首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel compounds (3-9) have been designed using a conjunctive approach that combines the benzylpiperidine moiety of the AChE inhibitor donepezil (1) and the indolyl propargylamino moiety of the MAO inhibitor N-[(5-benzyloxy-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine (2), connected through an oligomethylene linker. The most promising hybrid (5) is a potent inhibitor of both MAO-A (IC50=5.2±1.1 nM) and MAO-B (IC50=43±8.0 nM) and is a moderately potent inhibitor of AChE (IC50=0.35±0.01 μM) and BuChE (IC50=0.46±0.06 μM). Moreover, molecular modeling and kinetic studies support the dual binding site to AChE, which explains the inhibitory effect exerted on Aβ aggregation. Overall, the results suggest that the new compounds are promising multitarget drug candidates with potential impact for Alzheimer's disease therapy.  相似文献   

2.
A series of bis(4‐amino‐5‐cyano‐pyrimidines) was synthesized and evaluated as dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To further explore the multifunctional properties of the new derivatives, their antioxidant and antibacterial activities were also tested. The results showed that most of these compounds could effectively inhibit AChE and BChE. Particularly, compound 7c exhibited the best AChE inhibitory activity (IC50 = 5.72 ± 1.53 μM), whereas compound 7h was identified as the most potent BChE inhibitor (IC50 = 12.19 ± 0.57 μM). Molecular modeling study revealed that compounds 7c, 7f , and 7b showed a higher inhibitory activity than that of galantamine against both AChE and BChE. Anticholinesterase activity of compounds 7h, 7b , and 7c was significant in vitro and in silico for both enzymes, since these compounds have hydrophobic rings (Br‐phenyl, dimethyl, and methoxyphenyl), which bind very well in both sites. In addition to cholinesterase inhibitory activities, these compounds showed different levels of antioxidant activities. Indeed, in the superoxide–dimethyl sulfoxide alkaline assay, compound 7j showed very high inhibition (IC50 = 0.37 ± 0.28 μM). Also, compound 7l exhibited strong and good antibacterial activity against Staphylococcus epidermidis and Staphylococcus aureus, respectively. Taking into account the results of biological evaluation, further modifications will be designed to increase potency on different targets. In this study, the obtained results can be a new starting point for further development of multifunctional agents for the treatment of Alzheimer's disease.  相似文献   

3.
A series of N‐substituted‐5‐chloro‐2(3H)‐benzoxazolone derivatives were synthesized and evaluated for their acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) inhibitory, and antioxidant activities. The structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman's colorimetric method. The free radical scavenging activity was also determined by in vitro ABTS (2,2‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid)) assay. The biological activity results revealed that all of the title compounds displayed higher AChE inhibitory activity than the reference compound, rivastigmine, and were selective for AChE. Among the tested compounds, compound 7 exhibited the highest inhibition against AChE (IC50 = 7.53 ± 0.17 μM), while compound 11 was found to be the most active compound against BuChE (IC50 = 17.50 ± 0.29 μM). The molecular docking study of compound 7 showed that this compound can interact with the catalytic active site (CAS) of AChE and also has potential metal chelating ability and a proper log P value. On the other hand, compound 2 bearing a methyl substituent at the ortho position on the phenyl ring showed better radical scavenging activity (IC50 = 1.04 ± 0.04 mM) than Trolox (IC50 = 1.50 ± 0.05 mM).
  相似文献   

4.
With the surge in the cases of Alzheimer's disease (AD) over the years, several targets have been explored to curb the disease. Cholinesterases, namely acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), remain to be the available targets that are amendable to currently approved treatments. In this study, a series of novel compounds based on tramiprosate, a highly specific amyloid beta (Aβ) inhibitor, was designed to inhibit AChE, BuChE, and Aβ aggregation. In particular, the addition of a pyridinium/isoquinolinium ring to the tramiprosate moiety (to give compounds 3a–j ) led to an increase in the binding affinity for the catalytic active site of cholinesterase, which was hampered by the presence of sulfonic acid. Exclusion of the sulfonic acid moiety led to a novel but effective class of cholinesterase inhibitors ( 9a–w ). in vitro Aβ aggregation inhibition assay indicated that compounds 3a–j , 9e – f , 9i–l , 9q , 9r , 9u–w , and 12 could inhibit over 10% Aβ aggregation at 1 mM concentration. Cholinesterase inhibition assay suggested that compounds 9g, 9h , 9o , and 9q–t exhibit over 70% inhibition on both AChE and BuChE at a concentration of 100 μM. Amongst the designed molecules, compound 9r (ca 18% at 1 mM) showed comparable inhibitory effect on the inhibition of Aβ aggregation with tramiprosate (ca 20% at 1 mM), along with impressive cholinesterase inhibitory potential (AChE IC50 = 13 μM and BuChE IC50 = 12 μM), acceptable toxicity and ability to pass through blood brain barrier, which could be used to ameliorate the phenotypes of AD in preclinical models.  相似文献   

