首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Parathyroid hormone–related peptide (PTHrP) 1–84 knock‐in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild‐type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27‐/‐Pthrp KI). We then compared p27‐/‐Pthrp KI mice with p27‐/‐, Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)‐positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)‐, type I collagen‐, and osteocalcin‐positive bone areas were increased in p27‐/‐ mice and reduced in both Pthrp KI and p27‐/‐Pthrp KI mice compared with WT mice; however, these parameters were increased in p27‐/‐Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF‐1, and Bmi‐1, and the numbers of total colony‐forming unit fibroblastic (CFU‐f) and ALP‐positive CFU‐f were similarly increased in p27‐/‐Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action of PTHrP to regulate skeletal growth and development. © 2015 American Society for Bone and Mineral Research.  相似文献   

2.
Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we studied the phenotype of telomerase‐deficient mice (Terc?/?). Terc?/? mice exhibited accelerated age‐related bone loss starting at 3 months of age and during 12 months of follow‐up revealed by dual‐energy X‐ray absorptiometric (DXA) scanning and by micro–computed tomography (µCT). Bone histomorphometry revealed decreased mineralized surface and bone‐formation rate as well as increased osteoclast number and size in Terc?/? mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc?/? mice. MSCs and osteoprogenitors isolated from Terc?/? mice exhibited intrinsic defects with reduced proliferating cell number and impaired osteogenic differentiation capacity. In addition, the Terc?/?‐MSC cultures accumulated a larger proportion of senescent β‐galactosidase+ cells and cells exhibiting DNA damage. Microarray analysis of Terc?/? bone revealed significant overexpression of a large number of proinflammatory genes involved in osteoclast (OC) differentiation. Consistently, serum obtained from Terc?/? mice enhanced OC formation of wild‐type bone marrow cultures. Our data demonstrate two mechanisms for age‐related bone loss caused by telomerase deficiency: intrinsic osteoblastic defects and creation of a proinflammatory osteoclast‐activating microenvironment. Thus telomerization of MSCs may provide a novel approach for abolishing age‐related bone loss. © 2011 American Society for Bone and Mineral Research.  相似文献   

3.
To assess the effect of hypoparathyroidism on osteogenesis and bone turnover in vivo, bone marrow ablation (BMXs) were performed in tibias of 8‐week‐old wild‐type and parathyroid hormone–null (PTH?/?) mice and newly formed bone tissue was analyzed from 5 days to 3 weeks after BMX. At 1 week after BMX, trabecular bone volume, osteoblast numbers, alkaline phosphatase‐positive areas, type I collagen‐positive areas, PTH receptor–positive areas, calcium sensing receptor–positive areas, and expression of bone formation–related genes were all decreased significantly in the diaphyseal regions of bones of PTH?/? mice compared to wild‐type mice. In contrast, by 2 weeks after BMX, all parameters related to osteoblastic bone accrual were increased significantly in PTH?/? mice. At 5 days after BMX, active tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclasts had appeared in wild‐type mice but were undetectable in PTH?/? mice, Both the ratio of mRNA levels of receptor activator of NF‐κB ligand (RANKL)/osteoprotegerin (OPG) and TRAP‐positive osteoclast surface were still reduced in PTH?/? mice at 1 week but were increased by 2 weeks after BMX. The expression levels of parathyroid hormone–related protein (PTHrP) at both mRNA and protein levels were upregulated significantly at 1 week and more dramatically at 2 weeks after BMX in PTH?/? mice. To determine whether the increased newly formed bones in PTH?/? mice at 2 weeks after BMX resulted from the compensatory action of PTHrP, PTH?/?PTHrP+/? mice were generated and newly formed bone tissue was compared in these mice with PTH?/? and wild‐type mice at 2 weeks after BMX. All parameters related to osteoblastic bone formation and osteoclastic bone resorption were reduced significantly in PTH?/?PTHrP+/? mice compared to PTH?/? mice. These results demonstrate that PTH deficiency itself impairs osteogenesis, osteoclastogenesis, and osteoclastic bone resorption, whereas subsequent upregulation of PTHrP in osteogenic cells compensates by increasing bone accrual. © 2013 American Society for Bone and Mineral Research  相似文献   

