首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cells play a dual role in transplantation: They mediate transplant rejection and are crucial for virus control. Memory T cells generated in response to pathogens can cross‐react to alloantigen, a phenomenon called heterologous immunity. Virus‐specific CD8+ T cells cross‐reacting to donor‐alloantigen might affect alloimmune responses and hamper tolerance induction following transplantation. Here, we longitudinally studied these cross‐reactive cells in peripheral blood of 25 kidney transplant recipients with a cytomegalovirus and/or Epstein‐Barr virus infection. Cross‐reactive T cells were identified by flow cytometry as virus‐specific T cells that proliferate in response to donor cells in a mixed‐lymphocyte reaction. In 13 of 25 patients, we found cross‐reactivity to donor cells for at least 1 viral epitope before (n = 7) and/or after transplantation (n = 8). Cross‐reactive T cells were transiently present in the circulation, and their precursor frequency did not increase following transplantation or viral infection. Cross‐reactive T cells expressed interferon‐γ and CD107a in response to both alloantigen and viral peptide and resembled virus‐specific T cells in phenotype and function. Their presence was not associated with impaired renal function, proteinuria, or rejection. In conclusion, virus‐specific T cells that cross‐react to donor‐alloantigen are transiently detectable in the circulation of kidney transplant recipients.  相似文献   

2.
Alloreactive memory T cells are present in virtually all transplant recipients due to prior sensitization or heterologous immunity and mediate injury undermining graft outcome. In mouse models, endogenous memory CD8 T cells infiltrate MHC‐mismatched cardiac allografts and produce IFN‐γ in response to donor class I MHC within 24 h posttransplant. The current studies analyzed the efficacy of anti‐LFA‐1 mAb to inhibit early CD8 T cell cardiac allograft infiltration and activation. Anti‐LFA‐1 mAb given to C57BL/6 6 (H‐2b) recipients of A/J (H‐2a) heart grafts on days –1 and 0 completely inhibited CD8 T cell allograft infiltration, markedly decreased neutrophil infiltration and significantly reduced intragraft expression levels of IFN‐γ‐induced genes. Donor‐specific T cells producing IFN‐γ were at low/undetectable numbers in spleens of anti‐LFA‐1 mAb treated recipients until day 21. These effects combined to promote substantial prolongation (from day 8 to 27) in allograft survival. Delaying anti‐LFA‐1 mAb treatment until days 3 and 4 posttransplant did not inhibit early memory CD8 T cell infiltration and proliferation within the allograft. These data indicate that peritransplant anti‐LFA‐1 mAb inhibits early donor‐reactive memory CD8 T cell allograft infiltration and inflammation suggesting an effective strategy to attenuate the negative effects of heterologous immunity in transplant recipients.  相似文献   

3.
Recent studies have shown that the quantity of donor‐reactive memory T cells is an important factor in determining the relative heterologous immunity barrier posed during transplantation. Here, we hypothesized that the quality of T cell memory also potently influences the response to costimulation blockade‐based immunosuppression. Using a murine skin graft model of CD8+ memory T cell–mediated costimulation blockade resistance, we elicited donor‐reactive memory T cells using three distinct types of pathogen infections. Strikingly, we observed differential efficacy of a costimulation and integrin blockade regimen based on the type of pathogen used to elicit the donor‐reactive memory T cell response. Intriguingly, the most immunosuppression‐sensitive memory T cell populations were composed primarily of central memory cells that possessed greater recall potential, exhibited a less differentiated phenotype, and contained more multi‐cytokine producers. These data, therefore, demonstrate that the memory T cell barrier is dependent on the specific type of pathogen infection via which the donor‐reactive memory T cells are elicited, and suggest that the immune stimulation history of a given transplant patient may profoundly influence the relative barrier posed by heterologous immunity during transplantation.  相似文献   