5.
目的设计合成新型的苯并噻嗪酮类化合物,并研究其对GSK-3β酶的抑制活性和动力学作用模式,以期发现新型的GSK-3β非ATP竞争型抑制剂。方法采用分子杂交方法设计了一系列苯并噻嗪酮类化合物。以苯并噻嗪酮(1)为起始原料,经过一步取代反应,在N原子上引入不同取代基得到中间体2a~2d,然后在羰基a碳上引入酰基得到中间体3a-3d及目标化合物3e,再通过肼解反应得到相应的酰肼4a-4d,最后在缩合剂作用下酰肼与不同的有机酸缩合得到目标化合物5a~5u。目标化合物以化学发光法测试其GSK-3β体外酶抑制潘洼,并通过动力学实验确定了其酶抑制作用模式。结果与结论合成的22个目标化合物均为新化合物,其结构均经过核磁和质谱确证。其中6个化合物对GSK-3β表现出一定的抑制活性(IC5-〈30μmol·L-1),活性最好的化合物5h与目前文献报道的GSK-3β非ATP竞争型抑制剂活性相当。酶动力学实验证实5h为非ATP竞争型和非底物竞争型抑制剂。本文还初步总结了该类化合物的构效关系。  相似文献   

6.
A new group of 5,5-diarylhydantoin derivatives bearing a methylsulfonyl COX-2 pharmacophore at the para position of the C-5 phenyl ring were designed and synthesized as selective COX-2 inhibitors. In vitro COX-1/COX-2 inhibition structure-activity relationships identified 5-[4-(methylsulfonyl)phenyl]-5-phenyl-hydantoin (4) as a highly potent and selective COX-2 inhibitor (COX-2 IC(50) = 0.077 μM; selectivity index > 1298). It was more selective than the reference drug celecoxib (COX-2 IC(50) = 0.060 μM; selectivity index = 405). A molecular modeling study where 4 was docked in the binding site of COX-2 indicated that the p-MeSO(2) COX-2 pharmacophore group on the C-5 phenyl ring is oriented in the vicinity of the COX-2 secondary pocket. The results of this study showed that the type of substituent on the N-3 hydantoin ring substituent is important for COX-2 inhibitory activity.  相似文献   

7.
Plasma hyaluronan-binding protein (PHBP), a serine protease that can activate coagulation factor VII and prourokinase, circulates in a single-chain form (pro-PHBP) and autoproteolytically converts to an active two-chain form with the aid of an effector such as spermidine and heparin. It has been postulated that PHBP plays roles in regulating inflammation, vascular function, fibrosis and atherosclerosis. From the comprehensive screening of natural sources for inhibitors of spermidine-induced pro-PHBP autoactivation, we identified several compounds with a polyphenol feature. Of these inhibitors, tannic acid (IC(50)=0.020 μM), delphinidin (IC(50)=0.079 μM), hamamelitannin (IC(50)=0.19 μM), (-)-epicatechin gallate (IC(50)=0.24 μM), and 3,5-di-O-caffeoylquinic acid (IC(50)=1.0 μM) were potent and selective, and did not inhibit heparin-induced pro-PHBP autoactivation and the active form of PHBP at concentrations 100 times higher than the respective IC(50) values. From evaluation of the activities of related compounds, it has been suggested that a compound with multiple aromatic rings with plural phenolic hydroxyl substituents exhibits potent activity. The inhibitory actions of delphinidin, hamamelitannin, (-)-epicatechin gallate and 3,5-di-O-caffeoylquinic acid were attenuated by catechol, a minimum polyphenol unit. Thus, it is likely that pro-PHBP binds these potent inhibitors through its site(s) that recognize a catechol-like structure. Our results would facilitate understanding of the molecular mechanism of pro-PHBP autoactivation and rational design of a compound for suppressing unregulated pro-PHBP activation.  相似文献   

