首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible involvement of bulbospinal serotonergic systems in the mediation of analgesia has created a need for a better understanding of the influence this system has on neuronal mechanisms in the spinal cord. Therefore, these studies were designed to examine the effects of caudal raphe stimulation on primary afferent depolarization and to determine the role of serotonin (5-HT) and GABA in the mediation of these stimulation-produced effects. Stimulation of the raphe evoked two electrotonically conducted dorsal root potentials (DRP-1 and DRP-2) and two compound action potentials (VRP-1 and VRP-2) which were recorded from the dorsal and ventral roots, respectively. Length constant measurements indicated that DRP-1 was generated in group II and DRP-2 in group I primary afferent fibers. Histological determination of stimulation sites revealed that short-latency potentials (DRP-1 and VRP-1) were evoked from many sites within the caudal brain stem, while the long-latency potentials (DRP-2 and VRP-2) were evoked primarily from sites within the caudal raphe nuclei. The role of serotonin in mediating these evoked potentials was assessed by administering various antagonists of serotonin (cinanserin, methysergide and D-lysergic acid diethylamide). These agents consistently attenuated the long-latency potentials (DRP-2 and VRP-2) but increased the magnitude of DRP-1. The possibility of a GABAergic neuron in the descending systems projecting to primary afferent terminals was studied. Depletion of GABA by semicarbazide blocked DRP-1, but had only a modest effect of DRP-2. However, the putative GABA antagonist, bicuculline, inhibited both DRP-1, and DRP-2. These results suggest that a GABA interneuron is not involved in the bulbospinal serotonergic depolarization of primary afferent terminals. This system appears to constitute a presynaptic filter of afferent input, with the capacity to inhibit different fiber groups.  相似文献   

2.
Intra-axonal recordings were obtained in the dorsal columns of the rat lumbosacral spinal cord. Dorsal root or dorsal column stimulation at levels subthreshold for the impaled axon elicited a prolonged depolarization corresponding to the primary afferent depolarization (PAD). The depolarization was preceded by a brief hyperpolarizing potential during which excitability was decreased. The hyperpolarization corresponds temporally to the extracellularly recorded DRP IV component of the dorsal root potential described by Lloyd and McIntyre, and may represent the intracellular correlate of this potential. Possible mechanisms for this hyperpolarization include electrical interactions between neuronal elements, a biphasic GABA response, or attenuation of background afferent axonal depolarization.  相似文献   

3.
An investigation has been made of the effects of topically applied bicuculline, a reported gamma-aminobutyric acid (GABA) antagonist, on the isolated, hemisected frog spinal cord by recording ventral and dorsal root potentials and reflexes evoked by volleys to various spinal cord inputs. Bicuculline had potent excitatory effects causing depolarization, spontaneous potentials in ventral and dorsal roots, and an increased polysynaptic ventral root reflex. More importantly, the alkaloid blocked presynaptic inhibition of orthodromic reflex activity produced by preceding ventral root stimulation and primary afferent depolarization. These effects were attributed to a demonstrated antagonism of the direct depolarizing effects of GABA on dorsal root terminals by the alkaloid. These actions of bicuculline suggest that GABA may be the transmitter responsible for primary afferent depolarization and presynaptic inhibition in the amphibian.  相似文献   

4.
The preparation and maintenance of a novel slice of the rat gracile nucleus is described. The slice includes both gracile nuclei as well as an intact afferent input from the dorsal columns. Extracellular recording revealed that a compound tract action potential (CAP) could be recorded from the gracile nucleus following stimulation of the ipsilateral dorsal column. The CAP was followed by slower field potentials which are thought to be dependent on synaptic activity. Four consequences of stimulating the dorsal columns were observed: (1) a subsequent CAP was conducted more rapidly along the afferents whether it travelled in an orthodromic or antidromic direction; (2) the amplitude of a subsequent orthodromic CAP was reduced; (3) the amplitude of a subsequent submaximal antidromic CAP was increased; and (4) a slow positive potential could be recorded from the dorsal columns. All 4 phenomena had comparable time-courses and were similarly sensitive to agents which reduce synaptic transmission. Pharmacological evidence indicated that all 4 phenomena were mediated by GABA. It is suggested that a GABA-mediated depolarization of the gracile afferents can be evoked in this slice.  相似文献   