4.
myo‐Inositol (MI) plays an essential role in several important processes of cell physiology, is involved in the neural system, and provides an effective treatment for some psychiatric disorders. Its role in osteogenesis and bone formation nonetheless is unclear. Sodium/MI cotransporter 1 (SMIT1, the major cotransporter of MI) knockout (SMIT1?/?) mice with markedly reduced tissue MI levels were used to characterize the essential roles of MI and SMIT1 in osteogenesis. SMIT1?/? embryos had a dramatic delay in prenatal mineralization and died soon after birth owing to respiratory failure, but this could be rescued by maternal MI supplementation. The rescued SMIT1?/? mice had shorter limbs, decreased bone density, and abnormal bone architecture in adulthood. Deletion of SMIT1 resulted in retarded postnatal osteoblastic differentiation and bone formation in vivo and in vitro. Continuous MI supplementation partially restored the abnormal bone phenotypes in adult SMIT1?/? mice and strengthened bone structure in SMIT1+/+ mice. Although MI content was much lower in SMIT1?/? mesenchymal cells (MSCs), the I(1,4,5)P3 signaling pathway was excluded as the means by which SMIT1 and MI affected osteogenesis. PCR expression array revealed Fgf4, leptin, Sele, Selp, and Nos2 as novel target genes of SMIT1 and MI. SMIT1 was constitutively expressed in multipotential C3H10T1/2 and preosteoblastic MC3T3‐E1 cells and could be upregulated during bone morphogenetic protein 2 (BMP‐2)–induced osteogenesis. Collectively, this study demonstrated that deficiency in SMIT1 and MI has a detrimental impact on prenatal skeletal development and postnatal bone remodeling and confirmed their essential roles in osteogenesis, bone formation, and bone mineral density (BMD) determination. © 2011 American Society for Bone and Mineral Research.  相似文献   

5.
We examined parathyroid and skeletal function in 3‐month‐old mice expressing the null mutation for 25‐hydroxyvitamin D–1α‐hydroxylase [1α(OH)ase?/?] and in mice expressing the null mutation for both the 1α(OH)ase and the calcium‐sensing receptor [Casr?/?1α(OH)ase?/?] genes. On a normal diet, all mice were hypocalcemic, with markedly increased parathyroid hormone (PTH), increased trabecular bone volume, increased osteoblast activity, poorly mineralized bone, enlarged and distorted cartilaginous growth plates, and marked growth retardation, especially in the compound mutants. Osteoclast numbers were reduced in the Casr?/?1α(OH)ase?/? mice. On a high‐lactose, high‐calcium, high‐phosphorus “rescue” diet, serum calcium and PTH were normal in the 1α(OH)ase?/? mice but increased in the Casr?/?1α(OH)ase?/? mice with reduced serum phosphorus. Growth plate architecture and mineralization were improved in both mutants, but linear growth of the double mutants remained abnormal. Mineralization of bone improved in all mice, but osteoblast activity and trabecular bone volume remained elevated in the Casr?/?1α(OH)ase?/? mice. These studies support a role for calcium‐stimulated maturation of the cartilaginous growth plate and mineralization of the growth plate and bone and calcium‐stimulated CaSR‐mediated effects on bone resorption. PTH‐mediated bone resorption may require calcium‐stimulated CaSR‐mediated enhancement of osteoclastic activity. © 2010 American Society for Bone and Mineral Research. © 2010 American Society for Bone and Mineral Research  相似文献   

6.
7.
Integrin‐associated protein (IAP/CD47) has been implicated in macrophage‐macrophage fusion. To understand the actions of CD47 on skeletal remodeling, we compared Cd47?/? mice with Cd47+/+ controls. Cd47?/? mice weighed less and had decreased areal bone mineral density compared with controls. Cd47?/? femurs were shorter in length with thinner cortices and exhibited lower trabecular bone volume owing to decreased trabecular number and thickness. Histomorphometry revealed reduced bone‐formation and mineral apposition rates, accompanied by decreased osteoblast numbers. No differences in osteoclast number were observed despite a nonsignificant but 40% decrease in eroded surface/bone surface in Cd47?/? mice. In vitro, the number of functional osteoclasts formed by differentiating Cd47?/? bone marrow cells was significantly decreased compared with wild‐type cultures and was associated with a decrease in bone‐resorption capacity. Furthermore, by disrupting the CD47–SHPS‐1 association, we found that osteoclastogenesis was markedly impaired. Assays for markers of osteoclast maturation suggested that the defect was at the point of fusion and not differentiation and was associated with a lack of SHPS‐1 phosphorylation, SHP‐1 phosphatase recruitment, and subsequent dephosphorylation of non–muscle cell myosin IIA. We also demonstrated a significant decrease in osteoblastogenesis in bone marrow stromal cells derived from Cd47?/? mice. Our finding of cell‐autonomous defects in Cd47?/? osteoblast and osteoclast differentiation coupled with the pronounced skeletal phenotype of Cd47?/? mice support the conclusion that CD47 plays an important role in regulating skeletal acquisition and maintenance through its actions on both bone formation and bone resorption. © 2011 American Society for Bone and Mineral Research  相似文献   

