首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute cellular rejection (ACR) is a common and important clinical complication following lung transplantation. While there is a clinical need for the development of novel therapies to prevent ACR, the regulation of allospecific effector T‐cells in this process remains incompletely understood. Using the MHC‐mismatched mouse orthotopic lung transplant model, we investigated the short‐term role of anti‐CD154 mAb therapy alone on allograft pathology and alloimmune T‐cell effector responses. Untreated C57BL/6 recipients of BALB/c left lung allografts had high‐grade rejection and diminished CD4+: CD8+ graft ratios, marked by predominantly CD8+>CD4+ IFN‐γ+ allospecific effector responses at day 10, compared to isograft controls. Anti‐CD154 mAb therapy strikingly abrogated both CD8+ and CD4+ alloeffector responses and significantly increased lung allograft CD4+: CD8+ ratios. Examination of graft CD4+ T‐cells revealed significantly increased frequencies of CD4+CD25+Foxp3+ regulatory T‐cells in the lung allografts of anti‐CD154‐treated mice and was associated with significant attenuation of ACR compared to untreated controls. Together, these data show that CD154/CD40 costimulation blockade alone is sufficient to abrogate allospecific effector T‐cell responses and significantly shifts the lung allograft toward an environment predominated by CD4+ T regulatory cells in association with an attenuation of ACR.  相似文献   

2.
Although postoperative bacterial infections can trigger rejection of pulmonary allografts, the impact of bacterial colonization of donor grafts on alloimmune responses to transplanted lungs remains unknown. Here, we tested the hypothesis that bacterial products present within donor grafts at the time of implantation promote lung allograft rejection. Administration of the toll-like receptor 2 (TLR2) agonist Pam3Cys4 to Balb/c wild-type grafts triggered acute cellular rejection after transplantation into B6 wild-type recipients that received perioperative costimulatory blockade. Pam3Cys4-triggered rejection was associated with an expansion of CD8+ T lymphocytes and CD11c+CD11bhiMHC (major histocompatibility complex) class II+ antigen-presenting cells within the transplanted lungs. Rejection was prevented when lungs were transplanted into TLR2-deficient recipients but not when MyD88-deficient donors were used. Adoptive transfer of B6 wild-type monocytes, but not T cells, following transplantation into B6 TLR2-deficient recipients restored the ability of Pam3Cys4 to trigger acute cellular rejection. Thus, we have demonstrated that activation of TLR2 by a bacterial lipopeptide within the donor airways prevents the induction of lung allograft tolerance through a process mediated by recipient-derived monocytes. Our work suggests that donor lungs harboring bacteria may precipitate an inflammatory response that can facilitate allograft rejection.  相似文献   

3.
CD4+ regulatory T cells play a critical role in tolerance induction in transplantation. CD8+ suppressor T cells have also been shown to control alloimmune responses in preclinical and clinical models. However, the exact nature of the CD8+ suppressor T cells, their induction and mechanism of function in allogeneic transplantation remain elusive. In this study, we show that functionally suppressive, alloantigen‐specific CD8+Foxp3+ T cells can be induced and significantly expanded by stimulating naïve CD8+ T cells with donor dendritic cells in the presence of IL‐2, TGF‐β1 and retinoic acid. These CD8+Foxp3+ T cells express enhanced levels of CTLA‐4, CCR4 and CD103, inhibit the up‐regulation of costimulatory molecules on dendritic cells, and suppress CD4 and CD8 T cell proliferation and cytokine production in a donor‐specific and contact‐dependent manner. Importantly, upon adoptive transfer, the induced CD8+Foxp3+ T cells protect full MHC‐mismatched skin allografts. In vivo, the CD8+Foxp3+ T cells preferentially traffic to the graft draining lymph node where they induce conventional CD4+Foxp3+ T cells and concurrently suppress effector T cell expansion. We conclude that donor‐specific CD8+Foxp3+ suppressor T cells can be induced and exploited as an effective form of cell therapy for graft protection in transplantation.  相似文献   

