首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的研究锌转运体-7(zinc transporter 7,ZNT7)在小鼠视网膜的定位和分布。方法应用免疫组织化学技术检测CD-1小鼠视网膜内的ZNT7免疫反应产物的表达。结果ZNT7在小鼠视网膜内分布广泛,在神经节细胞和色素上皮细胞内ZNT7免疫阳性反应产物的表达最丰富,在无长突细胞和视神经纤维层中ZNT7免疫阳性反应产物为中等程度的表达,在内网层、外网层和光感受器外节中ZNT7免疫阳性染色较淡,在外核层和光感受器内节中ZNT7几乎没有表达。结论ZNT7可能在维持视网膜锌稳态过程中起到重要的作用。  相似文献   

2.
Excessive light causes damage to photoreceptor and pigment epithelial cells, and a local edema in the outer retina. Since Müller glial cells normally mediate the osmohomeostasis in the inner retina (mainly via channel-mediated transport of potassium and water), we determined whether retinal light injury causes an alteration in the retinal localization of glial water (aquaporin-4) and potassium (Kir4.1) channels, and in the potassium conductance of Müller cells. Mice were treated with bright white light (intensity, 15,000lx) for 2h. Light treatment results in Müller cell gliosis as indicated by the enhanced staining of the glial fibrillary acidic protein and an increase in the cell membrane area reflecting cellular hypertrophy. In light-injured retinas, the immunostaining of the photoreceptor water channel aquaporin-1 disappeared along with the degeneration of the outer retina, and the outer nuclear layer contained large spherical bodies representing photoreceptor nuclei which were fused together. The immunostainings of the aquaporin-4 and Kir4.1 proteins were increased in the outer retina after light treatment. Since the amplitude of the potassium currents of Müller cells remained largely unaltered, the increase in the Kir4.1 immunostaining is supposed to be caused by a redistribution of the channel protein. The data indicate that Müller glial cells respond to excessive light with an alteration in the localization of Kir4.1 and aquaporin-4 proteins; this alteration is thought to be a response to the edema in the outer retina and may support the resolution of edema.  相似文献   

3.
Intermediate filament expression of various cell types in the adult canine normal and gliotic retina was determined by an immunoperoxidase method of using monoclonal antibodies on aldehyde-fixed tissues. In the normal retina, vimentin was present in astrocytes in the nerve fibre layer, horizontal cell processes, and Müller cell fibres from the internal limiting membrane to the outer nuclear layer. Neurofilamentous axons were noted in the nerve fibre, inner plexiform layer, and outer plexiform layer, although the degree of staining intensity varied among the three molecular weight neurofilament antisera used. Glial fibrillary acidic protein (GFAP) staining was confined to the nerve fibre and ganglion cell layer; this was interpreted as representing fibrous astrocytes. Astrocyte density varied according to retinal topography with an increased number around retinal blood vessels and in the peripapillary retina. Quantitative, but not qualitative differences in staining for vimentin and the neurofilaments were noted in degenerative, gliotic retinas. In common with several other mammalian species previously studied, the canine Müller cells accumulate or express GFAP under pathological conditions involving a gliotic response.  相似文献   

4.
Summary To study the distribution ofl-homocysteate in the rat retina, specific polyclonal and monoclonal anti-homocysteate antibodies have been used in combination with a highly sensitive postembedding method for light microscopic immunocytochemistry. In central and peripheral retina, the most strongly immunoreactive cell bodies lay in the inner nuclear layer. They represented about 17% of the total neuronal cell population of the layer and were identified as bipolar cells (19–20% of cells in the outer half of the inner nuclear layer) and amacrine cells (15% of cells in the inner half of the inner nuclear layer). A third cell type showing heavy homocysteate-like immunoreactivity was identified as Müller glial cells. Characteristically, their descending processes formed three immunoreactive bands in the inner plexiform layer. Furthermore, the outer and inner limiting membranes as well as glia around and between ganglion cell axons and in the vicinity of blood vessels were labelled intensely. Photoreceptors and their terminals, and ganglion cells, were not immunostained. These findings indicate the presence of homocysteate in some bipolar and amacrine cells of the inner nuclear layer and support a role for this sulphur-containing excitatory amino acid as a neurotransmitter candidate in the retina.  相似文献   