8.
9.
10.
Osteoarthritis (OA) is a multifactorial disease, and recent data suggested that cell cycle–related proteins play a role in OA pathology. Cyclin‐dependent kinase (CDK) inhibitor 1 (p21) regulates activation of other CDKs, and recently, we reported that p21 deficiency induced susceptibility to OA induced by destabilization of the medial meniscus (DMM) surgery through STAT3‐signaling activation. However, the mechanisms associated with why p21 deficiency led to susceptibility to OA by the STAT3 pathway remain unknown. Therefore, we focused on joint inflammation to determine the mechanisms associated with p21 function during in vitro and in vivo OA progression. p21‐knockout (p21?/?) mice were used to develop an in vivo OA model, and C57BL/6 (p21+/+) mice with the same background as the p21?/? mice were used as controls. Morphogenic changes were measured using micro‐CT, IL‐1β serum levels were detected by ELISA, and histological or immunohistological analyses were performed. Our results indicated that p21‐deficient DMM‐model mice exhibited significant subchondral bone destruction and cartilage degradation compared with wild‐type mice. Immunohistochemistry results revealed p21?/? mice susceptibility to OA changes accompanied by macrophage infiltration and enhanced MMP‐3 and MMP‐13 expression through IL‐1β‐induced NF‐κB signaling. p21?/? mice also showed subchondral bone destruction according to micro‐CT analysis, and cathepsin K staining revealed increased numbers of osteoclasts. Furthermore, p21?/? mice displayed increased serum IL‐1β levels, and isolated chondrocytes from p21?/? mice indicated elevated MMP‐3 and MMP‐13 expression with phosphorylation of IκB kinase complex in response to IL‐1β stimulation, whereas treatment with a specific p‐IκB kinase inhibitor attenuated MMP‐3 and MMP‐13 expression. Our results indicated that p21‐deficient DMM mice were susceptible to alterations in OA phenotype, including enhanced osteoclast expression, macrophage infiltration, and MMP expression through IL‐1β‐induced NF‐κB signaling, suggesting that p21 regulation may constitute a possible therapeutic strategy for OA treatment. © 2017 American Society for Bone and Mineral Research.  相似文献   

11.
Excessive FGF23 has been identified as a pivotal phosphaturic factor leading to renal phosphate‐wasting and the subsequent development of rickets and osteomalacia. In contrast, loss of FGF23 in mice (Fgf23?/?) leads to high serum phosphate, calcium, and 1,25‐vitamin D levels, resulting in early lethality attributable to severe ectopic soft‐tissue calcifications and organ failure. Paradoxically, Fgf23?/? mice exhibit a severe defect in skeletal mineralization despite high levels of systemic mineral ions and abundant ectopic mineralization, an abnormality that remains largely unexplained. Through use of in situ hybridization, immunohistochemistry, and immunogold labeling coupled with electron microscopy of bone samples, we discovered that expression and accumulation of osteopontin (Opn/OPN) was markedly increased in Fgf23?/? mice. These results were confirmed by qPCR analyses of Fgf23?/? bones and ELISA measurements of serum OPN. To investigate whether elevated OPN levels were contributing to the bone mineralization defect in Fgf23?/? mice, we generated Fgf23?/?/Opn?/? double‐knockout mice (DKO). Biochemical analyses showed that the hypercalcemia and hyperphosphatemia observed in Fgf23?/? mice remained unchanged in DKO mice; however, micro‐computed tomography (µCT) and histomorphometric analyses showed a significant improvement in total mineralized bone volume. The severe osteoidosis was markedly reduced and a normal mineral apposition rate was present in DKO mice, indicating that increased OPN levels in Fgf23?/? mice are at least in part responsible for the osteomalacia. Moreover, the increased OPN levels were significantly decreased upon lowering serum phosphate by feeding a low‐phosphate diet or after deletion of NaPi2a, indicating that phosphate levels contribute in part to the high OPN levels in Fgf23?/? mice. In summary, our results suggest that increased OPN is an important pathogenic factor mediating the mineralization defect and the alterations in bone metabolism observed in Fgf23?/? bones. © 2014 American Society for Bone and Mineral Research.  相似文献   