8.
A series of hydrazide-hydrazone imine derivative compounds (3a–k) were synthesized and their structures characterized using FTIR, 1H, and 13C (NMR) spectroscopic methods. In addition, molecular structures of compounds 3a, 3d, and 3g were elucidated by X-ray diffraction technique. In vitro inhibition activities of hydrazide-hydrazone imine derivatives against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were investigated. Compound 3i (IC50 = 2.01 μM) exhibited the best inhibitory activity against AChE, comparable to the control Galantamine (IC50 = 2.60 μM). Against BChE, compound 3h (IC50 = 2.83 μM) showed the best inhibitory property which is higher control Galantamine (IC50 = 3.70 μM). The Ki values of compound 3i (Ki = 0.63 μM) and compound 3h (Ki = 0.94 μM) that have the strongest inhibitory potential were determined against AChE and BChE, respectively. According to the docking result, the most stable conformation of AChE and compound 3i showed that it has a binding affinity of −10.82 kcal/moL. The binding affinity of the most stable conformation formed by BChE and compound 3h is −8.60 kcal/moL. Finally, in silico results and pharmacokinetic parameters of ADME showed that these compounds have good oral bioavailability properties.  相似文献   

9.
Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have been successfully applied in the clinical treatment of various cancer. Side effects and drug resistant cases were reported, and more effective PARP-1 inhibitors were required. However, studies on the AD site of PARP-1 inhibitors are currently incomplete. Therefore, to synthesize more potential candidate PARP-1 inhibitors and disclose some AD site SAR of the PARP-1 inhibitors, herein, a series of 2-phenyl-benzimidazole-4-carboxamide derivatives using different saturated nitrogen-contained heterocycles as linker group ( 6a-6t ) have been designed, synthesized, and evaluated PARP-1 inhibitory activity and proliferation inhibitory against BRCA-1 mutant MDA-MB-436 cell line in vitro. The results showed 6b (IC50 = 8.65 nM) exhibited the most PARP-1 enzyme inhibitory activity comparable with Veliparib (IC50 = 15.54 nM) and Olaparib (IC50 = 2.77 nM); 6m exhibited the strongest MDA-MB-436 cell anti-proliferation activity (IC50 = 25.36 ± 6.06 μM) comparable with Olaparib (IC50 = 23.89 ± 3.81 μM). The compounds 6b , 6r , and 6m could be potential candidates for effective PARP-1 inhibitors and valuable for further optimization. The analysis of activity data also showed that the holistically anti-proliferation activity of the 1,4-diazepane group was about~twofold than that of the piperazine group. Meanwhile, the terminal 3-methyl-furanyl group exhibited the most robust PARP-1 inhibitory and anti-proliferation activity. It is hoped that the results could benefitable for further optimization of PARP-1 inhibitors. Furthermore, we note that some compounds ( 6d , 6g , 6n , 6p , 6s ) showed poor PARP-1 inhibitory (>500 nM) but relatively good anti-proliferation activity, which indicates the proliferation inhibitory mechanism against MDA-MB-436 cell line was worth investigating in-depth.  相似文献   

10.
Acetylcholinesterase (AChE) inhibitors have lately gained interest as potential drugs in the treatment of Alzheimer's disease. Three AChE inhibitors were isolated from tubers of a Thai medicinal plant, Stephania venosa (Bl) Spreng. They were identified as quaternary protoberberine alkaloids, stepharanine, cyclanoline and N-methyl stepholidine. They expressed inhibitory activity on AChE with IC50 values (concentration that caused 50% inhibition of activity) of 14.10 +/- 0.81, 9.23 +/- 3.47 and 31.30 +/- 3.67 microM, respectively. The AChE inhibitory activity of these compounds was compared with those of the related compounds, palmatine, jatrorrhizine and berberine, as well as tertiary protoberberine alkaloids isolated from the same plant, stepholidine and corydalmine. The results suggest that the positive charge at the nitrogen of the tetrahydroisoquinoline portion, steric substitution at the nitrogen, planarity of the molecule or substitutions at C-2, -3, -9, and -10 affect the AChE inhibitory activity of protoberberine alkaloids.  相似文献   