4.
Immunological requirements for rejection and tolerance induction differ between various organs. While memory CD8+ T cells are considered a barrier to immunosuppression‐mediated acceptance of most tissues and organs, tolerance induction after lung transplantation is critically dependent on central memory CD8+ T lymphocytes. Here we demonstrate that costimulation blockade‐mediated tolerance after lung transplantation is dependent on programmed cell death 1 (PD‐1) expression on CD8+ T cells. In the absence of PD‐1 expression, CD8+ T cells form prolonged interactions with graft‐infiltrating CD11c+ cells; their differentiation is skewed towards an effector memory phenotype and grafts are rejected acutely. These findings extend the notion that requirements for tolerance induction after lung transplantation differ from other organs. Thus, immunosuppressive strategies for lung transplant recipients need to be tailored based on the unique immunological properties of this organ.  相似文献   

5.
The innate receptor “triggering‐receptor‐expressed‐on‐myeloid‐cells‐1” (TREM‐1) enhances downstream signaling of “pattern recognition receptor” (PRR) molecules implicated in inflammatory responses. However the mechanistic role of TREM‐1 in chronic heart rejection has yet to be elucidated. We examined the effect of TREM‐1+ antigen‐presenting cells (APC) on alloreactive CD4+ lymphocytes. Bm12 donor hearts were transplanted into wild‐type MHC‐class‐II‐mismatched C57BL/6J recipient mice. Progressive allograft rejection of bm12‐donor hearts with decreased organ function, severe vasculopathy and allograft fibrosis was evident within 4 weeks. TREM‐1+CD11b+MHC‐II+F4/80+CCR2+ APC and IFNγ‐producing CD4+ cells were detected during chronic rejection. Peptide inhibition of TREM‐1 attenuated graft vasculopathy, reduced graft‐infiltrating leukocytes and prolonged allograft survival, while being accompanied by sustained low levels of CD4+ and CD8+ cell infiltration. Remarkably, temporary inhibition of TREM‐1 during early immune activation was sufficient for long‐term allograft survival. Mechanistically, TREM‐1 inhibition leads to reduced differentiation and proliferation of IFNγ‐producing Th1 cells. In conclusion, TREM‐1 influences chronic heart rejection by regulating the infiltration and differentiation of CD4+ lymphocytes.  相似文献   

6.
Despite standardized postoperative care, some lung transplant patients suffer multiple episodes of acute and chronic rejection while others avoid graft problems for reasons that are poorly understood. Using an established model of C57BL/10 to C57BL/6 minor antigen mismatched single lung transplantation, we now demonstrate that the recipient microbiota contributes to variability in the alloimmune response. Specifically, mice from the Envigo facility in Frederick, Maryland contain nearly double the number of CD4+Foxp3+ regulatory T cells (Tregs) than mice from the Jackson facility in Bar Harbor, Maine or the Envigo facility in Indianapolis, Indiana (18 vs 9 vs 7%). Lung graft recipients from the Maryland facility thus do not develop acute or chronic rejection. Treatment with broad‐spectrum antibiotics decreases Tregs and increases both acute and chronic graft rejection in otherwise tolerant strains of mice. Constitutive depletion of regulatory T cells, using Foxp3‐driven expression of diphtheria toxin receptor, leads to the development of chronic rejection and supports the role of Tregs in both acute and chronic alloimmunity. Taken together, our data demonstrate that the microbiota of certain individuals may contribute to tolerance through Treg‐dependent mechanisms and challenges the practice of indiscriminate broad‐spectrum antibiotic use in the perioperative period.  相似文献   

7.
Lymphopenia is induced by lymphoablative therapies and chronic viral infections. We assessed the impact of lymphopenia on cardiac allograft survival in recipients conditioned with peritransplant costimulatory blockade (CB) to promote long‐term graft acceptance. After vascularized MHC‐mismatched heterotopic heart grafts were stably accepted through CB, lymphopenia was induced on day 60 posttransplant by 6.5 Gy irradiation or by administration of anti‐CD4 plus anti‐CD8 mAb. Long‐term surviving allografts were gradually rejected after lymphodepletion (MST = 74 ± 5 days postirradiation). Histological analyses indicated signs of severe rejection in allografts following lymphodepletion, including mononuclear cell infiltration and obliterative vasculopathy. Lymphodepletion of CB conditioned recipients induced increases in CD44high effector/memory T cells in lymphatic organs and strong recovery of donor‐reactive T cell responses, indicating lymphopenia‐induced proliferation (LIP) and donor alloimmune responses occurring in the host. T regulatory (CD4+ Foxp3+) cell and B cell numbers as well as donor‐specific antibody titers also increased during allograft rejection in CB conditioned recipients given lymphodepletion. These observations suggest that allograft rejection following partial lymphocyte depletion is mediated by LIP of donor‐reactive memory T cells. As lymphopenia may cause unexpected rejection of stable allografts, adequate strategies must be developed to control T cell proliferation and differentiation during lymphopenia.  相似文献   