4.
Lymphopenia is induced by lymphoablative therapies and chronic viral infections. We assessed the impact of lymphopenia on cardiac allograft survival in recipients conditioned with peritransplant costimulatory blockade (CB) to promote long‐term graft acceptance. After vascularized MHC‐mismatched heterotopic heart grafts were stably accepted through CB, lymphopenia was induced on day 60 posttransplant by 6.5 Gy irradiation or by administration of anti‐CD4 plus anti‐CD8 mAb. Long‐term surviving allografts were gradually rejected after lymphodepletion (MST = 74 ± 5 days postirradiation). Histological analyses indicated signs of severe rejection in allografts following lymphodepletion, including mononuclear cell infiltration and obliterative vasculopathy. Lymphodepletion of CB conditioned recipients induced increases in CD44high effector/memory T cells in lymphatic organs and strong recovery of donor‐reactive T cell responses, indicating lymphopenia‐induced proliferation (LIP) and donor alloimmune responses occurring in the host. T regulatory (CD4+ Foxp3+) cell and B cell numbers as well as donor‐specific antibody titers also increased during allograft rejection in CB conditioned recipients given lymphodepletion. These observations suggest that allograft rejection following partial lymphocyte depletion is mediated by LIP of donor‐reactive memory T cells. As lymphopenia may cause unexpected rejection of stable allografts, adequate strategies must be developed to control T cell proliferation and differentiation during lymphopenia.  相似文献   

5.
BACKGROUND: Treatment with a single donor-specific transfusion (DST) plus a brief course of anti-CD154 monoclonal antibody (mAb) prolongs skin allograft survival in mice. It is known that prolongation of allograft survival by this method depends in part on deletion of alloreactive CD8(+) T cells at the time of tolerance induction. Recent data suggest that infection with lymphocytic choriomeningitis virus (LCMV) abrogates the ability of this protocol to prolong graft survival. METHODS: To study the mechanism by which viral infection abrogates allograft survival, we determined (1) the fate of tracer populations of alloreactive transgenic CD8(+) T cells and (2) the duration of skin allograft survival following treatment with DST and anti-CD154 mAb in the presence or absence of LCMV infection. RESULTS: We confirmed that treatment of uninfected mice with DST and anti-CD154 mAb leads to the deletion of alloreactive CD8(+) T cells and is associated with prolongation of skin allograft survival. In contrast, treatment with DST and anti-CD154 mAb in the presence of intercurrent LCMV infection was associated with the failure to delete alloreactive CD8(+) T cells and with the rapid rejection of skin allografts. The number of alloreactive CD8(+) cells actually increased significantly, and the cells acquired an activated phenotype. CONCLUSIONS: Interference with the deletion of alloreactive CD8(+) T cells mediated by DST and anti-CD154 mAb may in part be the mechanism by which viral infection abrogates transplantation tolerance induction.  相似文献   

6.
Donor‐reactive memory T cells generated via heterologous immunity represent a potent barrier to long‐term graft survival following transplantation because of their increased precursor frequency, rapid effector function, altered trafficking patterns, and reduced reliance on costimulation signals for activation. Thus, the identification of pathways that control memory T cell survival and secondary recall potential may provide new opportunities for therapeutic intervention. Here, we discovered that donor‐specific effector/memory CD8+ T cell populations generated via exposure to acute vs latent vs chronic infections contain differential frequencies of CD8+ T cells expressing the inhibitory Fc receptor FcγRIIB. Results indicated that frequencies of FcγRIIB‐expressing CD8+ donor‐reactive memory T cells inversely correlated with allograft rejection. Furthermore, adoptive T cell transfer of Fcgr2b?/? CD8+ T cells resulted in an accumulation of donor‐specific CD8+ memory T cells and enhanced recall responses, indicating that FcγRIIB functions intrinsically to limit T cell CD8+ survival in vivo. Lastly, we show that deletion of FcγRIIB on donor‐specific CD8+ memory T cells precipitated costimulation blockade‐resistant rejection. These data therefore identify a novel cell‐intrinsic inhibitory pathway that functions to limit the risk of memory T cell–mediated rejection following transplantation and suggest that therapeutic manipulation of this pathway could improve outcomes in sensitized patients.  相似文献   

