delE746-A750-type deletion). To clarify the involvement of the deletional mutation of EGFR in the cellular sensitivity to ZD6474, we examined the effect of this agent on HEK293 stable transfectants expressing deletional EGFR that designed as the same deletion site observed in PC-9 cells (293-pDelta15). These cells exhibited a 60-fold higher sensitivity to ZD6474 compared with transfectants expressing wild-type EGFR. ZD6474 inhibited the phosphorylation of the mutant EGFR by 10-fold compared with cells with wild-type EGFR. In conclusion, the findings suggested that a small in-frame deletion in the EGFR increased the cellular sensitivity to ZD6474.  相似文献   

19.
PURPOSE: Vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis and acts as a radiation survival factor for endothelial cells. ZD6474 (N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine) is a potent VEGF receptor 2 (KDR) tyrosine kinase inhibitor (TKI) that has additional activity versus the epidermal growth factor receptor. This study was designed to determine the efficacy of combining ZD6474 and radiotherapy in vivo. EXPERIMENTAL DESIGN: The Calu-6 (non-small-cell lung cancer) tumor model was selected because it was found to be unresponsive to treatment with a selective epidermal growth factor receptor TKI but responds significantly to treatment with selective VEGF receptor TKIs. Tumor-bearing mice received either vehicle or ZD6474 (50 mg/kg, by mouth, once daily) for the duration of the experiment, with or without radiotherapy (3 x 2 Gy, days 1-3). Two combination schedules were examined: (a) ZD6474 given before each dose of radiation (concurrent schedule); and (b) ZD6474 given 30 minutes after the last dose of radiotherapy (sequential schedule). RESULTS: The growth delay induced using the concurrent schedule was greater than that induced by ZD6474 or radiation treatment alone (22 +/- 1 versus 9 +/- 1 and 17 +/- 2 days, respectively; P = 0.03 versus radiation alone). When administered sequentially, the growth delay was markedly enhanced (36 +/- 1 days; P < 0.001 versus radiation alone or the concurrent schedule). Intravenous administration of Hoechst 33342 showed a trend toward reduced tumor perfusion after ZD6474 treatment, and a pairwise comparison (versus control) was significant after three doses of ZD6474 (P = 0.05 by one-tailed t test). Thus, impaired reoxygenation between fractions in the concurrent protocol may be the causal basis for the schedule dependency of the radiopotentiation observed. CONCLUSIONS: ZD6474 may be a successful adjuvant to clinical radiotherapy, and scheduling of the treatments could be important to ensure optimal efficacy.  相似文献   

20.
Recent studies have suggested that selective inhibition of mitogenic pathways may improve the antitumor activity of ionizing radiation. The epidermal growth factor receptor (EGFR) is overexpressed and is involved in autocrine growth control in the majority of human carcinomas. Protein kinase A type I (PKAI) plays a key role in neoplastic transformation and is overexpressed in cancer cells in which an EGFR autocrine pathway is activated. We used two specific inhibitors of EGFR and PKAI that are under clinical evaluation in cancer patients: C225, an anti-EGFR chimeric human-mouse monoclonal antibody (MAb); and a mixed-backbone antisense oligonucleotide targeting the PKAI RIalpha subunit (PKAI AS). We tested in human colon cancer (GEO) and ovarian cancer (OVCAR-3) cell lines the antiproliferative activity of MAb C225 and/or PKAI AS in combination with ionizing radiation. In vivo antitumor activity was evaluated in nude mice bearing established GEO xenografts. Dose-dependent inhibition of soft agar growth was observed in both cancer cell lines with ionizing radiation, C225, or PKAI AS oligonucleotide. A cooperative antiproliferative effect was obtained when cancer cells were treated with ionizing radiation followed by MAb C225 or PKAI AS oligonucleotide. This effect was observed at all doses tested in both GEO and OVCAR-3 cancer cell lines. A combination of the three treatments at the lowest doses produced an even greater effect than that observed when two modalities were combined. Treatment of mice bearing established human GEO colon cancer xenografts with radiotherapy (RT), MAb C225, or PKAI AS oligonucleotide produced dose-dependent tumor growth inhibition that was reversible upon treatment cessation. A potentiation of the antitumor activity was observed in all mice treated with RT in combination with MAb C225 or PKAI AS oligonucleotide. Long-term GEO tumor growth regression was obtained following treatment with ionizing radiation in combination with MAb C225 plus PKAI AS oligonucleotide, which produced a significant improvement in survival compared with controls (P < 0.001), the RT-treated group (P < 0.001), or the group treated with MAb C225 plus PKAI AS oligonucleotide (P < 0.001). All mice of the RT + MAb C225 + PKAI AS group were alive 26 weeks after tumor cell injection. Furthermore, 50% of mice in this group were alive and tumor-free after 35 weeks. This study provides a rationale for evaluating in cancer patients the combination of ionizing radiation and selective drugs that block EGFR and PKAI pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号