5.
The grass goby is a mud-burrowing fish with a rich retinal vasculature appropriate to its hypoxic habitat. NADPH-diaphorase histochemistry was performed on retinal sections and wholemounts to reveal cells that contain nitric oxide synthase and so may be presumed to synthesise nitric oxide, a gaseous intercellular messenger with many roles including vasodilation. Structures that were consistently stained by this method included cone ellipsoids, horizontal cells, Müller cells and their processes, large displaced ganglion cells in the inner nuclear layer (identified by their axons), large interstitial ganglion cells in the inner plexiform layer, and capillary endothelial cells. In wholemounts, horizontal cells were seen to form a regular pattern, contacting each other at their dendritic terminals. Some cells in the ganglion cell layer were weakly stained, but stained bipolar and amacrine cells were not seen. The diaphorase-positive large ganglion cells all formed large, sparsely branched dendritic trees, arborizing near the scleral border of the inner plexiform layer. The displaced and interstitial cells seemed to belong to distinct morphological types, the interstitial cells having smaller somata and trees. Analysis of their spatial distributions in one representative retina confirmed this: the displaced cells formed a highly regular mosaic with a mean spacing (nearest-neighbour distance) of 303 µm, whereas the interstitial cells formed a separate mosaic, almost as regular but with a smaller mean spacing of 193 µm, rising to 217 µm in a sample that excluded the area retinae temporalis. Spatial correlogram analysis showed that these two mosaics were spatially independent. Nitric oxide probably has many roles in the retina. The presence of its synthetic enzyme in Müller cells, which communicate with retinal blood vessels, is consistent with a role in the control of retinal blood flow. Its function in large, mosaic-forming retinal ganglion cells is unknown.  相似文献   

6.
The grass goby is a mud-burrowing fish with a rich retinal vasculature appropriate to its hypoxic habitat. NADPH-diaphorase histochemistry was performed on retinal sections and wholemounts to reveal cells that contain nitric oxide synthase and so may be presumed to synthesise nitric oxide, a gaseous intercellular messenger with many roles including vasodilation. Structures that were consistently stained by this method included cone ellipsoids, horizontal cells, Müller cells and their processes, large displaced ganglion cells in the inner nuclear layer (identified by their axons), large interstitial ganglion cells in the inner plexiform layer, and capillary endothelial cells. In wholemounts, horizontal cells were seen to form a regular pattern, contacting each other at their dendritic terminals. Some cells in the ganglion cell layer were weakly stained, but stained bipolar and amacrine cells were not seen. The diaphorase-positive large ganglion cells all formed large, sparsely branched dendritic trees, arborizing near the scleral border of the inner plexiform layer. The displaced and interstitial cells seemed to belong to distinct morphological types, the interstitial cells having smaller somata and trees. Analysis of their spatial distributions in one representative retina confirmed this: the displaced cells formed a highly regular mosaic with a mean spacing (nearest-neighbour distance) of 303 μm, whereas the interstitial cells formed a separate mosaic, almost as regular but with a smaller mean spacing of 193 μm, rising to 217 μm in a sample that excluded the area retinae temporalis. Spatial correlogram analysis showed that these two mosaics were spatially independent. Nitric oxide probably has many roles in the retina. The presence of its synthetic enzyme in Müller cells, which communicate with retinal blood vessels, is consistent with a role in the control of retinal blood flow. Its function in large, mosaic-forming retinal ganglion cells is unknown. Accepted: 29 April 1999  相似文献   

7.
The cellular ensheathment of capillaries in the 3 outer capillary layers of the central retina of the adult tree shrew Tupaia belangeri was studied quantitatively by transmission electron microscopy. Using a stereological approach, the relative surface of capillary basal lamina ensheathed by Müller cells and by nonmacroglial cells (collectively termed non‐Müller cells) was estimated in 5 animals. The participation of Müller cells was distinctly different in the 3 capillary layers studied. In the outermost capillary layer 1, the mean (standard deviation) percentage surface coverage by non‐Müller cell processes was 46.8 (15.3)%. Much less of the capillary basal lamina was ensheathed by non‐Müller cells in capillary layers 2 and 3 (3.0 (2.1)% and 0.3 (0.3)% respectively). The observed total variation of the stereological estimates for the surface fraction of Müller cells (expressed as the between‐subject coefficient of variation) was significantly higher in capillary layer 1 (28.8%) compared with capillary layers 2 (2.2%) and 3 (0.3%). In capillary layer 1, the high observed total variation was due to a high biological variation among animals for the fractions of both Müller cell and non‐Müller cell ensheathment. The rare occurrence of direct contacts between the capillary basal lamina and the perikarya of either microglial cells (capillary layer 3) or amacrine cells (capillary layer 2) corresponded well to the low stereological values obtained for the relative capillary surface ensheathed by non‐Müller cells in these capillary layers. Previously, extensive and frequent contacts between the basal lamina of capillaries belonging to capillary layer 1 and horizontal cells had been observed in single sections. The present study quantitatively demonstrates a marked paucity of macroglial investment of capillaries located in capillary layer 1 of Tupaia. It can be concluded that horizontal cells ensheath most of the capillary surface not invested by Müller cells.  相似文献   