7.
Costimulatory blockade can induce long‐term allograft survival in naïve animals, but may not be as effective in animals with previously primed immune repertoires. We attempted to induce long‐term graft survival in B10.D2 recipients of B10.A cardiac allografts using donor‐specific transfusion (DST) plus anti‐CD40 ligand antibody (αCD40L). Recipients were either naïve mice, or mice previously primed to B10.A or third party alloantigens through engraftment and rejection of skin transplants. Untreated naïve mice rejected cardiac transplants by day 15 and contained a high frequency of primed, donor‐reactive T cells. Donor‐specific transfusion/αCD40L treatment of naïve animals induced long‐term graft survival associated with low frequencies of donor‐reactive T cells. Previous priming of donor‐specific T cells through rejection of B10.A, but not third party, skin grafts prevented the effects of DST/αCD40L on prolonging survival of B10.A hearts. Moreover, adoptive transfer of CD3+, CD4+ or CD8+ T cells from B10.A skin‐graft‐primed animals prevented the effects of DST/αCD40L. The data demonstrate that animals with immune repertoires containing previously primed, donor‐reactive T cells are resistant to the effects of costimulatory blockade. The findings have important implications for ongoing, costimulatory blockade‐based trials in humans, whose T‐cell repertoires are known to contain memory alloreactive T cells.  相似文献   

8.
Recipient endogenous memory CD8 T cells expressing reactivity to donor class I MHC infiltrate MHC‐mismatched cardiac allografts within 24 hours after reperfusion and express effector functions mediating graft injury. The current study tested the efficacy of Very Late Antigen‐4 (VLA‐4) blockade to inhibit endogenous memory CD8 T cell infiltration into cardiac allografts and attenuate early posttransplant inflammation. Peritransplant anti‐VLA‐4 mAb given to C57BL6 (H‐2b) recipients of AJ (H‐2a) heart allografts completely inhibited endogenous memory CD4 and CD8 T cell infiltration with significant decrease in macrophage, but not neutrophil, infiltration into allografts subjected to either minimal or prolonged cold ischemic storage (CIS) prior to transplant, reduced intra‐allograft IFN‐γ‐induced gene expression and prolonged survival of allografts subjected to prolonged CIS in CTLA‐4Ig treated recipients. Anti‐VLA‐4 mAb also inhibited priming of donor‐specific T cells producing IFN‐γ until at least day 7 posttransplant. Peritransplant anti‐VLA plus anti‐CD154 mAb treatment similarly prolonged survival of allografts subjected to minimal or increased CIS prior to transplant. Overall, these data indicate that peritransplant anti‐VLA‐4 mAb inhibits early infiltration memory CD8 T cell infiltration into allografts with a marked reduction in early graft inflammation suggesting an effective strategy to attenuate negative effects of heterologous alloimmunity in recipients of higher risk grafts.  相似文献   

9.
Latent viral infections are a major concern among immunosuppressed transplant patients. During clinical trials with belatacept, a CTLA4‐Ig fusion protein, patients showed an increased risk of Epstein–Barr virus‐associated posttransplant lymphoproliferative disorder, thought to be due to a deficient primary CD8+ T cell response to the virus. Using a murine model of latent viral infection, we observed that rapamycin treatment alone led to a significant increase in virus‐specific CD8+ T cells, as well as increased functionality of these cells, including the ability to make multiple cytokines, while CTLA4‐Ig treatment alone significantly dampened the response and inhibited the generation of polyfunctional antigen‐specific CD8+ T cells. However, the addition of rapamycin to the CTLA4‐Ig regimen was able to quantitatively and qualitatively restore the antigen‐specific CD8+ T cell response to the virus. This improvement was physiologically relevant, in that CTLA4‐Ig treated animals exhibited a greater viral burden following infection that was reduced to levels observed in untreated immunocompetent animals by the addition of rapamycin. These results reveal that modulation of T cell differentiation though inhibition of mTOR signaling can restore virus‐specific immune competence even in the absence of CD28 costimulation, and have implications for improving protective immunity in transplant recipients.  相似文献   