5.
Intensive depolarization of central primary afferent terminals evoked by strong stimulation of afferent nerves or dorsal root produces recurrent discharges which may be recorded as antidromic dorsal root reflexes. It is shown that the discharges are simultaneously propagating in the dorso-ventral direction and thus produce facilitation of spinal reflexes. The obtained results allow suggesting the existence of two types of influences of the primary afferent depolarization on the reflex transmission to the spinal cord.  相似文献   

6.
The present studies were done to determine details of the anatomical and physiological characteristics of femoral-saphenous venous afferent input to the lumbar spinal cord. Gross anatomical examination revealed that afferent bundles could be seen coursing from the saphenous nerve to the femoral-saphenous vein. Compound action potentials elicited by femoral-saphenous venous afferent stimulation were recorded from the femoral nerve and in dorsal rootlets of the 6th lumbar cord segment. The compound action potentials included activity correlated with that of fibers conducting impulses at the rate of 31 to 61 m/s. Lumbar cord dorsum potentials elicited by femoral-saphenous venous afferent stimulation were abolished by rhizotomy of the most caudal rootlets of the 6th lumbar cord segment. L6 was also the cord segment from which the largest amplitude cord dorsum negative potentials were recorded, while action potentials with large late positive waves were recorded from more caudal cord segments. These observations suggested that the L6 segment contained the largest number of spinal neurons responding to primary femoral-saphenous venous afferent input, and that input reached the more caudal segments via intersegmental connections. A proposed physiological role of these afferents is briefly described.  相似文献   

7.
In the isolated frog spinal cord, antidromic stimulation of motor nerves produces intraspinal field potentials with a characteristic spatial distribution. When recording from the ventral horn, there is a short latency (1–2 msec) response corresponding to activity generated by antidromic activation of motoneuron cell bodies and proximal dendrites. In addition, in the dorsal horn, a delayed wave (12–13 msec latency) corresponding in time with the negative dorsal root potential is also recorded. This wave (VR-SFP) is positive at the dorsal surface of the cord and inverts to negativity at more ventral regions. The negative VR-SFP is maximum between 300–500 μm depth from the dorsal surface and decays with increasing depth towards the motor nucleus. Six days after chronic section of the dorsal roots L7 to L9 in one side of the spinal cord, stimulation of the motor nerves on the deafferented side produces only the early response attributable to antidromic activation of motoneurons. No distinctive VR-SFPs are recorded at any depth within the cord. These findings are consistent with the interpretation that afferent fiber terminals are the current generators of the VR-SFP. The presynaptic and postsynaptic focal potentials recorded in the motor nucleus after stimulation of the ventrolateral tract, as well as the corresponding synaptic potentials electrotonically recorded from the ventral roots, are not depressed during conditioning stimulations which produce primary afferent depolarization. This contrasts with the depression of the presynaptic and post-synaptic focal potentials and synaptic potentials produced by stimulation of sensory fibers. It is concluded that, unlike the afferent fiber terminals, the terminals of the ventrolateral tract are not subjected to a presynaptic modulation of the type involving primary afferent depolarization.  相似文献   