8.
TCR specific antibodies may modulate the TCR engagement with antigen–MHC complexes, and in turn regulate in vivo T cell responses to alloantigens. Herein, we found that in vivo administration of mAbs specific for mouse TCRβ (H57–597), TCRα or CD3 promptly reduced the number of CD4+ and CD8+ T cells in normal mice, but H57–597 mAb most potently increased the frequency of CD4+Foxp3+ Treg cells. When mice were injected with staphylococcal enterotoxin B (SEB) superantigen and H57–597 mAb, the expansion of SEB‐reactive Vβ8+ T cells was completely abrogated while SEB‐nonreactive Vβ2+ T cells remained unaffected. More importantly, transient H57–597 mAb treatment exerted long‐lasting effect in preventing T cell responses to alloantigens, and produced long‐term cardiac allograft survival (>100 days) in 10 out of 11 recipients. While Treg cells were involved in maintaining donor‐specific long‐term graft survival, T cell homeostasis recovered over time and immunity was retained against third party allografts. Moreover, transient H57–597 mAb treatment significantly prolonged survival of skin allografts in naïve recipients as well as heart allografts in skin‐sensitized recipients. Thus, transient modulation of the TCRβ chain by H57–597 mAb exhibits potent, long‐lasting therapeutic effects to control alloimmune responses.  相似文献   

9.
Murine CCR5?/? recipients produce high titers of antibody to complete MHC‐mismatched heart and renal allografts. To study mechanisms of class I MHC antibody‐mediated allograft injury, we tested the rejection of heart allografts transgenically expressing a single class I MHC disparity in wild‐type C57BL/6 (H‐2b) and B6.CCR5?/? recipients. Donor‐specific antibody titers in CCR5?/? recipients were 30‐fold higher than in wild‐type recipients. B6.Kd allografts survived longer than 60 days in wild‐type recipients whereas CCR5?/? recipients rejected all allografts within 14 days. Rejection was accompanied by infiltration of CD8 T cells, neutrophils and macrophages, and C4d deposition in the graft capillaries. B6.Kd allografts were rejected by CD8?/?/CCR5?/?, but not μMT?/?/CCR5?/?, recipients indicating the need for antibody but not CD8 T cells. Grafts recovered at day 10 from CCR5?/? and CD8?/?/CCR5?/? recipients and from RAG‐1?/? allograft recipients injected with anti‐Kd antibodies expressed high levels of perforin, myeloperoxidase and CCL5 mRNA. These studies indicate that the continual production of antidonor class I MHC antibody can mediate allograft rejection, that donor‐reactive CD8 T cells synergize with the antibody to contribute to rejection, and that expression of three biomarkers during rejection can occur in the absence of this CD8 T cell activity.  相似文献   

10.
Rejection of donor organs depends on the trafficking of donor passenger leukocytes to the secondary lymphoid organs of the recipient to elicit an immune response via the direct antigen presentation pathway. Therefore, the depletion of passenger leukocytes may be clinically applicable as a strategy to improve graft survival. Because major histocompatibility complex (MHC) class II+ cells are most efficient at inducing immune responses, selective depletion of this population from donor grafts may dampen the alloimmune response and prolong graft survival. In a fully MHC mismatched mouse kidney allograft model, we describe the synthesis of an immunotoxin, consisting of the F(ab′)2 fragment of a monoclonal antibody against the donor MHC class II molecule I‐Ak conjugated with the plant‐derived ribosomal inactivating protein gelonin. This anti–I‐Ak gelonin immunotoxin depletes I‐Ak expressing cells specifically in vitro and in vivo. When given to recipients of kidney allografts, it resulted in indefinite graft survival with normal graft function, presence of Foxp3+ cells within donor grafts, diminished donor‐specific antibody formation, and delayed rejection of subsequent donor‐type skin grafts. Strategies aimed at the donor arm of the immune system using agents such as immunotoxins may be a useful adjuvant to existing recipient‐orientated immunosuppression.  相似文献   