10.
Inductive therapy with anti‐CD4 or anti‐CD40L monoclonal antibodies (mAb) leads to long‐term allograft acceptance but the immune parameters responsible for graft maintenance are not well understood. This study employed an adoptive transfer system in which cells from mice bearing long‐term cardiac allografts following inductive anti‐CD4 or anti‐CD40L therapy were transferred into severe combined immunodeficiency (SCID) allograft recipients. SCID recipients of cells from anti‐CD4‐treated mice (anti‐CD4 cells) did not reject allografts while those receiving cells from anti‐CD40L‐treated mice (anti‐CD40L cells) did reject allografts. Carboxyfluorescein succinimidyl ester (CFSE) labeling of transferred cells revealed that this difference was not associated with differential proliferative capacities of these cells in SCID recipients. Like cells from naïve mice, anti‐CD40L cells mounted a Th1 response following transfer while anti‐CD4 cells mounted a dominant Th2 response. Early (day 10) T‐cell priming was detectable in both groups of primary allograft recipients but persisted to day 30 only in recipients treated with anti‐CD4 mAb. Thus, anti‐CD40L therapy appears to result in graft‐reactive T cells with a naïve phenotype while anti‐CD4 therapy allows progression to an altered state of differentiation. Additional data herein support the notion that anti‐CD40L mAb targets activated, but not memory, cells for removal or functional silencing.  相似文献   

11.
Alloreactive memory T cells mediate accelerated allograft rejection and transplant tolerance resistance. Recent studies have shown that B cell deficient–μMT mice fail to mount donor‐specific memory T cell responses after transplantation. At the same time, other studies showed that pretransplant B cell depletion using rituximab (IgG1 anti‐CD20 mAb) combined with cyclosporine A promoted the survival of islet allografts in monkeys. In this study, we investigated the effect of anti‐CD20 antibody‐mediated B cell depletion on the memory T cell alloresponse in mice. Wild‐type and anti‐OVA TCR transgenic mice were treated with an IgG2a anti‐CD20 monoclonal antibody, which depleted nearly all B cells in the peripheral blood and secondary lymphoid organs but spared some B cells in the bone marrow. B cell depletion did not affect the direct alloresponse but resulted in a marked increase of indirect alloresponse after skin transplantation of naïve mice. Furthermore, in allosensitized mice, anti‐CD20 mAb treatment enhanced the reactivation of allospecific memory T cells and accelerated second set rejection of skin allografts. This suggests that the effect of anti‐CD20 antibodies on alloimmunity and allograft rejection might vary upon the nature of the antibodies as well as the circumstances under which they are delivered.  相似文献   

12.
Virus‐specific T cells can recognize allogeneic HLA (allo‐HLA) through TCR cross‐reactivity. The allospecificity often differs by individual (private cross‐reactivity) but also can be shared by multiple individuals (public cross‐reactivity); however, only a few examples of the latter have been described. Because these could facilitate alloreactivity prediction in transplantation, we aimed to identify novel public cross‐reactivities of human virus‐specific CD8+ T cells directed against allo‐HLA by assessing their reactivity in mixed‐lymphocyte reactions. Further characterization was done by studying TCR usage with primer‐based DNA sequencing, cytokine production with ELISAs, and cytotoxicity with 51chromium‐release assays. We identified three novel public allo‐HLA cross‐reactivities of human virus‐specific CD8+ T cells. CMV B35/IPS CD8+ T cells cross‐reacted with HLA‐B51 and/or HLA‐B58/B57 (23% of tetramer‐positive individuals), FLU A2/GIL (influenza IMP[58‐66] HLA‐A*02:01/GILGFVFTL) CD8+ T cells with HLA‐B38 (90% of tetramer‐positive individuals), and VZV A2/ALW (varicella zoster virus IE62[593‐601] HLA‐A*02:01/ALWALPHAA) CD8+ T cells with HLA‐B55 (two unrelated individuals). Cross‐reactivity was tested against different cell types including endothelial and epithelial cells. All cross‐reactive T cells expressed a memory phenotype, emphasizing the importance for transplantation. We conclude that public allo‐HLA cross‐reactivity of virus‐specific memory T cells is not uncommon and may create novel opportunities for alloreactivity prediction and risk estimation in transplantation.  相似文献   