12.
The bone formation inhibitor sclerostin encoded by SOST binds in vitro to low‐density lipoprotein receptor‐related protein (LRP) 5/6 Wnt co‐receptors, thereby inhibiting Wnt/β‐catenin signaling, a central pathway of skeletal homeostasis. Lrp5/LRP5 deficiency results in osteoporosis‐pseudoglioma (OPPG), whereas Sost/SOST deficiency induces lifelong bone gain in mice and humans. Here, we analyzed the bone phenotype of mice lacking Sost (Sost?/?), Lrp5 (Lrp5?/?), or both (Sost?/?;Lrp5?/?) to elucidate the mechanism of action of Sost in vivo. Sost deficiency–induced bone gain was significantly blunted in Sost?/?;Lrp5?/? mice. Yet the Lrp5 OPPG phenotype was fully rescued in Sost?/?;Lrp5?/? mice and most bone parameters were elevated relative to wild‐type. To test whether the remaining bone increases in Sost?/?;Lrp5?/? animals depend on Lrp6, we treated wild‐type, Sost?/?, and Sost?/?;Lrp5?/? mice with distinct Lrp6 function blocking antibodies. Selective blockage of Wnt1 class–mediated Lrp6 signaling reduced cancellous bone mass and density in wild‐type mice. Surprisingly, it reversed the abnormal bone gain in Sost?/? and Sost?/?;Lrp5?/? mice to wild‐type levels irrespective of enhancement or blockage of Wnt3a class‐mediated Lrp6 activity. Thus, whereas Sost deficiency–induced bone anabolism partially requires Lrp5, it fully depends on Wnt1 class–induced Lrp6 activity. These findings indicate: first, that OPPG syndrome patients suffering from LRP5 loss‐of‐function should benefit from principles antagonizing SOST/sclerostin action; and second, that therapeutic WNT signaling inhibitors may stop the debilitating bone overgrowth in sclerosing disorders related to SOST deficiency, such as sclerosteosis, van Buchem disease, and autosomal dominant craniodiaphyseal dysplasia, which are rare disorders without viable treatment options. © 2014 American Society for Bone and Mineral Research.  相似文献   

13.
14.
PHOSPHO1 and tissue‐nonspecific alkaline phosphatase (TNAP) have nonredundant functions during skeletal mineralization. Although TNAP deficiency (Alpl?/? mice) leads to hypophosphatasia, caused by accumulation of the mineralization inhibitor inorganic pyrophosphate (PPi), comparably elevated levels of PPi in Phospho1?/? mice do not explain their stunted growth, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis. We have previously shown that elevated PPi in Alpl?/? mice is accompanied by elevated osteopontin (OPN), another potent mineralization inhibitor, and that the amount of OPN correlates with the severity of hypophosphatasia in mice. Here we demonstrate that plasma OPN is elevated and OPN expression is upregulated in the skeleton, particularly in the vertebrae, of Phospho1?/? mice. Liquid chromatography/tandem mass spectrometry showed an increased proportion of phosphorylated OPN (p‐OPN) peptides in Phospho1?/? mice, suggesting that accumulation of p‐OPN causes the skeletal abnormalities in Phospho1?/? mice. We also show that ablation of the OPN gene, Spp1, leads to improvements in the skeletal phenotype in Phospho1?/? as they age. In particular, their scoliosis is ameliorated at 1 month of age and is completely rescued at 3 months of age. There is also improvement in the long bone defects characteristic of Phospho1?/? mice at 3 months of age. Mineralization assays comparing [Phospho1?/?; Spp1?/?], Phospho1?/?, and Spp1?/? chondrocytes display corrected mineralization by the double knockout cells. Expression of chondrocyte differentiation markers was also normalized in the [Phospho1?/?; Spp1?/?] mice. Thus, although Alpl and Phospho1 deficiencies lead to similar skeletal phenotypes and comparable changes in the expression levels of PPi and OPN, there is a clear dissociation in the hierarchical roles of these potent inhibitors of mineralization, with elevated PPi and elevated p‐OPN levels causing the respective skeletal phenotypes in Alpl?/? and Phospho1?/? mice. © 2014 American Society for Bone and Mineral Research.  相似文献   