11.
A subset of naturally formed sphingosine‐1‐phosphate receptor 1 (S1P1)‐bearing CD8+CD44+CCR7+ memory T cells has been identified in transplant recipient BALB/c (H‐2d) mice. The frequency of this subset of memory T cells is significantly increased in the spleen, lymph nodes and skin grafts in the recipient BALB/c mice during acute skin allograft rejections. The immune‐reconstitution with CD8+CD44+CCR7+S1P1+ memory T cells facilitates acute skin allograft rejection in SCID mice. Being Th1‐polarized and cytotoxic, CD8+CD44+CCR7+S1P1+ memory T cells proliferate and differentiate immediately into effectors upon encountering allo‐antigens. A siRNA against S1P1 inhibits CD8+CD44+CCR7+S1P1+ memory T cell‐mediated acute skin allograft rejection in SCID mice by means of knocking‐down S1P1‐expression. CCL21 mutant (CCL21‐ΔCT) has been used to compete with wild‐type CCL21 in the course of binding to CCR7. Combined administration of siRNA S1P1 and CCL21‐ΔCT significantly prolongs the survival of skin allograft in the recipient BALB/c mice by means of inhibiting accumulation of CD8+CD44+CCR7+S1P1+ memory T cells in the spleen and the skin grafts. Our data provide direct evidence that S1P1 and CCR7 are involved in the proliferation and trafficking of CD8+CD44+CCR7+S1P1+ memory T cells. S1P1 may serve as a functional marker for CD8+CD44+CCR7+ memory T cells. Targeting CD8+CD44+CCR7+S1P1+ T cells may be a useful strategy to prolong the survival of allograft transplant.  相似文献   

12.
T cell receptor transgenic (TCR‐Tg) T cells are often used as tracer populations of antigen‐specific responses to extrapolate findings to endogenous T cells. The extent to which TCR‐Tg T cells behave purely as tracer cells or modify the endogenous immune response is not clear. To test the impact of TCR‐Tg T cell transfer on endogenous alloimmunity, recipient mice were seeded with CD4+ or CD8+ TCR‐Tg or polyclonal T cells at the time of cardiac allograft transplantation. Only CD4+ TCR‐Tg T cells accelerated rejection and, unexpectedly, led to a dose‐dependent decrease in both transferred and endogenous T cells infiltrating the graft. In contrast, recipients of CD4+ TCR‐Tg T cells exhibited enhanced endogenous donor‐specific CD8+ T cell activation in the spleen and accelerated alloantibody production. Introduction of CD4+ TCR‐Tg T cells also perturbed the intragraft accumulation of innate cell populations. Transferred CD4+ TCR‐Tg T cells alter many aspects of endogenous alloimmunity, suggesting that caution should be used when interpreting experiments using these adoptively transferred cells because the overall nature of allograft rejection may be altered. These results also may have implications for adoptive CD4+ T cell immunotherapy in tumor and infectious clinical settings because cell infusion may have additional effects on natural immune responses.  相似文献   