8.
Single unit electrical activity has been recorded extracellularly from 103 neurones in the thoracic spinal cord of decerebrate cats. The responses of these neurons to electrical stimulation of cutaneous and visceral afferent fibres, their projection through ascending sensory pathways and the effects of descending impulses on the neurones have been studied. Of the 103 neurones recorded, 45 (43.7%) responded only to activation of cutaneous afferent fibres (‘Somatic’ neurones). Their recording sites were located mainly in laminae II, III and IV of the dorsal horn. The remaining 58 neurones (56.3%) responded to stimulation of cutaneous and visceral afferent fibres (‘Viscero-somatic’ neurones). Their recording sites were located in laminae I, V, VII and VIII of the grey matter. Sixteen neurones had axons projecting through ascending pathways: 6 were post-synaptic dorsal column cells (PSDC), 2 were spino-cervical tract cells (SCT), 5 projected through the contralateral ventro-lateral funiculus (VLQ) and 3 through the ipsilateral dorso-lateral funiculus (DLF). All PSDC cells were somatic and all VLQ neurones were viscero-somatic. Reversible spinalization of the animals by cold block resulted in a selective increase of the responses of viscero-somatic neurones to cutaneous and visceral C-fibre input. In some viscero-somatic neurones, cold block induced a reduction or abolition of the visceral input suggesting its mediation via supraspinal loops. Electrical stimulation of the ipsilateral DLF evoked non-specific inhibitions of all inputs to viscero-somatic neurones. These results are discussed in relation with the mechanisms of visceral sensation.  相似文献   

9.
Paroxysmal activity in ventral roots induced by penicillin in decapitate cat spinal cords is associated with waves of depolarization of primary afferent fiber terminals. These paroxysmal depolarizations can be detected as spontaneously occurring negative dorsal root potentials (DRPs) and are associated with antidromic discharge of nerve impulses in dorsal root fibers; they can also be detected by testing the excitability of afferent nerve terminals by focal stimulation. Negative DRPs evoked by afferent nerve volleys are altered in waveform but not in amplitude during seizures induced by penicillin, although they are blocked by the administration of picrotoxin. While blocking afferent-evoked DRPs, picrotoxin does not interfere with paroxysmal DRP'S, INDICATING DIFFERENCES IN THE GENERATION OF THE Two phenomena, which nevertheless have some link in common, for the paroxysmal waves occlude the evoked DRP. Such occlusion would appear as blockade, if DRPs were recorded by condenser-coupled amplifiers. In the presence of pentobarbital penicillin suppresses evoked DRPs, but under such circumstances seizure activity is not observed. Extracellular potassium activity within spinal gray matter transiently increases during seizure activity. Such increments of potassium activity are maximal in the ventral horns. This and several other observations suggest that in decapitate spinal cords systemically administered penicillin induces seizures which originate in the ventral gray matter. Accumulation of excess potassium may be the cause of paroxysmal depolarization of afferent nerve terminals. Excess potassium while not playing a principal role in initiating seizures, may influence the course of seizures by depolarizing afferent terminals. Such depolarization probably enhances tonic background release of transmitter substance, may modify the effect of synaptic input, and may favor synchronization of waves of neural excitability through extrasynaptic mechanisms.  相似文献   