13.
The adaptive immune system is endowed with long‐lived memory to recall previous antigen encounters and respond more effectively to them. Memory immune responses are mediated by antigen‐specific memory T lymphocytes that exhibit enhanced function compared with naïve T cells that have never encountered antigen. While the generation of memory T cells specific for pathogens is beneficial in providing protective immunity, memory T cells specific for alloantigens can be deleterious to the recipient of a transplanted organ. In graft rejection, memory T cells mediate accelerated, ‘second‐set’ rejection and their presence has been associated with increased propensity for early rejection. Recent findings have demonstrated that alloreactive memory T cells can be generated via exposure to alloantigens, as well as stimuli that are cross‐reactive with alloantigens, and are therefore likely present in ‘naïve’ individuals. This review focuses on the characteristics of memory T cells which make them of special interest to the transplant community, including differential activation requirements, broad homing properties, and resistance to tolerance induction. The multiple ways in which memory T cells can contribute to early and late graft rejection are discussed, as well as potential targets for combating alloreactive memory to be considered in the future design of tolerance induction strategies.  相似文献   

14.
CD8+ memory T cells endanger allograft survival by causing acute and chronic rejection and prevent tolerance induction. We explored the role of CD27:CD70 T‐cell costimulatory pathway in alloreactive CD8+/CD4+ T‐cell activation. CD27‐deficient (CD27?/?) and wild‐type (WT) B6 mice rejected BALB/c cardiac allografts at similar tempo, with or without depletion of CD4+ or CD8+ T cells, suggesting that CD27 is not essential during primary T‐cell alloimmune responses. To dissect the role of CD27 in primed effector and memory alloreactive T cells, CD27?/? or WT mice were challenged with BALB/c hearts either 10 or 40 days after sensitization with donor‐type skin grafts. Compared to WT controls, allograft survival was prolonged in day 40‐ but not day 10‐sensitized CD27?/? recipients. Improved allograft survival was accompanied by diminished secondary responsiveness of memory CD8+ T cells, which resulted from deficiency in memory formation rather than their lack of secondary expansion. Chronic allograft vasculopathy and fibrosis were diminished in CD27?/? recipients of class I‐ but not class II‐mismatched hearts as compared to WT controls. These data establish a novel role for CD27 as an important costimulatory molecule for alloreactive CD8+ memory T cells in acute and chronic allograft rejection.  相似文献   