11.
The hexane extract of the fruit of Schizandra chinensis (Schisandraceae) was found to show significant inhibition of the activity of acetylcholinesterase enzyme (AChE). In further studies, fourteen lignans were isolated, and evaluated for their inhibitory effect on AChE. The compounds having both aromatic methylenedioxy and hydroxyl groups on their cyclooctadiene ring, such as gomisin C (6), gomisin G (7), gomisin D (8), schisandrol B (11) and gomisin A (13), entirely inhibited AChE in dose dependent manners, with IC50 values of 6.71 +/- 0.53, 6.55 +/- 0.31, 7.84 +/- 0.62, 12.57 +/- 1.07 and 13.28 +/- 1.68 microM, respectively. These results indicate that the lignans could potentially be a potent class of AChE inhibitors.  相似文献   

12.
The two endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), play independent and nonredundant roles in the body. This makes the development of both selective and dual inhibitors of their inactivation an important priority. In this work we report a new series of inhibitors of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH). Among them, (±)-oxiran-2-ylmethyl 6-(1,1'-biphenyl-4-yl)hexanoate (8) and (2R)-(-)-oxiran-2-ylmethyl(4-benzylphenyl)acetate (30) stand out as potent inhibitors of human recombinant MAGL (IC(50) (8) = 4.1 μM; IC(50) (30) = 2.4 μM), rat brain monoacylglycerol hydrolysis (IC(50) (8) = 1.8 μM; IC(50) (30) = 0.68 μM), and rat brain FAAH (IC(50) (8) = 5.1 μM; IC(50) (30) = 0.29 μM). Importantly, and in contrast to the other previously described MAGL inhibitors, these compounds behave as reversible inhibitors either of competitive (8) or noncompetitive nature (30). Hence, they could be useful to explore the therapeutic potential of reversible MAGL inhibitors.  相似文献   

13.
Six proton pump inhibitors (PPIs), omeprazole, lansoprazole, esomeprazole, dexlansoprazole, pantoprazole, and rabeprazole, were shown to be weak inhibitors of cytochromes P450 (CYP3A4, -2B6, -2D6, -2C9, -2C8, and -1A2) in human liver microsomes. In most cases, IC(50) values were greater than 40 μM, except for dexlansoprazole and lansoprazole with CYP1A2 (IC(50) = ~8 μM) and esomeprazole with CYP2C8 (IC(50) = 31 μM). With the exception of CYP2C19 inhibition by omeprazole and esomeprazole (IC(50) ratio, 2.5 to 5.9), there was no evidence for a marked time-dependent shift in IC(50) (IC(50) ratio, ≤2) after a 30-min preincubation with NADPH. In the absence of preincubation, lansoprazole (IC(50) = 0.73 μM) and esomeprazole (IC(50) = 3.7 μM) were the most potent CYP2C19 inhibitors, followed by dexlansoprazole and omeprazole (IC(50) = ~7.0 μM). Rabeprazole and pantoprazole (IC(50) = ≥25 μM) were the weakest. A similar ranking was obtained with recombinant CYP2C19. Despite the IC(50) ranking, after consideration of plasma levels (static and dynamic), protein binding, and metabolism-dependent inhibition, it is concluded that omeprazole and esomeprazole are the most potent CYP2C19 inhibitors. This was confirmed after the incubation of the individual PPIs with human primary hepatocytes (in the presence of human serum) and by monitoring their impact on diazepam N-demethylase activity at a low concentration of diazepam (2 μM). Data described herein are consistent with reports that PPIs are mostly weak inhibitors of cytochromes P450 in vivo. However, two members of the PPI class (esomeprazole and omeprazole) are more likely to serve as clinically relevant inhibitors of CYP2C19.  相似文献   