10.
Immunoreactive dynorphin B in sacral primary afferent fibers of the cat   总被引:1,自引:0,他引:1  
Immunocytochemical analysis of the distribution of dynorphin B terminals in the sacral spinal cord of the cat revealed a pattern of staining very similar to that produced with antisera directed against the primary afferent derived, putative neurotransmitter, vasoactive intestinal polypeptide. Labeled axons and terminals were concentrated in lamina I and V and there was dense fiber staining in the tract of Lissauer. Of particular interest was the presence of immunoreactive axons in attached dorsal rootlets. To specifically focus on the possibility that some of the sacral primary afferent fibers are dynorphin-immunoreactive, we first tried to increase perikaryal labeling in the sacral dorsal root ganglia by topical treatment with colchicine. This did not produce immunoreactive labeling of cell bodies in the ganglia. Unilateral multiple dorsal rhizotomy (L5 to coccygeal 1), however, significantly decreased the staining of dynorphin-immunoreactive axons and terminals in the tract of Lissauer and in the dorsal horn of sacral segments ipsilateral to the deafferentation. No changes were detected in the lumbar cord. Finally, radioimmunoassay of caudal lumbar and sacral dorsal root ganglia was performed. Measurable immunoreactivity was found in all ganglia assayed, but, consistent with the histochemical analysis, sacral ganglia contained the highest concentration of immunoreactive dynorphin B. These data indicate that a significant component of the sacral spinal cord dynorphin terminal immunoreactivity derives from primary afferent fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Dorsal column postsynaptic (DCPS) spinomedullary neurons in the dorsal horn of spinal segments L6-S1 of adult cats anesthetized with sodium pentobarbital were identified by antidromic stimulation of cervical dorsal columns that were dissected free of, and electrically isolated from, the rest of the spinal cord. The neurons were categorized with respect to natural stimulation of their cutaneous receptive fields. An equal number of low-threshold mechanoreceptive and wide-dynamic-range neurons were found. No DCPS neurons could be classified as nociceptive-specific. All neurons received input from low-threshold mechanoreceptors with myelinated axons. There was no evidence that any neurons received monosynaptic input from unmyelinated, primary afferent fibers. The average conduction velocity of the antidromic responses was 45.7 m/s. Nearly half of the DCPS cells showed an antidromic spike followed by synaptically driven responses that were probably evoked by antidromic invasion into the intraspinal collaterals of A-beta primary afferent fibers that ascended the dorsal columns. Intracellularly recorded synaptic responses of DCPS neurons to dorsal column and receptive field stimulation usually consisted of an EPSP with overriding spike potentials followed by a prolonged IPSP whose amplitude decreased markedly as the stimulus frequency was increased in the range of 5 to 30 Hz. The results indicate that DCPS neurons constitute a projection system capable of signaling innocuous and tissue-damaging mechanical stimuli. The DCPS projection may play a role in the modulation of touch and pain perception.  相似文献   

12.
This study investigated the effects of antidromically conducted nerve impulses on the transmission of orthodromic volleys in primary afferents of the hindlimb in decerebrated paralyzed cats. Two protocols were used: (A) Single skin and muscle afferents (N=20) isolated from the distal part of cut dorsal rootlets (L7-S1) were recorded while stimulation was applied more caudally. The results showed that during the trains of three to 20 stimuli, the orthodromic firing frequency decreased or ceased, depending on the frequency of stimulation. Remarkably, subsequent to these trains, the occurrence of orthodromic spikes could be delayed for hundreds of ms (15/20 afferents) and sometimes stopped for several seconds (10/20 afferents). Longer stimulation trains, simulating antidromic bursts reported during locomotion, caused a progressive decrease, and a slow recovery of, orthodromic firing frequency (7/20 afferents), indicating a cumulative long-lasting depressing effect from successive bursts. (B) Identified stretch-sensitive muscle afferents were recorded intra-axonally and antidromic spikes were evoked by the injection of square pulses of current through the micropipette. In this case, one to three antidromic spikes were sufficient to delay the occurrence of the next orthodromic spike by more than one control inter-spike interval. If the control inter-spike interval was decreased by stretching the muscle, the delay evoked by antidromic spikes decreased proportionally. Overall, these findings suggest that antidromic activity could alter the mechanisms underlying spike generation in peripheral sensory receptors and modify the orthodromic discharges of afferents during locomotion.  相似文献   

13.
Electrophysiological recordings were obtained from rat dorsal roots in a sucrose gap chamber to study changes in Na(+) currents following nerve injury. Application of 4-aminopyridine unmasks a prominent and well-characterized depolarization (delayed depolarization) following the action potential. In our previous studies, this potential, which is only present in cutaneous afferent axons, has been shown to correlate with activation of a slow Na(+) current. The delayed depolarization in the dorsal root was reduced 1 week after sciatic nerve ligation, suggesting a reduction in the kinetically slow Na(+) currents on dorsal root axons [control: 44. 2+/-7.3% (n=5); injury: 7.3+/-4.7% (n=5), P<0.001]. The refractory period of the action potential was reduced following nerve injury, in agreement with biophysical studies indicating faster "repriming" of fast Na(+) currents on cutaneous afferent cell bodies. Dorsal root ligation near the spinal cord also results in a reduction in the delayed depolarization. These results indicate that changes in Na(+) channel organization occur on dorsal root axons following either central or peripheral target disconnection, suggesting trophic support can be derived from either the CNS or the PNS.  相似文献   