8.
The distributions of putative cholinergic and somatostatinergic amacrine cells of the chicken retina were compared. Acetylcholinesterase-positive amacrine cell bodies were concentrated at the border between the inner nuclear and plexiform layers. Similar amacrine cell bodies were detected in a displaced position in the ganglion cell layer. Both populations had dendrites joining the 4 bands of acetylcholinesterase activity in the inner plexiform layer. The cell bodies of somatostatin-immunoreactive amacrine cells were distinct from the intensely acetylcholinesterase-positive cell bodies. The immunoreactive terminal bands did not overlap the acetylcholinesterase-positive bands, except in the inner parts of the inner plexiform layer.  相似文献   

9.
Organ cultures from neonatal rabbit retinae grew well over periods of up to 2 weeks in vitro. Proliferation in vitro declined in parallel with the decline seen in vivo, although the rate of proliferation in the explants was slightly reduced. The proliferation of progenitor cells in vitro produced the same cell types produced postnatally in vivo. Postnatally generated cell clones, labeled by means of a retroviral vector, consisted mainly of rods and Müller cells. The layers of the retinae developed as in vivo; an outer plexiform layer occurreed after the first 2 days in vitro. Ultrastructurally, ribbon synapses (outer and inner plexiform layer) and conventional synapses (inner plexiform layer) were observed. The photoreceptor cells grew well-developed inner segments and cilia but no mature outer segments. The cultured retinae contained a well-developed, regular lattice of Müller cells expressing vimentin as in vivo. The neuron-to-Müller cell-ratios were essentially the same as in vivo, viz. about 15 to 16 neurons, among them about 10 to 11 (rod) photoreceptor cells per Müller cell. When the glia cell-specific toxin α-aminoadipic acid (αAAA) was applied, the pattern of vimentin-positive Müller cells became irregular, or even locally missing. In such cases, the tissue became disorganized as indicated by a local disappearance of the regular layering, and development of many rosettes. It is concluded that an intact lattice of Müller cells is necessary for the migration of young neurons, and for correct formation of retinal layers.  相似文献   

10.
Transport of lactic acid and other monocarboxylates such as pyruvate and the ketone bodies through cellular membranes is facilitated by specific transport proteins. We used chicken polyclonal antibodies to the monocarboxylate transporters-1 and -2 to determine their cellular and subcellular distributions in rat retina, and we compared these distributions to those of the glucose transporters-1 and -3. Monocarboxylate transporter-1 was most highly expressed by the apical processes of retinal pigment epithelium that surround the outer segments of the photoreceptor cells. In contrast to glucose transporter-1, monocarboxylate transporter-1 was not detected on the basal membranes of pigment epithelium. The luminal and abluminal endothelial plasma membranes in retina also exhibited heavy labeling by antibody to monocarboxylate transporter-1. In addition, this transporter was associated with the Müller cell microvilli, the plasma membranes of the rod inner segments, and all retinal layers between the inner and external limiting membranes. Monocarboxylate transporter-2 was found to be abundantly expressed on the inner (basal) plasma membrane of Müller cells and by glial cell processes surrounding retinal microvessels. This transporter was also present in the plexiform and nuclear layers but was not detected beyond the external limiting membrane. Recent studies have shown that lactic acid transport is of particular importance at endothelial and epithelial barriers where membranes of adjoining cells are linked by tight junctions. Our results suggest that monocarboxylate transporter-1 functions to transport lactate between the retina and the blood, both at the retinal endothelium and the pigment epithelium. The location of monocarboxylate transporter-2 on glial foot processes surrounding retinal vessels suggests that this transporter is also important in blood-retinal lactate exchange. In addition, the abundance of these transporters in Müller cells and synaptic (plexiform) layers suggests that they function in lactate exchange between neurons and glia, supporting the notion that lactate plays a key role in neural metabolism.  相似文献   