15.
16.
PTH‐stimulated intracellular signaling is regulated by the cytoplasmic adaptor molecule β‐arrestin. We reported that the response of cancellous bone to intermittent PTH is reduced in β‐arrestin2?/? mice and suggested that β‐arrestins could influence the bone mineral balance by controlling RANKL and osteoprotegerin (OPG) gene expression. Here, we study the role of β‐arrestin2 on the in vitro development and activity of bone marrow (BM) osteoclasts (OCs) and Ephrins ligand (Efn), and receptor (Eph) mRNA levels in bone in response to PTH and the changes of bone microarchitecture in wildtype (WT) and β‐arrestin2?/? mice in models of bone remodeling: a low calcium diet (LoCa) and ovariectomy (OVX). The number of PTH‐stimulated OCs was higher in BM cultures from β‐arrestin2?/? compared with WT, because of a higher RANKL/OPG mRNA and protein ratio, without directly influencing osteoclast activity. In vivo, high PTH levels induced by LoCa led to greater changes in TRACP5b levels in β‐arrestin2?/? compared with WT. LoCa caused a loss of BMD and bone microarchitecture, which was most prominent in β‐arrestin2?/?. PTH downregulated Efn and Eph genes in β‐arrestin2?/?, but not WT. After OVX, vertebral trabecular bone volume fraction and trabecular number were lower in β‐arrestin2?/? compared with WT. Histomorphometry showed that OC number was higher in OVX‐β‐arrestin2?/? compared with WT. These results indicate that β‐arrestin2 inhibits osteoclastogenesis in vitro, which resulted in decreased bone resorption in vivo by regulating RANKL/OPG production and ephrins mRNAs. As such, β‐arrestins should be considered an important mechanism for the control of bone remodeling in response to PTH and estrogen deprivation.  相似文献   

17.
Estrogens enhance skeletal growth during early sexual maturation, whereas high estradiol levels during late puberty result in growth plate fusion in humans. Although the growth plates do not fuse directly after sexual maturation in rodents, a reduction in growth plate height is seen by treatment with a high dose of estradiol. It is unknown whether the effects of estrogens on skeletal growth are mediated directly via estrogen receptors (ERs) in growth plate cartilage and/or indirectly via other mechanisms such as the growth hormone/insulin‐like growth factor 1 (GH/IGF‐1) axis. To determine the role of ERα in growth plate cartilage for skeletal growth, we developed a mouse model with cartilage‐specific inactivation of ERα. Although mice with total ERα inactivation displayed affected longitudinal bone growth associated with alterations in the GH/IGF‐1 axis, the skeletal growth was normal during sexual maturation in mice with cartilage‐specific ERα inactivation. High‐dose estradiol treatment of adult mice reduced the growth plate height as a consequence of attenuated proliferation of growth plate chondrocytes in control mice but not in cartilage‐specific ERα?/? mice. Adult cartilage‐specific ERα?/? mice continued to grow after 4 months of age, whereas growth was limited in control mice, resulting in increased femur length in 1‐year‐old cartilage‐specific ERα?/? mice compared with control mice. We conclude that during early sexual maturation, ERα in growth plate cartilage is not important for skeletal growth. In contrast, it is essential for high‐dose estradiol to reduce the growth plate height in adult mice and for reduction of longitudinal bone growth in elderly mice. © 2010 American Society for Bone and Mineral Research.  相似文献   