14.
Long duration, primary afferent evoked ventral root potentials (VRP's) have been recorded in vitro from hemisected spinal cords prepared from 8-12-day-old rat pups. Single shock stimulation of a dorsal root at stimulus strengths sufficient to recruit C/group IV afferent fibres evoked a long duration (11.9 +/- 1.2 s) ipsilateral VRP in all preparations. This long duration VRP consisted of two components, (i) a slow wave, time to peak 137.0 +/- 5.1 ms, the amplitude of which was reduced to 8.7% of mean control value in the presence of the N-methyl-D-aspartate (NMDA) antagonist D-AP5 (40 microM), (ii) a prolonged wave with a time to peak of 2.0 +/- 0.2 s which was partially resistant to D-AP5 (40 microM). Both the slow and the prolonged waves were unaffected following superfusion with the metabotropic excitatory amino acid (EAA) receptor antagonist L-AP3 (100-200 microM). Low frequency (1-10 Hz) repetitive stimulation (20 s duration) of high threshold dorsal root afferents evoked a temporal summation of synaptic activity which generated a progressively depolarizing VRP. This cumulative VRP was graded with frequency of stimulation (0.89 +/- 0.13 to 1.25 +/- 0.19 mV). The cumulative VRP was followed by a post-stimulus depolarization which outlasted the period of repetitive stimulation by tens of seconds (47.6 +/- 8.4 to 91.2 +/- 19.9 s). In the presence of AP5 the amplitude of the cumulative VRP was depressed to 54.5 +/- 11.5% of control values when low frequency (1.0 Hz) stimulation was used. The proportion of the cumulative VRP resistant to D-AP5 increased as the frequency of stimulation was increased to 10 Hz. The decay time of the post-stimulus depolarization was unaffected by AP5. Neither the amplitude nor the post-stimulus depolarization of the cumulative VRP was affected by 200 microM L-AP3. It is suggested that both an AP5 sensitive and AP5 insensitive potential contribute to the long duration VRP evoked in the neonatal rat spinal cord following single shock high threshold afferent stimulation. Moreover, the AP5 insensitive prolonged depolarization is manifest following sustained low frequency stimuli and higher frequency inputs.  相似文献   

15.
Electrical stimulation of the frog sciatic nerve was found to produce rapid, transient swelling of the 8th and 9th dorsal root ganglia followed by prolonged swelling of the spinal cord. Swelling of the ganglion is analogous to the rapid mechanical change observed in invertebrate axons during excitation. The mechanical change observed in the spinal cord is probably related to prolonged depolarization of the primary afferent fibers near their terminals.  相似文献   

16.
Myelinated primary afferent fibers have both peripheral and central nervous system components. As the fibers course through peripheral nerve and dorsal roots they are myelinated by Schwann cells, but after they invade the spinal cord they become myelinated by oligodendrocytes and have associations with astrocytes. This presents the opportunity to compare the pathophysiology of PNS (Schwann cell-associated) vs. CNS (oligodendrocyte/astrocyte-associated) portions of the same axonal trunk located in the dorsal roots and dorsal columns, respectively. Dorsal spinal roots and slices of dorsal columns isolated from adult rats were studied in a sucrose gap chamber from which compound action potential and membrane potential changes could be recorded. The results indicate that the peripheral component of the afferent fibers is resistant to hypoxia as evidenced by stable action and membrane potential when O2 in the bathing medium was completely replaced with N2 for periods up to 2 h. In contrast, the axons become sensitive to hypoxia as they project through the dorsal columns as evidenced by rapid reduction in action potential amplitude accompanied by membrane depolarization when O2 is replaced by N2. This differential response to hypoxia, observed on the same axon branches but over CNS vs. PNS trajectories, suggests that differences related to the extracellular environment or in axo-glial organization in dorsal root vs. dorsal column may confer different degrees of susceptibility to anoxia.  相似文献   