13.
B7 ligands deliver both costimulatory and coinhibitory signals to the CD28 family of receptors on T lymphocytes, the balance between which determines the ultimate immune response. Although B7‐H4, a recently discovered member of the B7 family, is known to negatively regulate T cell immunity in autoimmunity and cancer, its role in solid organ allograft rejection and tolerance has not been established. Targeting the B7‐H4 molecule by a blocking antibody or use of B7‐H4?/? mice as recipients of fully MHC‐mismatched cardiac allografts did not affect graft survival. However, B7‐H4 blockade resulted in accelerated allograft rejection in CD28‐deficient recipients. B7‐1/B7‐2‐double‐deficient recipients are truly independent of CD28/CTLA‐4:B7 signals and usually accept MHC‐mismatched heart allografts. Blockade of B7‐H4 in these mice also precipitated rejection, demonstrating regulatory function of this molecule independent of an intact CD28/CTLA‐4:B7 costimulatory pathway. Accelerated allograft rejection was always accompanied by increased frequencies of alloreactive IFN‐γ‐, IL‐4‐ and Granzyme B‐producing splenocytes. Finally, intact recipient, but not donor, B7‐H4 is essential for prolongation of allograft survival by blocking CD28/CTLA4:B7 pathway using CTLA4‐Ig. These data are the first to provide evidence of the regulatory effects of B7‐H4 in alloimmune responses in a murine model of solid organ transplantation.  相似文献   

14.
B cells play an important role in the immune responses which affect the outcomes of kidney allografts. Dynamic changes of B‐cell compartments in clinical kidney transplantation are still poorly understood. B‐cell subsets were prospectively monitored using flow cytometry for 1 year in 98 kidney transplant recipients. Data were correlated with immunosuppression and clinical outcomes. An increase in the total population of B lymphocytes was observed during the first week after transplantation. The level of IgMhighCD38highCD24high transitional B cells reduced significantly up until the third month, with partial repopulation in the first year. Lower numbers of transitional B cells in the third month were associated with higher risk of graft rejection. IgM+IgD+CD27? naive B cells did not change within follow‐up. IgM+CD27+ nonswitched memory B cells and IgM?CD27+ switched memory B cells increased on post‐operative day 7. IgM?CD38highCD27high plasmablasts showed similar kinetics during the first post‐transplant year, similar to transitional B cells. In conclusion, sensitized kidney transplant recipients as well as those with either acute or chronic rejection within the first post‐transplant year exhibited lower levels of transitional B cells. Therefore, these data further support the hypothesis that transitional B cells have a protective role in kidney transplantation.  相似文献   

15.
Calcineurin‐inhibitor refractory bronchiolitis obliterans (BO) represents the leading cause of late graft failure after lung transplantation. T helper (Th)2 and Th17 lymphocytes have been associated with BO development. Taking advantage of a fully allogeneic trachea transplantation model in mice, we addressed the pathogenicity of Th cells in obliterative airway disease (OAD) occurring in cyclosporine A (CsA)‐treated recipients. We found that CsA prevented CD8+ T cell infiltration into the graft and downregulated the Th1 response but affected neither Th2 nor Th17 responses in vivo. In secondary mixed lymphocyte cultures, CsA dramatically decreased donor‐specific IFN‐γ production, enhanced IL‐17 production and did not affect IL‐13. As CD4+ depletion efficiently prevented OAD in CsA‐treated recipients, we further explored the role of Th2 and Th17 immunity in vivo. Although IL‐4 and IL‐17 deficient untreated mice developed an OAD comparable to wild‐type recipients, a single cytokine deficiency afforded significant protection in CsA‐treated recipients. In conclusion, CsA treatment unbalances T helper alloreactivity and favors Th2 and Th17 as coexisting pathways mediating chronic rejection of heterotopic tracheal allografts.  相似文献   

16.
Although T cells are required for acute lung rejection, other graft–infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [18F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [18F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow cytometric analysis using the fluorescent deoxyglucose analog 2‐NBDG revealed that T cells, and in particular CD8+ T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen‐presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients.  相似文献   