14.
Beta-secreatse (BACE-1) and cholinesterases are clinically validated targets of Alzheimer's disease (AD), for which natural products have provided immense contribution. The multifaceted nature of AD signifies the need of multitargeted agents to tackle this disease. In the search of new natural products as dual BACE-1/cholinesterase inhibitors, a library of pure natural products was screened for inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE-1. The screening efforts have identified 1,4-benzoquinone “embelin,” a natural product derived from Embelia ribes displaying inhibition of all three enzymes, with IC50 values of 2.5, 5.4, and 2.1 μM, respectively. This screen has also identified isoquinoline alkaloids papaverine and L-tetrahydropalmatine as AChE inhibitors. Kinetic study has shown that embelin inhibits EeAChE and EqBChE with ki values of 4.59 and 0.57 μM, in an uncompetitive and noncompetitive manner, respectively. The interactions of embelin with allosteric peripheral anionic site of cholinesterases, has further supported the results of kinetic study. Embelin has also enhanced the activity of P-gp in LS-180 cells, the efflux pump which is involved in the clearance of amyloid-β from AD brain. Further, the cell viability study in neuronal cell line has indicated the excellent therapeutic window of embelin. These results are indicative of the fact that embelin is a multitargeted agent playing role in stopping the formation of amyloid-β oligomers (via inhibition of BACE-1), improves cholinergic-transmission (via inhibition of AChE/BChE) and increases amyloid-β clearance (via P-gp induction).  相似文献   

15.
A series of novel 1-(3',4',5'-trimethoxybenzoyl)-3,5-diarylpyrazoline derivatives were synthesized and evaluated for their cytotoxic properties on different cancer cell lines and tubulin polymerization inhibitory activity. Compounds 6d and 6e exhibited remarkable cytotoxic activity against different cancer cell lines with good tubulin polymerization inhibitory activity. Compound 6d exhibited moderate selectivity toward renal cancer and breast cancer subpanels with selectivity ratios of 3.06 and 5.11, respectively, at the cytostatic activity (TGI) level. Compounds 6e and 6d achieved good tubulin polymerization inhibitory activity with IC(50) values of 17 and 40 μM, respectively. The photomicrographs made for compounds 6d and 6e on cellular microtubules indicated that the cytotoxicity of these compounds can be attributed to their ability to interfere with microtubule assembly. Molecular modeling studies involving compound 6e with the colchicine binding site of α,β-tubulin revealed hydrogen-bonding and hydrophobic interactions with several amino acids in the colchicine binding site of β-tubulin.  相似文献   

16.
A series of xanthone derivatives was synthesized and tested in-vitro for their ability to inhibit aggregation of rabbit washed platelets and human platelet-rich plasma (PRP) induced by various inducers. 2-Prenyloxyxanthone showed the most potent inhibition of rabbit washed platelet aggregation induced by arachidonic acid (IC50 = 10.2 μM). Of the compounds tested in human PRP, 2-[3 (propylamino)-2-hydroxypropoxy]xanthone (4) hydrochloride salt exhibited the most potent inhibition of platelet aggregation induced by adrenaline (IC50 = 4.4 μM), whereas in evaluation of mouse antithrombotic activity, compound 4 exhibited the most potent protection of mice from thrombotic challenge. Compound 4, 2-[3-(isopropylamino)-2-hydroxypropoxylxanthone hydrochloride salt and 2,5 dihydroxyxanthone suppressed the secondary aggregation induced by adrenaline in human PRP. We conclude that the antiplatelet effects of these compounds are mainly due to an inhibitory effect on thromboxane formation.  相似文献   

17.
Aldose reductase (ARL2) is the first enzyme in the polyol pathway which catalyzes the NADPH-dependent reduction of glucose to sorbitol. Its involvement on diabetic complications makes this enzyme a challenge therapeutic target widely investigated to limit and/or prevent them. On this basis, a limited series of 4-spiro-oxazolidinone-benzopyran derivatives (1-7) were synthesized to evaluate them as potential ARL2 inhibitors. The activity was determined spectrophotometrically by monitoring the oxidation of NADPH catalyzed by ALR2. Within the series of compounds, the 4-methoxy derivative 1b showed to be the most active compound, exhibiting inhibitory levels in the submicromolar range. In addition, the activity against the aldehyde reductase isoform (ARL1) was also evaluated. Unlike sorbinil (reference drug) that lack of selectivity towards the two enzyme all the tested compounds resulted to be devoid of ARL1 inhibitory activity (IC(50) > 10 μM), thus proving to be selective.  相似文献   