17.
J.H. Coote  A. Sato 《Brain research》1978,142(3):425-437
(1) In chloralose anaesthetized cats, reflex responses were recorded in inferior cardiac nerves following stimulation of intercostal nerves and hind limb afferent nerves. (2) In 80% of cats, a long latency reflex response alone was recorded, whereas, in the others, a short and long latency response was present to intercostal nerve stimulation. (3) In cats displaying only a long latency somatocardiac reflex response, damage to the ventral quadrant of the ipsilateral cervical spinal cord, through which runs a bulbospinal inhibitory pathway, resulted in the appearance of shorter latency reflexes to intercostal nerve stimulation. Lesions elsewhere in the cervical cord did not do this. (4) The characteristics of the early responses indicated that they were somatosympathetic reflexes and not dorsal root reflexes. (5) The early reflexes remained and the late reflex disappeared on subsequent complete transection of the spinal cord. The early reflexes were therefore spinal reflexes, and suppressed in the animal with cord intact. (6) Lesions at C4, which included a contralateral hemisection and a section of dorsal columns extending into the dorsal part of the lateral funiculus, abolished the inhibition of a sympathetic reflex that followed stimulation of some somatic afferent nerve fibres. These sections did not release the spinal reflex. Therefore, this reflex inhibition was not responsible for the suppression of the spinal somatosympathetic reflex. (7) The descending inhibitory influence on the segmental reflex pathway was not antagonized by strychnine, bicuculline or picrotoxin. (8) The possibility is discussed that the spinal reflex pathway into cardiac sympathetic nerves is tonically inhibited by a bulbospinal pathway originating from the classical depressor region of the ventromedial reticular formation.  相似文献   

18.
The present study shows that 28% of the myelinated and 27% of the unmyelinated axons in the L5 and S1 rat dorsal roots are immunolabeled for galanin. By contrast only 10% of the myelinated and 15% of the unmyelinated axons are immunolabeled for calcitonin gene-related peptide, which is the numerically predominant primary afferent peptide marker for dorsal root ganglion cells. Thus galanin, because of its presence in so many primary afferent fibers, emerges as an important primary afferent marker. In addition, since our data also show that galanin is present predominantly in unmyelinated and fine myelinated sensory axons, a hypothesis is that it is particularly concerned with the transmission of noxious information.  相似文献   

19.
The efficacy of anterograde labeling of the central projections of primary afferent fibers were compared between biotinylated dextran amine (BDA), neurobiotin (NB) and Phaseolus vulgaris-leucoagglutinin (PHA-L) after injections into the L5 or T13 dorsal root ganglia (DRGs) of adult rats. Excellent labeling was obtained with BDA, which visualized fibers with fine terminal boutons in the L5 and T13 spinal cord segments, Clarke's nucleus and the gracile nucleus. Rarely observed crossed projections to the gracile nucleus and L5 ventral horn of the contralateral side could also be distinguished. Even in the most successful experiments, however, BDA labeled only about one-third of the axons originating from the injected dorsal root ganglion. BDA was also efficient as transganglionic tracer after application to the transected sciatic nerve. NB produced no significant labeling of the L5 primary afferents, and was only moderately effective on the T13 level. PHA injections resulted in sparse terminal labeling of the T13 and L5 afferents. Thus, BDA is an effective tracer for long-range labeling of primary afferent projections in the spinal cord and brain stem. Since not all stem fibers become labeled, however, the method does not allow quantification of all axon branches and terminals arising from the injected DRGs.  相似文献   

20.
Dorsal root potentials (DRP) recorded from spinal cord of 7-14-days old rats have two waves of depolarization. The fast wave of DRP is GABA-ergic in nature and the slow wave is evoked mainly by increasing of extracellular K+-ion concentration near the primary afferent terminals. The possible mechanisms of increasing extracellular K+-ion concentration evoked by dorsal root stimulation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号