11.
The cellular localization of a dopamine- and cAMP-regulated phosphoprotein of Mr 32,000 (DARPP-32) was investigated in cat, monkey and human retina by immunohistochemistry. In cat, DARPP-32-immunoreactive cell bodies identified as Müller cells were demonstrated in the inner nuclear layer (INL) with processes closely surrounding the cell soma of photoreceptors in the outer nuclear layer. Some DARPP-32-IR cells were also seen in the nerve fiber layer (NFL) sending processes to the inner plexiform layer. In monkey and human retina, DARPP-32-IR cell bodies were also demonstrated in the INL, with few cells located in the NFL.  相似文献   

12.
Somatostatin-like immunoreactivity was detected in chicken retina by radioimmunoassay. The levels of somatostatin-like immunoreactivity decreased after intra-ocular injection of kainic acid, but were not affected by destruction of the ganglion cells. By immunohistochemistry, somatostatinimmunoreactive amacrine cells were found in the inner nuclear layer. These cells were destroyed by kainic acid. At least some of the cells projected to all three sub-layers of the inner plexiform layer in which there were diffuse bands of fluorescence. Specific immunofluorescence was also detected at the level of the outer limiting membrane and the optic nerve fibre layer, but the outer nuclear and plexiform layers, horizontal, bipolar and ganglion cells did not show specific immunofluorescence.It is suggested that other amacrine cell sub-classes, defined in terms of their putative transmitter, may show specific patterns of cell body location and size, and terminal arborisation.  相似文献   

13.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

14.
Summary Putative dopaminergic neurons in theXenopus retina were identified using an immunoreaction against tyrosine hydroxylase. A single class of cell was stained whose perikaryon (12–15 m in diameter) was located at the border of the inner nuclear and inner plexiform layers. About 2% of the stained cell bodies were located in the ganglion cell layer, but the distribution of the processes of displaced cells had the same geometry as for the majority of stained cells. Tyrosine hydroxylase-like immunoreactive perikarya gave rise to one to four stout processes that descended to the most proximal level of the inner plexiform layer, within which they branched repeatedly to generate a diffuse network of fine processes. Secondary branches ascended to the most distal sublayer of the inner plexiform layer where they ramified into fine processes that joined other fibres arising horizontally from the cell body and confined to the distal inner plexiform layer throughout their course. The diameter of the dendritic arbor of stained cells was in the range of 350–600 m. The dense network of fine fibres within the distal inner plexiform layer was arrayed in rings that surrounded other amacrine cells; using an antiserum against glycine we found that at least some of these were glycinergic neurons. Most tyrosine hydroxylase-positive neurons emitted one or two fine ascending processes that arose from the perikaryon, traversed the inner plexiform layer and arborized within the outer plexiform layer. Additionally, fine varicose fibres arising from the sublayer 1 of the inner plexiform layer and running to the outer retina were observed. Thus, based on light microscopic criteria, dopaminergic neurons in theXenopus retina appeared to be interplexiform cells. A few tyrosine hydroxylase-immunoreactive fibres were observed in the optic nerve, some of which entered the inner retina where they ramified, thus indicating that they were centrifugal axons. In addition, a small number of stout smooth processes were observed to traverse the entire inner nuclear layer and course laterally at the level of the photoreceptor bases. Whether this second class of ascending process arises from the tyrosine hydroxylase-like immunoreactive efferents remains to be determined. The total number of dopaminergic neurons per retina was 750–800, equivalent to an average density of 30 cells mm–2. The dendritic fields of adjacent cells strongly overlapped, with an estimated coverage factor of 4.8.  相似文献   

15.
Purinergic signaling is represented in both the peripheral and central nervous system (CNS), and in particular in the retina, which may be regarded as a part of the CNS. While purigenic signaling is relatively well studied in mammalian retinas, little is known about it in retinas of lower vertebrates. The aim of present study was to investigate, using immunocytochemistry, the distribution of purinoreceptors P2X in retinas of frog and turtle, which are appropriate models of the brain neuron-to-glia interactions. The results showed widespread expression of all seven ionotropic purinoreceptors (P2X1–P2X7) in both frog and turtle retinas. They were predominantly expressed in Müller cells, the principal glial cells in the retina. All structures typical of Müller cells: the outer and the inner limiting membranes, the cells bodies in the inner nuclear layer, the radial processes in the inner plexiform layer (IPL), and the so called endfeet (frog) or the orthogonal arrays of particles (turtle) in the ganglion cells layer were immunostained. Colocalizations between P2X1–P2X7 and the glial cell marker Vimentin proved that the immunostaining was in the Müller cells. In addition to the glial staining, neuronal staining was also seen as fine puncta in the inner plexiform layer and by small dots and patches in the outer plexiform layer. Some cell bodies of horizontal, amacrine and ganglion cells were also stained. The results obtained imply that the purinergic P2X receptors may significantly contribute to the neuron-to-glia signaling in retinas of the lower vertebrates.  相似文献   