18.
The role of the inflammatory response in articular cartilage degeneration and/or repair is often debated. Chemokine networks play a critical role in directing the recruitment of immune cells to sites of injury and have been shown to regulate cell behavior. In this study, we investigated the role of the CCL2/CCR2 signaling axis in cartilage regeneration and degeneration. CCL2?/?, CCR2?/?, CCL2?/?CCR2?/?, and control (C57) mice were subjected to full‐thickness cartilage defect (FTCD) injuries (n = 9/group) within the femoral groove. Cartilage regeneration at 4 and 12 weeks post‐FTCD was assessed using a 14‐point histological scoring scale. Mesenchymal stem cells (MSCs) (Sca‐1+, CD140a+), macrophages (M1:CD38+, M2:CD206+, and M0:F4/80+) and proliferating cells (Ki67+) were quantified within joints using immunofluorescence. The multi‐lineage differentiation capacity of Sca1+ MSCs was determined for all mouse strains. ACL transection (ACL‐x) was employed to determine if CCL2?/?CCR2?/? mice were protected against osteoarthritis (OA) (n = 6/group). Absence of CCR2, but not CCL2 nor both (CCL2 and CCR2), enhanced spontaneous articular cartilage regeneration by 4 weeks post‐FTCD. Furthermore, increased chondrogenesis was observed in MSCs derived from CCR2?/? mice. CCL2 deficiency promoted MSC homing to the adjacent synovium and FTCD at both 4 and 12 weeks post‐injury; with no MSCs present at the surface of the FTCD in the remaining strains. Lower OA scores were observed in CCL2?/?CCR2?/? mice at 12 weeks post‐ACL‐x compared with C57 mice. Our findings demonstrate an inhibitory role for CCR2 in cartilage regeneration after injury, while CCL2 is required for regeneration, acting through a CCR2 independent mechanism. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2561–2574, 2019  相似文献   

19.
A full understanding of the microenvironmental factors that control the activities of skeletal stem cells (also known as mesenchymal stem cells [MSCs]) in the adult bone marrow holds great promise for developing new therapeutic strategies to mitigate age‐related diseases of bone and cartilage degeneration. Bone loss is an understudied manifestation of Marfan syndrome, a multisystem disease associated with mutations in the extracellular matrix protein and TGFβ modulator fibrillin‐1. Here we demonstrate that progressive loss of cancellous bone in mice with limbs deficient for fibrillin‐1 (Fbn1Prx1–/– mice) is accounted for by premature depletion of MSCs and osteoprogenitor cells combined with constitutively enhanced bone resorption. Longitudinal analyses of Fbn1Prx1–/– mice showed incremental bone loss and trabecular microarchitecture degeneration accompanied by a progressive decrease in the number and clonogenic potential of MSCs. Significant paucity of marrow fat cells in the long bones of Fbn1Prx1–/– mice, together with reduced adipogenic potential of marrow stromal cell cultures, indicated an additional defect in MSC differentiation. This postulate was corroborated by showing that an Fbn1‐silenced osteoprogenitor cell line cultured in the presence of insulin yielded fewer than normal adipocytes and exhibited relatively lower PPARγ levels. Consonant with fibrillin‐1 modulation of TGFβ bioavailability, cultures of marrow stromal cells from Fbn1Prx1–/– limb bones showed improper overactivation of latent TGFβ. In line with this finding, systemic TGFβ neutralization improved bone mass and trabecular microarchitecture along with normalizing the number of MSCs, osteoprogenitor cells, and marrow adipocytes. Collectively, our findings show that fibrillin‐1 regulates MSC activity by modulating TGFβ bioavailability within the microenvironment of marrow niches. © 2015 American Society for Bone and Mineral Research.  相似文献   

20.
Large bone defects are ideally treated with autografts, which have many limitations. Therefore, osteoconductive scaffolds loaded with autologous bone marrow (BM) aspirate are increasingly used as alternatives. The purpose of this study was to compare the growth of multipotential stromal cells (MSCs) from unprocessed BM on a collagen‐containing bovine bone scaffold (Orthoss® Collagen) with a non‐collagen‐containing bovine bone scaffold, Orthoss®. Another collagen‐containing synthetic scaffold, Vitoss® was included in the comparison. Colonization of scaffolds by BM MSCs (n = 23 donors) was evaluated using microscopy, colony forming unit‐fibroblast assay and flow‐cytometry. The number of BM MSCs initially attached to Orthoss® Collagen and Vitoss® was similar but greater than Orthoss® (p = 0.001 and p = 0.041, respectively). Furthermore, the number of MSCs released from Orthoss® Collagen and Vitoss® after 2‐week culture was also higher compared to Orthoss® (p = 0.010 and p = 0.023, respectively). Interestingly, collagen‐containing scaffolds accommodated larger numbers of lymphocytic and myelomonocytic cells. Additionally, the proliferation of culture‐expanded MSCs on Orthoss® collagen and Vitoss® was greater compared to Orthoss® (p = 0.047 and p = 0.004, respectively). Collectively, collagen‐containing scaffolds were superior in supporting the attachment and proliferation of MSCs when they were loaded with unprocessed BM aspirates. This highlights the benefit of collagen incorporation into bone scaffolds for use with autologous bone marrow aspirates as autograft substitutes. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:597–606, 2016.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号