15.
Previous studies of pig‐to‐non‐human primate (NHP) islet xenotransplantation have provided important insights into the immune recognition and effector pathways operative in this relevant preclinical model. The specifics of the xenograft product, microenvironment at the implantation site, and the immunosuppressive regimen significantly influence the mechanisms underlying the rejection of xenogeneic islets. Our current understanding of the immunological barriers to survival of pig islets in NHPs is largely based on studies on intraportal islet xenografts and on comparisons with islet allografts. The demonstration of cell‐mediated rejection of intraportal porcine islet xenografts at about 1 month posttransplant in monkeys immunosuppressed with the same protocols that prevent monkey islet allograft rejection indicates that islet xenograft rejection involves cellular mechanisms that are not present in acute islet allograft rejection. While these mechanisms remain poorly defined the demonstration of long‐term diabetes reversal after intraportal islet xenotransplantation in non‐human primates immunosuppressed with anti‐CD40L but not with anti‐CD40 antibody‐based protocols suggests that the therapeutic efficacy of anti‐CD40L in this transplantation setting likely involves the depletion of donor‐reactive, activated T cells besides CD40:CD40L costimulation blockade. Rejection of intraportal islet xenografts in NHPs immunosuppressed with CTLA4‐Ig and rapamycin was mediated largely by IL‐15‐primed, CXCR3+CD8+ memory T cells recruited by IP‐10 (CXCL10) positive pig islets and macrophages that showed staining for IL‐12 and iNOS. Adding basiliximab induction and tacrolimus maintenance therapy to this protocol prevented rejection in 24 of 26 recipients followed for up to 275 days. Comparison of both groups suggests, though by no means conclusive, that prolongation of graft survival in this large cohort was associated with reduced direct T cell responses to xenoantigens, reduced proportion of intrahepatic (intragraft) B cells and IFN‐γ+ and IL‐17+ CD4 and CD8 T cells, and increased local production of immunoregulatory molecules linked with Tregs, including TGF‐β, Foxp3, HO‐1, and IL‐10. Anti‐pig non‐Gal IgG antibody elicitation was suppressed in both groups. We are currently exploring the concept of negative vaccination to markedly minimize the need for immunosuppression in islet xenotransplantation. Peritransplant administration of donor apoptotic cells extended pig‐to‐mouse islet xenograft survival to >250 days when combined with peritransplant B cell‐depletion and rapamycin. This costimulation blockade‐sparing, antigen‐specific immunotherapy is expected to cause rapid pretransplant clonal deletion of indirect and anergy of direct xenospecific T cells while inducing regulatory T cells. As anti‐CD40L antibodies, B cell depleting antibodies are expected to interfere with indirect antigen presentation, costimulation, and cytokine production required for optimal T cell proliferation, memory formation, and intragraft CD8+ effector function. It is conceivable that additional strategies must be employed in NHPs and eventually in diabetic patients to achieve – as previously with anti‐CD40L antibodies – more complete, yet selective depletion of donor‐reactive, activated T‐cells for the purpose of stable xenograft acceptance.  相似文献   

16.
Endogenous memory CD8 T cells infiltrate MHC‐mismatched cardiac allografts within 12–24 h posttransplant in mice and are activated to proliferate and produce IFN‐γ. To more accurately assess the graft injury directly imposed by these endogenous memory CD8 T cells, we took advantage of the ability of anti‐LFA‐1 mAb given to allograft recipients on days 3 and 4 posttransplant to inhibit the generation of primary effector T cells. When compared to grafts from IgG‐treated recipients on day 7 posttransplant, allografts from anti‐LFA‐1 mAb‐treated recipients had increased numbers of CD8 T cells but these grafts had marked decreases in expression levels of mRNA encoding effector mediators associated with graft injury and decreases in donor‐reactive CD8 T cells producing IFN‐γ. Despite this decreased activity within the allograft, CD8 T cells in allografts from recipients treated with anti‐LFA‐1 mAb continued to proliferate up to day 7 posttransplant and did not upregulate expression of the exhaustion marker LAG‐3 but did have decreased expression of ICOS. These results indicate that endogenous memory CD8 T cells infiltrate and proliferate in cardiac allografts in mice but do not express sufficient levels of functions to mediate overt graft injury and acute rejection.  相似文献   

17.
Normal immune responses stimulated by pathogenic and environmental antigens generate memory T cells that react with donor antigens and no currently used immunosuppressive drug completely inhibits memory T-cell function. While donor-reactive memory T cells clearly compromise graft outcomes, mechanisms utilized by memory T cells to promote rejection are largely unknown. In this study, we investigated how early endogenous memory cells infiltrate and express effector function in cardiac allografts. Endogenous CD8 memory T cells in nonsensitized recipients distinguish syngeneic versus allogeneic cardiac allografts within 24 h of reperfusion. CD8-dependent production of IFN-γ and CXCL9/Mig was observed 24 to 72 h posttransplant in allografts but not isografts. CXCL9 was produced by donor cells in response to IFN-γ made by recipient CD8 T cells reactive to donor class I major histocompatibility complex (MHC) molecules. Activated CD8 T cells were detected in allografts at least 3 days before donor-specific effector T cells producing IFN-γ were detected in the recipient spleen. Early inflammation mediated by donor-reactive CD8 memory T cells greatly enhanced primed effector T-cell infiltration into allografts. These results suggest that strategies for optimal inhibition of alloimmunity should include neutralization of infiltrating CD8 memory T cells within a very narrow window after transplantation.  相似文献   