18.
A structure-conformation-activity investigation of several angiotensinogen (ANG) based inhibitors of human renin modified by either Phe-Phe, Sta, Leu psi[CH2NH]Val, or Leu psi[CH(OH)CH2]Val at the P1-P1' clevage site and P5 Trp(Nin-For) (Ftr) was performed. Specifically, Ac-Ftr-Pro-Phe-His-Phe-Phe-Val-Ftr-NH2 (1) provided a potent (KI = 2.7 X 10(-8) M) P1-P1' Phe-Phe substituted renin inhibitor to initiate these studies. Substitution of the P1-P1' Phe-Phe in compound 1 by Sta effected a 1,000-fold increase in biological potency for the resultant octapeptide Ac-Ftr-Pro-Phe-His-Sta-Val-Ftr-NH2 (10; KI = 6.7 X 10(-11) M). Kinetic analysis of compound 10 showed it to be a competitive inhibitor of human renin catalyzed proteolysis of human ANG. Chemical modifications of the compounds 1 and 10 were evaluated on the basis of comparative human plasma renin inhibitory activities (IC50 values) in vitro. Carboxy-terminal truncation studies on compound 10 showed that the P2' Val and P3' Ftr residues could both be eliminated without significant loss (ca. 10-fold) in renin inhibitory activity as exemplified by the pentapeptide Ac-Ftr-Pro-Phe-His-Sta-NH2 (12; IC50 = 3.8 X 10(-9) M). In addition, the corresponding P1-P1' Leu psi[CH(OH)CH2]Val and Leu psi[CH2NH]Val derivatives of compound 12 were potent renin inhibitors: Ac-Ftr-Pro-Phe-His-Leu psi[CH(OH)CH2]Val-NH2 (13; IC50 = 3.1 X 10(-10) M) and Ac-Ftr-Pro-Phe-His-Leu psi[CH2NH]Val-NH2 (14; IC50 = 2.1 X 10(-8) M). The structure-conformation-activity properties of the N-terminal Ftr substitution of these human renin inhibitors was examined by (1) comparative analysis of several analogues of 1 and Ac-Ftr-Pro-Phe-His-Sta-Ile-NH2 (17; IC50 = 1.0 X 10(-10) M) having P5 site modifications by Trp, His, D-Ftr, and D-His, (2) deletion of the N-terminal Ftr residue from compounds 12 and 17, to provide Ac-Pro-Phe-His-Sta-Ile-NH2 (16; IC50 = 3.1 X 10(-8) M) and Ac-Pro-Phe-His-Sta-NH2 (15; IC50 = 5.6 X 10(-6) M), and (3) computer modeling and dynamics studies of compounds 1 and 17 bound to CKH-RENIN, a simulated human renin model, which were focused on identifying potential intermolecular interactions of their common P5-P2 sequence, Ac-Ftr-Pro-Phe-His, at the enzyme active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Ma L  Xie C  Ma Y  Liu J  Xiang M  Ye X  Zheng H  Chen Z  Xu Q  Chen T  Chen J  Yang J  Qiu N  Wang G  Liang X  Peng A  Yang S  Wei Y  Chen L 《Journal of medicinal chemistry》2011,54(7):2060-2068
Twenty-two compounds based on thiazolidine-2,4-dione moiety were synthesized and evaluated for the inhibitory potency on the production of nitric oxide (NO), inducible nitric oxide synthase (iNOS) activity, and the generation of prostaglandin E(2) (PEG(2)). (Z)-N-(3-chlorophenyl)-2-(4-((2,4-dioxothiazolidin-5-ylidene) methyl) phenoxy) acetamide (3I), superior to the commercial anti-inflammatory drug indomethacin, significantly inhibited iNOS activity (IC(50) = 8.66 μM), iNOS-mediated NO, and cyclooxygenase (COX)-2-derived PGE(2) production (IC(50) = 4.16 and 23.55 μM, respectively) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. Docking study revealed that 3I was perfectly docking into the active site of murine iNOS and suppressed the expression of iNOS protein as evidenced by Western blot analysis. At the dose of 50 mg/kg, oral administration of 3I possessed protective properties in both carrageenan-induced paw edema and adjuvant-induced arthritis rat models.  相似文献   

20.
A new group of regioisomeric 2,3-diaryl-1,3-benzdiazinan-4-ones, possessing a methyl sulfonyl pharmacophore, were synthesized and their biological activities were tested for cyclooxygenase-2 (COX-2) inhibitory activity. In vitro COX-1/COX-2 inhibition studies identified 3-(p-fluorophenyl)-2-(4-methylsulfonylphenyl)-1,3-benzdiazinane-4-one (2b) as a potent and highly selective (IC(50) = 0.07 μM; selectivity index = 572.8) COX-2 inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号