17.
Regulatory CD4+CD25+Foxp3+ T cells (Tregs) play an important role in the induction of allospecific tolerance. However tolerance in solid organ transplantation by mere transfer of Tregs has been difficult. Besides this the stability of the differentiation phenotype of Tregs has recently been questioned. We therefore aimed in generating large numbers of stable allospecific Tregs from naïve T cells by retroviral transduction with Foxp3. These were tested in an immunogenic skin transplantation model (C57BL/6→BALB/c). We established a system of transduction of mouse T cells with ecotropic retroviruses expressing Foxp3 and Thy1.1 as a surface marker to follow up transduced T cells. Alloantigen‐specific Tregs were generated by stimulating naïve recipient CD4+ T cells with irradiated donor splenocytes. CD25+ and/or CD69+ allospecific recipient CD4+ T cells were isolated and transduced with Foxp3. Alloantigen‐specific Foxp3 T cells (iTregs) showed high expression for the Treg markers Foxp3, CTLA4 and GITR. They could suppress a MLR in an alloantigen‐specific manner. Furthermore, they could be expanded up to 18 fold in vitro while maintaining their Treg phenotype and expression of lymph node homing markers like CCR7 and CD62L. iTregs prevented skin graft rejection without the need for chronic immunosuppression and recipients showed systemic allospecific allotolerance. Alloantigen‐specific Tregs were far more potent than polyspecific Tregs. Mechanisms of tolerance were graft specific homing, expansion and long‐term persistence of Tregs within the graft (>100 days, 90% of intragraft Tregs were alloantigen‐specific). In fact, tolerance could be transferred with re‐transplantation of the tolerant graft onto secondary recipients. Third party grafts were readily rejected demonstrating specificity of tolerance. Due to the Foxp3 transduction, iTregs did not lose their Treg phenotype. The results prove that large numbers of stable alloantigen‐specific Tregs can be generated from a polyclonal repertoire of naïve T cells. This is the first time that allotolerance was achieved in a non‐lymphopenic transplant model using skin grafts in an immunogenic strain combination. Therefore, antigen‐specific Tregs might have a huge therapeutic potential after solid organ transplantation.  相似文献   

18.
Mechanistic target of rapamycin (mTOR) complex (mTORC)1 and mTORC2 regulate the differentiation and function of immune cells. While inhibition of mTORC1 antagonizes dendritic cell (DC) differentiation and suppresses graft rejection, the role of mTORC2 in DCs in determining host responses to transplanted tissue remains undefined. Using a mouse model in which mTORC2 was deleted specifically in CD11c+ DCs (TORC2DC?/?), we show that the transplant of minor histocompatibility Ag (HY)‐mismatched skin grafts from TORC2DC?/? donors into wild‐type recipients results in accelerated rejection characterized by enhanced CD8+ T cell responses in the graft and regional lymphoid tissue [Correction added on January 9, 2019, after first online publication: in the previous sentence, major was changed to minor]. Similar enhancement of CD8+ effector T cell responses was observed in MHC‐mismatched recipients of TORC2DC?/? grafts. Augmented CD8+ T cell responses were also observed in a delayed‐type hypersensitivity model in which mTORC2 was absent in cutaneous DCs. These elevated responses could be ascribed to an increased T cell stimulatory phenotype of TORC2DC?/? and not to enhanced lymph node homing of the cells. In contrast, rejection of ovalbumin transgenic skin grafts in TORC2DC?/? recipients was unaffected. These findings suggest that mTORC2 in skin DCs restrains effector CD8+ T cell responses and have implications for understanding of the influence of mTOR inhibitors that target mTORC2 in transplant.  相似文献   

19.
20.
The use of α1,3‐galactosyltransferase gene‐knockout (GalT‐KO) swine donors in discordant xenotransplantation has extended the survival of cardiac xenografts in baboons following transplantation. Eight baboons received heterotopic cardiac xenografts from GalT‐KO swine and were treated with a chronic immunosuppressive regimen. The pathologic features of acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR) and chronic rejection were assessed in the grafts. No hyperacute rejection developed and one graft survived up to 6 months after transplantation. However, all GalT‐KO heart grafts underwent graft failure with AHXR, ACXR and/or chronic rejection. AHXR was characterized by interstitial hemorrhage and multiple thrombi in vessels of various sizes. ACXR was characterized by TUNEL+ graft cell injury with the infiltration of T cells (including CD3 and TIA‐1+ cytotoxic T cells), CD4+ cells, CD8+ cells, macrophages and a small number of B and NK cells. Chronic xenograft vasculopathy, a manifestation of chronic rejection, was characterized by arterial intimal thickening with TUNEL+ dead cells, antibody and complement deposition, and/or cytotoxic T‐cell infiltration. In conclusion, despite the absence of the Gal epitope, acute and chronic antibody and cell‐mediated rejection developed in grafts, maintained by chronic immunosupression, presumably due to de novo responses to non‐Gal antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号