18.
TCR specific antibodies may modulate the TCR engagement with antigen–MHC complexes, and in turn regulate in vivo T cell responses to alloantigens. Herein, we found that in vivo administration of mAbs specific for mouse TCRβ (H57–597), TCRα or CD3 promptly reduced the number of CD4+ and CD8+ T cells in normal mice, but H57–597 mAb most potently increased the frequency of CD4+Foxp3+ Treg cells. When mice were injected with staphylococcal enterotoxin B (SEB) superantigen and H57–597 mAb, the expansion of SEB‐reactive Vβ8+ T cells was completely abrogated while SEB‐nonreactive Vβ2+ T cells remained unaffected. More importantly, transient H57–597 mAb treatment exerted long‐lasting effect in preventing T cell responses to alloantigens, and produced long‐term cardiac allograft survival (>100 days) in 10 out of 11 recipients. While Treg cells were involved in maintaining donor‐specific long‐term graft survival, T cell homeostasis recovered over time and immunity was retained against third party allografts. Moreover, transient H57–597 mAb treatment significantly prolonged survival of skin allografts in naïve recipients as well as heart allografts in skin‐sensitized recipients. Thus, transient modulation of the TCRβ chain by H57–597 mAb exhibits potent, long‐lasting therapeutic effects to control alloimmune responses.  相似文献   

19.
Allosensitization constitutes a major barrier in transplantation. Preexisting donor‐reactive memory T and B cells and preformed donor‐specific antibodies (DSAs) have all been implicated in accelerated allograft rejection in sensitized recipients. Here, we employ a sensitized murine model of islet transplantation to test strategies that promote long‐term immunosuppression‐free allograft survival. We demonstrate that donor‐specific memory T and B cells can be effectively inhibited by peritransplant infusions of donor apoptotic cells in combination with anti‐CD40L and rapamycin, and this treatment leads to significant prolongation of islet allograft survival in allosensitized recipients. We further demonstrate that late graft rejection in recipients treated with this regimen is associated with a breakthrough of B cells and their aggressive graft infiltration. Consequently, additional posttransplant B cell depletion effectively prevents late rejection and promotes permanent acceptance of islet allografts. In contrast, persistent low levels of DSAs do not seem to impair graft outcome in these recipients. We propose that B cells contribute to late rejection as antigen‐presenting cells for intragraft memory T cell expansion but not to alloantibody production and that a therapeutic strategy combining donor apoptotic cells, anti‐CD40L, and rapamycin effectively inhibits proinflammatory B cells and promotes long‐term islet allograft survival in such recipients.  相似文献   

20.
Murine CCR5?/? recipients produce high titers of antibody to complete MHC‐mismatched heart and renal allografts. To study mechanisms of class I MHC antibody‐mediated allograft injury, we tested the rejection of heart allografts transgenically expressing a single class I MHC disparity in wild‐type C57BL/6 (H‐2b) and B6.CCR5?/? recipients. Donor‐specific antibody titers in CCR5?/? recipients were 30‐fold higher than in wild‐type recipients. B6.Kd allografts survived longer than 60 days in wild‐type recipients whereas CCR5?/? recipients rejected all allografts within 14 days. Rejection was accompanied by infiltration of CD8 T cells, neutrophils and macrophages, and C4d deposition in the graft capillaries. B6.Kd allografts were rejected by CD8?/?/CCR5?/?, but not μMT?/?/CCR5?/?, recipients indicating the need for antibody but not CD8 T cells. Grafts recovered at day 10 from CCR5?/? and CD8?/?/CCR5?/? recipients and from RAG‐1?/? allograft recipients injected with anti‐Kd antibodies expressed high levels of perforin, myeloperoxidase and CCL5 mRNA. These studies indicate that the continual production of antidonor class I MHC antibody can mediate allograft rejection, that donor‐reactive CD8 T cells synergize with the antibody to contribute to rejection, and that expression of three biomarkers during rejection can occur in the absence of this CD8 T cell activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号