16.
Mack AF 《Neuroscience》2007,144(3):1004-1014
In the retina of many lower vertebrates, the arrangement of cells, in particular of cone photoreceptors, is highly regular. The data presented in this report show that in the retina of a cichlid fish (Astatotilapia burtoni) the regular arrangement is not restricted to cone photoreceptors and their synaptic terminals but can be found in elements of the inner retina as well. A variety of immunocytochemical and other markers was used in combination with confocal microscopy on whole-mount preparations and tangential sections. Nearest neighbor analysis was performed and density recovery profiles as auto- and cross-correlograms were generated. Cells displaying a regular arrangement of their synaptic processes in matching radial register to each other were identified for each major retinal neuronal cell type except ganglion cells (i.e. photoreceptors, horizontal cells, bipolar cells, and amacrine cells). The precise location of some of the corresponding cell bodies was not as regular but still non-random, however there was no spatial cross-correlation between cell bodies of different types. The radial processes of Müller glial cells displayed a distribution correlating to the arrangement of photoreceptors and neurons. Thus, for one Müller glial cell I found two PKC-positive cone bipolar cells, a spatially corresponding grid of parvalbumin-positive amacrine cell processes, one H1 horizontal cell, and two pairs of double cones. There was no evidence among ganglion cells matching this pattern, possibly due to the lack of suitable markers. Although many other cell types do not follow this matching regular mosaic arrangement, a basic columnar building block can be postulated for the retina at least in cichlid fish. This suggests a functional radial unit from photoreceptors to the inner plexiform layer.  相似文献   

17.
18.
Summary.  Neuron-glia interactions in the Borna disease virus (BDV)-infected rat retina were investigated with emphasis on the ultrastructural characterization of degenerative alterations in the ganglion cell and photoreceptor layer. Immuno- and cytochemical techniques were applied to label microglia, macrophages and Müller (macroglial) cells. Four weeks after intracerebral infection of adult rats, the total thickness of the retina was considerably diminished, primarily due to the loss of photoreceptor segments and ganglion cells. A gradual reduction of both plexiform layers was also observed. There was a remarkable increase in the number of microglial cells, predominantly in the ganglion cell and the inner plexiform layers. Ultrastructural analysis confirmed that microglia, but also macrophages, were involved in phagocytosis accompanying severe neuronal degeneration in the ganglion cell and the photoreceptor layer. In contrast, Müller cells showed moderate morphological and cytochemical alterations, indicating that Müller cells play only a minor role in early stages of BDV-induced retinitis. Monitoring neuron-glia interactions in BDV-induced retinopathy, combined with the application of different protocols of immunosuppression effecting the BDV virus and/or the microglia, might help to establish specific strategies to suppress BDV-induced neuronal degeneration. Received October 21, 1998/Accepted June 23, 1999  相似文献   

19.
20.
The vertebrate retina receives histaminergic input from the brain via retinopetal axons that originate from perikarya in the posterior hypothalamus. In the nervous system, histamine acts on three G-protein-coupled receptors, histamine receptor (HR) 1, HR2 and HR3. In order to look for potential cellular targets of histamine in the mouse retina, we have examined the retina for the expression of histamine and the presence of these three receptors. Consistent with studies of retina from other vertebrates, histamine was only found in retinopetal axons, which coursed extensively through the ganglion cell and inner plexiform layers. mRNA for all three receptors was expressed in the mouse retina, and immunohistochemical studies further localized HR1 and HR2. HR1 immunoreactivity was observed on dopaminergic amacrine cells, calretinin-positive ganglion cells and axon bundles in the ganglion cell layer. Furthermore, a distinct group of processes in the inner plexiform layer was labeled, which most likely represents the processes of cholinergic amacrine cells. HR2 immunoreactivity was observed on the processes and cell bodies of the primary glial cells of the mammalian retina, the Müller cells. This distribution of histamine and its receptors is consistent with a brain-derived source of histamine acting on diverse populations of cells in the retina, including both neurons and glia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号